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Abstract

A new aggressive algorithm for the elimination of par-

tially dead code is presented, i.e., of code which is only

dead on some program paths. Besides being more pow-

erful than the usual approaches to dead code elimina-

tion, this algorithm is optimal in the following sense:

partially dead code remaining in the resulting program

cannot be eliminated without changing the branching

structure or the semantics of the programt or without

impairing some program executions.

Our approach is based on techniques for partial re-

dundancy elimination. Besides some new technical

problems there is a significant difference here: partial

dead code elimination introduces second order effects,

which we overcome by means of exhaustive motion and

elimination steps. The optimality and the uniqueness

of the program obtained is proved by means of a new

technique which is universally applicable and partic-

ularly useful in the case of mutually interdependent

program optimizationso

Topics: data flow analysis, program optimization,

dead code elimination, partial redundancy elimination,

code motion, assignment motion, bit-vector data flow

analyses.

1 Motivation

Dead code elimination is a technique for improving the

efficiency of a program by avoiding the execution of un-
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necessary statements at run-time. Usually, an assign-

ment is considered unnecessary, if it is totally dead, i.e.,

if the content of its left hand side variable is not used

in the remainder of the program. Thus partially dead

assignments as the one in node 1 in Figure 1, which is

dead on the left but alive on the right branch, are not

considered.

*
1 y:= a+b

+

2

3 Y:= 4

5

b(j out(xb)

Figure 1: A Simple Motivating Example

However, by moving the assignment g:= a + b from

node 1 to the entry of node 3 and node 4 this assign-

ment becomes dead at node 3 and can be removed as

shown in Figure 2.

We present an aggressive algorithm for partial dead

code elimination, which optimally captures this effect:

partially dead code remaining in the resulting program

cannot be eliminated without changing the branching

structure or the semantics of the program, or without

impairing some program executions.

The point of our algorithm is to move partially dead

statements as far as possible in the direction of the

control flow while maintaining the program semantics.

This process places the statements in an as specific con-

text as possible, and therefore maximizes the potential

of dead code, which is subsequently eliminated.

This approach is essentially dual to partial redun-
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Figure 2: Partially Dead Assignment Removed

dancy elimination [9, 11, 12, 22, 23, 26], where com-

putations are moved against the control flow as far as

possible, in order to make their effects as universal as

possible. Thus similar techniques can be applied, How-

ever, moving assignments turns out to be more intri-

cate, because both moving and eliminating assignments

can mutually influence each other as illustrated in Fig-

ure 3:

P--’
4 c:=y-e

5 x:= .+1 6

J&i

I

7 ~ out(c) 8 out(x)

91

Figure 3: Illustrating Second Order Effects

The most significant inefficiency in this example pro-

gram is obviously the “loop invariant” code fragment

in node 2, which cannot be removed from the loop

by standard techniques for loop invariant code motion,
since the first instruction defines an operand of the sec-

ond assignment.1

Our algorithm performs the optimization displayed

in Figure 4 in two steps: Removing the second assign-

ment from the loop suspends the blockade of the first

1Note that even interleaving code motion and copy propa-

gation as suggested in [10] only succeeds in removing the right

hand side computations from the loop, but the assignment to x

would remain in it,

41 I

L ‘--r ““-‘ax“q A)

%

7 c:= y-e $=
out(c)

9

Figure 4: The Result

assignment, which then can be removed from the loop

as well. The systematic treatment of such second order

effects is an important part of our algorithm.

11 x:=a+b

21

41
>,. . . .... . . . . . . . .. . . . . -. In
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15(j X:=
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Figure 5: Illustrating the Treatment of Loops

In addition to covering second order effects, our al-

gorithm captures arbitrary control flow structures and

elegantly solves the usual problem of distinguishing be-

tween profitable code motion across loop structures and

fatal code motion into loops. In fact, it guarantees that

each execution of the resulting program is at least aa

fast as the similar execution of the original program,

w the set of statements which must be executed can

only be reduced. This is illustrated in the example of
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Figure 5, which contains two loop constructs, one of

which is even irreducible.
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Figure 6: The Result

Figure 6 shows that our algorithm moves the assign-

ment of node 1 across the first irreducible loop con-

struct, removes it as dead code on the branch leading

through node 6, and inserts it into a new node S4,5

on the edge connecting node 4 and node 5. It is worth

noting that the assignment in node S4,5 is still par-

tially dead. However, the elimination of this partially

dead assignment would require to move %:= a+ b into

the second loop, which would dramatically impair some

program executions.

Related Work

The idea of assignment sinking and its use in dead code

elimination in a global optimizer is already sketched in

[25], However, this algorithm is restricted to a few

special control flow patterns, and does not address the

general problem at all. Moreover, in [9] Dhamdhere

proposed an extension of partial redundancy elimina-

tion to assignment movement, where, in contrast to our

approach, assignments are hoisted rather than sunk,

which does not allow any elimination of partially dead

code.

Recently, Feigen et al. pointed to the importance of

partial dead code elimination [13]. Their algorithm

is characterized by considering more comp~ex state-
ments as movement candidates whenever the elemen-

tary statements are blocked. Thus, in contrast to

the usual code motion algorithms, it may modify the

branching structure of the program under considera-

tion. However, the algorithm sketched and discussed

in their paper is not capable of moving statements out

of loops or even across loops. Moreover! it only con-

siders transformations that place one occurrence of a

possibly complex partially dead statement at a single

later point where it is live. This restriction forbids some

attractive optimization. For instance, in Figure 3 the

assignment c := y – e could not be removed from node

4, and, as a consequence, all second order movements

are missed as well, This example could possibly be

dealt with by an extension of their algorithm which is

vaguely mentioned in their paper. However$ even this

extension would still fail to capture movements that

require the simultaneous treatment of several occur-

rences of a specific pattern. For instance, in Figure 7

the partially dead assignments of a:= a + 1 at node 1

and node 2 can only be eliminated by a simultaneous

treatment of both occurrences.

d

9

1 a:= a+l b) 1
P

62 out(a)

a := a+l

2+

y:= a+b
~,
‘-.

-. ...
\ . ...’

e
4 Out(x+y)

3

i 5 out(a+b)

.-. .
,’ ~,

c14 a:= a+l

y:= a+b

Outfx+y)

61ZI

i

Figure 7: Illustrating m-to-n

13riggs’ and Cooper’s algorithm [4]

42 a:= a+]

3
out(a)
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5 a:= a+l

“’%
out(a+b)

6

‘t

Sinkings

published in this

proceedings employs instruction sinking for the reas-

sociation of expressions. As a by-product some par-

tially dead assignments can be removed. However, in

contrast to our algorithm their strategy of instruction

sinking can significantly impair certain program execu-

tions, since instructions can be moved into loops in a

way which cannot be ‘repaired’ by a subsequent partial

redundancy elimination. For example in Figure 6 their

algorithm would sink the instruction of node S4,5 into

the loop to node 7. Note that subsequent partial re-

dundancy elimination fails to hoist it back because of

safety reasons.

In [7, 8] Dhamdhere presents an application of code
hoisting and sinking techniques to register assignment

which, however, does not provide a contribution to the

general problem of partial dead code elimination.
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Finally, instruction scheduling techniques me usu-

ally restricted to basic blocks or for-loops and focus on

specific goals of code generation, for instance to yield

short evaluation sequences with respect to some ma-

chine model [1, 28], or to prepare the code for efficient

execution on a parallel or pipelined machine [3, 15].

Structure of the Paper

The paper develops along the following lines. After

the preliminary Section 2, Section 3 presents the cen-

tral notions of our approach and establishes the es-

sential feat ures of partial dead code elimination. Sub-

sequently, Section 4 gives a detailed discussion about

second order effects, and Section 5 develops our algo-

rit hrn. Finally, a complexity estimation is presented in

Section 6 and conclusions are drawn in Section 7’.

2 Preliminaries

We consider variables a c V, terms t E T, and di-

rected flow graphs G = (N, E,s, e) with node set N

and edge set E. Nodes n ~ N represent basic blocks

of statements, edges (m, n) ~ E the nondeterministic

branching structure of G, ands and e the unique start

node and end node of G, which are both assumed to

represent the empty statement skip and not to possess

any predecessors and successors, respectively.

Statements are classified into the following three

groups: the assignment statements of the form v:= t,

the empty statement skip, and the relevant statements

forcing all their operands to be alive. For the ease of

presentation, the relevant statements are given by ex-

plicit output operations of the form out(t) here.2 We

will further use the notion lhs’ to refer to the left hand

side variable of an assignment statement J,

Moreover, $ucc(n)=df { m ~(n, m) 6 E } and

P-red(n)=df { m \ (m, n) c E } denote the set of all suc-

cessors and predecessors of a node n, respectively. A

path p in G is a sequence of nodes (nl, ,. ,, nk ), where
v I < i < k. n;+l E succ(ni), and P[rn, n] denotes the

set of all finite paths from m to n. Every node n ~ N

is assumed to lie on a path from s to e. Finally? an as-

signment pattern a is a string of the form x := -t. The

set of all assignment patterns (occurring in a program)

is denoted by AP.

2.1 Cr~tical Edges

Like partial redundancy elimination also partial dead

code elimination can be blocked by critical edges in

2 In practice, ~~~ditions in if-statements and ~signments to

global variables (i.e., variablee whose declaration is outside the

scope of the flow graph under consideration) must be considered

relevant MI well. It is straightforward to extend our approach

accordhgly.

a flow graphy i.e. y by edges leading from a node with

more than one successor to a node with more than one

predecessor (cf. [6, 10, 22, 23]).

@

A1 x:=a+b

2 3 x:=

b) I

1

b%

.. . . .
sl,~[{}~ a+b ~

. . . . . . .

2 3 x:=

Figure 8: Critical Edges

In Figure 8(a) the assignment z:= a + b at node

1 is partially dead with respect to the assignment at

node 3. However, this partially dead assignment can-

not safely be eliminated by moving it to its successors?

because this may introduce a new assignment on a path

entering node 2 on the left branch. On the other hand,

it can safely be eliminated after inserting a synthetic

node S1,2 in the critical edge (1, 2), as illustrated in

Figure 8(b).

In the following, we therefore restrict our attention

to programs where every critical edge has been split by

inserting a synthetic node,

3 Partial Dead Code Elimina-

tion

Conceptually, partial dead code elimination stands for

any sequence of

o assignment sinkings and

o dead code eliminations

as formally defined below.

Definition 3.1 (Assignment Sinking)

Let Q ~ x:= t be an assignment pattern. An assign-

ment sinking for a is a program transformation that

* eliminates some occurrences of a,

e inserts instances of a at the entry or the exit of

some basic blocks being reachable from a basic block

with an eliminated occurrence of a.

In order to be admissible, the sinking of assignments

must be semantics preserving. Obviously, the sinking

of an assignment pattern a = x:= t is blocked by an

instruction that

e modifies an operand of t or

e uses the variable z or
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● modifies the variable ~.

Thus, we define:

Definition 3.2 (Admissible Assign. Sinking)

/in assignment sinking for a is admissible, i,, it sat-

isfies the following two conditions:

1.

2.

The t-emoved assignments are substituted, i.e., on

every program path leading from n to e, where an

occurrence of Q has been eliminated at n, an in-

stance of a has been inserted at a node m on the

path such that a is not blocked by ang instruction

between n and m.

The inserted assignments are justified, i.e., on ev-

ey program path leading from s to n, where an

instance of @ has been inserted at n, an occur-

rence of cs has been eliminated at a node m on

the path such that Q is not blocked by any instruc-

tion between m and n.

Definition 3.3 (Assignment Elimination)

An assignment elimination for a is a program trans-

formation that eliminates some original occurrences of

cs in the argument program.

Like the sinking of assignments also their elimination

must be admissible, which leads to the notion of dead

assignments. An occurrence of an assignment pattern

a ~ z := t in a basic block n is dead, if its left-hand

side variable z is dead, i.e., on every path from n to

e every right-hand side occurrence of z following the

considered instance of a is preceded by a modification

of Z. This simple definition, however, is too strong

in order to characterize all assignments that are of no

use for any relevant computation. The following re-

cursive definition yields such a characterization. An

occurrence of an assignment pattern a a z := t in

a basic block n is faint (cp. [16, 18]), if its left-hand

side variable w is faint, i.e. on every path from n to

e every right-hand side occurrence of x following the

instance of a is either preceded by a modification of

a or is in an assignment whose left hand side variable

is faint as well. The following example taken from [18]

shows a faint assignment which is out of the scope of

dead code elimination.

Thus faint code elimination is more powerful than

dead code elimination. On the other hand, in contrast

to faint code elimination dead code elimination can be

based on an efficient bit-vector data flow analysis. We

therefore consider both techniques in the sequel.

Definition 3.4 (Dead (Faint) Code Elim.)

A dead (faint) code elimination for an assignment pat-

tern cs is an assignment elimination for a, where some

dead (faint) occurrences of a are eliminated.

Figure 9: A

1

2

@

3 X:=X+1

Faint but not a Dead Assignment

It is worth noting that any admissible assignment sink-

ing preserves the program semantics. This is not true

for assignment eliminations. In fact, even dead (faint)

code eliminations may change the semantics of a pro-

gram by reducing the potential of run-time errors.3

However, these are the only possible changes of the

semantics induced by dead (faint) code elimination. In

particular, the evaluation of every program instruction

which remains in the program is guaranteed to behave

exactly as before.

Definition 3.5 (Part. Dead (Faint) Code Elim.)

Partial dead (faint ) code elimination PDE (PFE) is

an arbitrary sequence of admissible assignment sink-

ings and dead (faint) code eliminations.
r

h the fOllOWing We Wi]] Write ~ l_pDE @ (G bpFE @)

if the flow graph G’ results from applying an admis-

sible assignment sinking or a dead (faint) code elimi-

nation to G. For a given flow graph G we denote the

universe of programs resulting from partial dead (faint)

code elimination T G {PDE, PFE} by

G.=4{G’I GI-; G’J

For the rest of this section let T c {PDE, PFE}. A

key notion of this paper then is:

Definition 3.6 (Optimality of PDE (PFE))

1. Let G’, G’” 6 ~~. Then G’ is better4 than G“, in

signs G“ L G!, if and only if

~p ~ p[S, e] VCI ● w@. CY#(fW) < CI#(f@I)

where ff#(p@ ) and ~#(p@ ) denote the number

of occurrences of the assignment pattern a on p

in G: and G“, respectively.5

3Think e.g. of an overflow or a dk’ision by zero caused by

the evaluation of the right hand side term of an eliminated

aeeignment.
4Note that t~le relation is reflexive. In fact, at least as good

would be the more precise but uglier notion.
5Remember that the branching etructure is preserved. Hence,

starting from a path in G, we can eaaily identify corresponding

paths in G’ and G“.
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,2’ G“ 6 g, isoptima] ij and only if G* is better than

any other program in G..

The relation ‘better’ is a pre-order cm g7, Le., it is re-

flexive and transitive (but not antisymmetric). Hence,

there may be several programs being optimal in the

sense of Definition 3.6. On the other hand, it is not

obvious that g. has an optimal element at all. VVe will

therefore present a constructive criterion guaranteeing

the existence of an optimal element. ‘This criterion,

which is based cm a slight generalization of Tarski’s

Fixpoint ‘13eorem, is tailored to deal with. mutually

interdependent (program) transformations. In this set-

ting, we consider the partial order E7 on ~. defined

by & =~f (~ (l F,)*, and a finite family of functions

YG’’,G’’EGVE F,.
G’ & (7’ - f(q c=f(G”)

Given such a family of functions F=, we can apply the

generalized version of ‘Tarski’s Fixed Point Theorem

presented in [14], in order to obtain:

Theorem .3.%’(Existence of Optitial Rograms)

~, has an optimal element (uwt ~) which can. be com-

puted @ any sequence o~~unction applications that con-

tains ail elements of ~. ‘sufficiently’ ojten.

The optimal program is not unique. However, one can

show that there exists a canonical representative which

is unique up to some reordering in basic Mocks.

4 Second Order Effects in Par-

tial Dead code Eh’’nination

h ~hk section we will discuss the interdependencies

between the various sinking and elimination steps of

assignments. For comparison let us first consider the

situation in partial redundancy elimination. Also par-

tial redundancy elimination is conceptually composed

of two kinds of elementary program transformations.

First, hoisting computations, and second, eliminating

tot al redundancies. However, partial redundancy elim-

ination can be done independently for every program

term t. Thus a single application of each step is suf-

ficient to yield an optimal result. Unfortunately, this

does not hold for partial dead code elimination. In fact,

there are various kinds of ‘second order effects’ that

need to be considered. We are now going to systemat-

ically discuss these effects, which are fully captured by

our algorithm presented in Section !5.

4,1 Sinking-Elimination Effects

This is the effect of primary interest: an assignment

is sunk. until it can be eliminated by dead (faint) code

elimination. Reconsider the motivating examples in

Section 1 for illustration.

4.2 SM&g-SM&g Efkts

The sinking of am assignment may open the way for

other assignments to sink, if it is a use- or redefinition

site for these assignments or if it modifies an operand

of its right-hand side term. The last case is illustrated

in Figure 10(a). Without previously sinking the as-

signment of node 2 the assignment of node 1 can sink

at most to the entry of node 2. Here it is blocked,

since any further sinking would corrupt the value of its

right-hand side expression. However, anticipating the

sinking of the assignment at node 2 to node .5, the as-

signment at node 1 can be sunk to node 3 and node

4, where dead code elimination finally removes the oc-

currence at node 3 as displayed in Figure 10(b).

*

2 a:=

~ y:= 4

5 x:= a+c

IEl(j Olft(x$y)

‘t

*

2

~ y,= ~ y:=a+b

5 a:=
x:= a~c

da6 Out(x+y)

‘i’

Figure 10: Sinl&g-Sinking Effect

4.3 Elimination-Sinking Effects

For similar reasons as above, the elimination of dead as-

signments may enable the sinking of other assignments,
see Figure 1l(a) for illustration. Here, none of the as-

signments at node 1 and node 2 can be sunk without

violating the admissibility. However, the assignment
a:= . . . at node 1 can be removed by dead code elim-

ination, since its value is not used anymore. Now this

removal enables the assignment ~ := a + b to be sunk

to node 4 and 5 in order to eliminate further partially

dead assignments leading to the program displayed in

Figure Ii(b).
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‘i’

Figure 11: Elimination-Sinking-Effect

4.4 Elimination-Elimination Effects

This effect is illustrated in Figure 12(a). Here, the as-

signment at node 4 is dead and can be eliminated, since

on every path leading to the end node the left-hand side

variable v is redefined before it is used. Subsequently,

the assignment to a at node 1, which was not dead

before due to its usage at -node 4, becomes dead and

can be removed as shown in Figure 12(b).

It is worth noting that this example shows a second

order effect for partial dead code elimination but a first

order effect for partial faint code elimination: both as-

signments at node 1 and node 4 are faint, and hence

could be eliminated simultaneously by faint code elim-

ination.

+

2

3 4 y:= a+b

fj y,= c+d

Figure 12: Elimination-Elimination Effect

5 The Algorithm

In this section we present our algorithm for the opti-

mal elimination of partially dead (faint) assignments.
We first give an overview of the algorithm, and subse-

quently describe the relevant steps in more detail.

5.1 Overview

The algorithm pde (pfe) consists of two main proce-

dures that are repeated until the program stabilizes:

A procedure dce (’jbe) for the elimination of dead

(faint) assignments, which is controlled by a dead

(faint) variable analysis.

A procedure ask for assignment sinking, which is

controlled by a delayability analysis working on

bit-vectors of sinkhg candidates.

We are now going to describe these procedures in detail.

A complexity estimation is given in Section 6.

5.2 Eliminating Dead (Faint) Assign-

ments

The elimination of dead (faint) assignments is based

on the determination of dead (faint) variables, Dead

variables can be computed by means of a backwards

directed bit-vector data flow analysis [2, 17, 24], A

standard formulation can ‘be found in Table 1, where

N-DEAD,(z) (or X-DEAD,(%)) mean that variable

z is dead at the entry (or exit) of statement t. Addi-

tionally, this table shows the equation system for the

faint variable analysis, where analogously to the dead

variable analysis N-FAINT,(z) (or X-FAINT,(Z))

mean that variable x is faint at the entry (or exit) of

statement L. Though the faint problem does not have a

bit-vector form, it can easily be solved by means of an

iterative worldist algorithm operating slotwise on bit-

vectors (cp. [10]). The only subtlety here is that a slot

(L, z) for an assignment statement L maybe influenced

not only by the mslot of some successor node i, but

also by the slot (L, VW,). ‘This must be taken care of by

additionally updating the worklist with all slots (L, z),

where z is a right-hand side variable of L, whenever

the slot (L, VW,) has been processed successfully. R is

worth noting that this does not cause any problems

for the correctness and complexity of the method (cf.

Section 6.1).

After having computed the greatest solution for one

of the equation systems specified in Table 1, the corre-

sponding program transformation is very simple:

The Elimination Step:

Process every basic Mock by successively eliminating

all assignments whose left-hand side variables are dead

(faint) immediately after them.

Standard methods to dead code elimination are usually

based on definition-use graphs [2, 21], which connect

the definition sites of a variable with their correspond-

ing use sites, ‘Thus, dead assignments can be identi-

fied indirectly by means of a simple marking algorithm
working on the definition-use graph. If this algorithm

uses optimistic assumptions every faint assignment is
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detected in time proportional to the size of the graph.

Unfortunately, definition-use graphs are usually quite

large, i.e. of order O(i2 v) in the worst case, where i

denotes the number of instructions and v the number

of variables occurring in the flow graph /30]. The al-

gorithm of [5] improves on this result by working on

a sparse definition-use graph based on the SSA form.

This results in a worst case time complexity of O(i v),

which coincides with the complexity of our simple iter-

ative algorithm (cf. Section 6.1).

5.3 Sinking of Assignments

The program transformation of this stage is based on a

delayability analysis ([22, 23]), which was designed to

determine how far a hoisted computation can be sunk

from its earliest initialization point in order to mini-

mize the lifetimes of temporaries introduced by par-

tial redundancy elimination, while maintaining compu-

tational optimality. Table 2 presents the delayability

analysis adapted to our situation in a bit-vector format,

where each bit corresponds to an assignment pattern

occurring in the program. Here N-DELAYED. and

X-DELAYEDn intuitively mean that some sinking

candidates of Q can be moved to the entry or the exit

of basic block n respectively, and sinking candidates

are occurrences of an assignment $:= t inside a basic

block that are not Mocked, i.e., neither followed by a

modification of an operand of t nor by a modification

or a usage of $. See Figure 13 for illustration. Note

that among the various occurrences of an assignment

pattern in a basic Mock at most the last one is a can-

didate for global sinking, because every occurrence is

Mocked at least by the subsequent occurrence.

ry:=a+b

a:=c

x := 39

?$$ ,’ ny:=a+b
a:=c

x := 3*y

y := a+b

a:=d

:!w~i Sinking Candidate

Figure 13: Sinking Candidates of “y:= a + b“

The greatest solution of the equation system dis-
played in Table 2 characterizes the program points,

where instances of the assignment pattern a must

be inserted, by means of the insertion predicates

N-INSERT and X-INSERT. The subsequent pro-

gram transformation is again very simple, because it
can easily be shown that all assignment patterns that

must be inserted at a particular program point are in-

dependent and can therefore be placed in an arbitrary

order:

The Insertion Step;

Process every basic block by successively inserting in-

stances of every assignment pattern a at the entry (or

exit) of n if N-INSERT.(a) (or X-INSERT.(a))

is satisfied.”

5.4 Termination of’ the ~lobal Algo-

rit hm

The algorithm terminates as soon as both steps, the

dead (faint ) code elimination and the assignment

sinking leave the program invariant. In the case

of dead (faint) code elimination this simply meam

that no further assignments are eliminated, and in

the case of assignment sinking this holds, if ev-

ery basic block n satisfies N-INSERT. = false and

X-INSERT. = LOCDELAYEDm.

5.5 Results

Denoting the final programs that result from applying

our algorithm for partial dead (faint ) code elimination

to G by Gp~. and GPfe, respectively, we have:

Theorem 5.1 (Correctness)

J. GPA G GPDE

~. GPf. C GPFE

Moreover, it is easy to prove that

and f_PFE =df {fee, ask} satisfy

.FpDE=,jf {dce, ask}

the dominance and. .-
monotonicit y property of Section 3, Hence, we can

apply Theorem 3.7, which establishes the following op-

timality results:

Theorem 5.2 (OptimaHty Theorem)

1. GPde is optimal in ~pDE

2. GPfe is optimal in L7PFE

6 Complexity

Parameterized in the complexities of its components,

e Cdce, cf., and c ..h : the complexities of the
data flow analyses of the corresponding compo-

nent transformations,

Ov; the maximal factor by which the number of

instructions may increase during the application

of the algorithm, and

6Due to edge ~Plitting th~re ,g,reno insertions at the exit of

branching nodes.
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Local Predicates

e USED’(Z): ~ is a right-hand side variable of the instruction ~.a

e REIN-USED’(z): z is a right-hand side variable of the relevant instruction I,.

● ASS-USED’(a): z is a right-hand side variable of the assignment stat ernent ~.

e MODL(Z): z is the left-hand side variable of the instruction ~.

The Dead Variable Analysis: (In bit-vector forrnulation~)

N-DEAD, =4 7USEDL * (X-DEAD, + MOD,)

X-DEAD, =df
n N-DEADi

Xswcc($)

The Faint Variable Analysis: (Slotwise simultaneously for all variables z)

N-J?AINT,(z) =df lRELV-USED,(Z) * (X-FAINT,(Z) + MOD,(Z)) *

(X-FAINT, (lhs,) -I- TASS-USED,(Z))

X-FAINT,(Z) =M n N-FAINT2($)

K8UCC(L)

Table 1: Dead & Faint Variable Analysis

“In particular, all variables occurring in relevant statements are considered right-hand side variables.
b~otb ~+5e5 me employed at the instruction level. This, however, is important only for the fht variable malysis. In fact, the

dead variable analysis can straightforwardly be modified to work on basic blocks.

Local Predicates:

o LOCDELAYE13n(cs): There is a sinkhg candidate of a in n.

e LOC13LOCKEDn(cs): The sinking of a is blocked by some instruction of n.

Delayabilit y Analysis:

{

fake if n=s

N-DELAYED. =W
~ X-DELAYED~ othewise

mQ.red(n)

X-DELAYED. =df LOCDEL.AYED. + N-DELAYED. * lLOCBLOCKEDn

Insertion Points:

N-INSERT. =df N-DELAYED. * LOCBLOCKEDn

X-INSERT. =df X-DELAYED. * x TN-DELAYEDm

m~succ(n)

Table 2: Delayability Analysis and Insertion Points
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Or: the maximal number of applications of the

component t ransformat ions?

we have the following results for the overall complexity

of the transformations

pale: O(r (c~ce + ca.~ + w oi))

pfe: O(r (cf.. + ca,k + w o i))

where i denotes the number of instructions occur-

ring in the original program. The factor w ci is caused

by the actual intermediate transformations and up-

dates of the local predicates.

The following three subsections provide a detailed es-

timation of the parameters mentioned above in terms

of the number of basic blocks b, the rmmber of in-

st ructions i, the number of variables v and the num-

ber of assignment patterns a of the original program.

Subsequently, the overall complexity is sketched more

roughly in terms of a uniform parameter n reflecting

the program size of the argument program.

6.1 Complexity of the Component

Transformations

6.1.1 Delayability Analysis

The delayability analysis realizing the essential part of

the assignment sinking procedure is a forward directed

bit-vector data flow analysis. For well-structured flow

graphs the efficient bit-vector techniques [19, 20, 29]

become applicable, yielding an almost linear complex-

it y in terms of fast bit-vector operations. For arbitrary

control flow structures, however, the slotwise approach

of [10] is the best we can do yielding O(b . a) as the

worst case time complexity for the assignment sinking

procedure.

6.1.2 Dead (Faint) Variable Analysis

Like the delayability also the dead code analysis is a

bit-vector problem. Thus replacing the parameter a by
v the same estimations apply for the worst case time

complexity. Unfortunately, the ,fuint variable analysis

is not a bit-vector problem, i.e. the solution cannot be

computed for each variable independently. Thus there

are no special algorithms for structured programs, and

the slotwise approach of [10] must always be applied.

Note that the structure of faint code analysis requires
a computation at the instruction level.

We will now prove that under the usual assumptions

that

● the size of program terms is bound by a constant,

and

● the number of edges is of order b

faint code elimination is proportional to both the num-

ber of instructions and the number of program vari-

ables.

Investigating the equation system of the faint vari-

able analysis of Table 1 reveals that during the iterative

computation of the greatest solution of the equation

system each slot for a variable ~ can change its value

at most once from true to false. These changes are the

only reason for updating the worklist:

● if the slot is part of an entry bit-vector at an in-

struction L then for all predecessors L1 of ~ the

z-slots of the exit bit-vectors are added to the cur-

rent worklist, and

e if the slot is part of an exit bit-vector of an in-

struction ~ then al~ ~-slots of the same bit-vector

are added to the current worklist where y is a

right-hand side variable of ~.

Thus one can easily establish that every edge of the

control flow graph will be considered at most v times

during the analysis in order to ‘reach’ the correspond-

ing successor. Applying our assumptions therefore

yields that the number of worklist entries written by

the faint code analysis algorithm is at most propor-

tional to the program size and the number of program

variables. A similar argument suffices to prove that the

global cost of the faint code analysis, including the ef-

fort for slot processing, is still of the same order, which

completes the proof.

As the size of the program may increase by a factor w

during the execution of our algorithm (see Section 6.2),

the intermediate program size during the execution of

our overall algorithm can only be estimated by O(w. i),

yielding a worst case complexity of O(w oi ov) for the

required faint ana~ysis steps.

6.2 Estimating the Code Size

Using induction on the length of a shortest (acyclic)

path p reaching a node n it can easily be shown that

the number of instructions that can be inserted at n

is bound by the number of instructions on p. Thus

the number of instructions at a basic block will never

exceed i showing that w is of order O(b) in the worst

case. In practice, however, we expect that w is bound

by a constant.

6.3 Estimating the Number of Itera-

tions

Applying the shortest path argument of Section 6.2

again, the number of assignments that are inserted at a

node n during the application of the overall algorithm

is bound by i. Thus the number of dce (fee) and ask

applications can be estimated by i. b, yielding that r
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is at most quadratic in-the program size. However? we

conjecture that r only depends linearly on i.

6.4 Summary

Combining the results of the previous subsections, we

have:

● O(r), O(cdce), o(c~~k), and O(w i) can be esti-
mated by O(n2), and

● O(cfce) can be estimated by O(ns).

This guarantees that partial dead code elimination is

of order O(n4) and partial faint code elimination is of

order 0(n5) in the worst case.

These estimations are very pessimistic. Already us-

ing our conjecture would reduce the complexities to

0(n3) and O(n4), respectively, Moreover, using the

reasonable assumption that the factor w that indicates

the degree of static code replication is of order 0(1)

saves another factor of n for the partial faint code

elimination, and it saves (almost) a factor of n for par-

tial dead code elimination whenever fast bit-vecor tech-

niques are applicable. Thus we expect a quadratic be-

haviour (O(n2)) for partial dead code elimination and

at most a cubic behaviour (O(n3 ) ) for partial faint code

elimination.

Summarizing, the overall time bound for our algor-

ithms is only slightly worse than the one for the sig-

nificantly weaker technique of dead code elimination

based on definition-use graphs, and it is comparable

with the complexity of other aggressive code motion

techniques. E.g., the algorithm for global value num-

bering of [27], which requires reducible flow graphs and

guarantees optimality only for acyclic program struc-

tures, is of third order,

7 Conclusions

We have presented a new aggressive algorithm for

the optimal elimination of partially dead (faint) code,

which captures all second order effects that are due

to the mutual dependence between assignment sink-

ing and dead (faint) code elimination. This algorithm

is comparably expensive aa other aggressive optimiza-

tion methods. Its complexity ranges from 0(n2) for

the ‘dead’ version and realistic structured programs to

O(n5) for the faint version and the completely unre-

stricted worst case. Thus as other aggressive methods,

our algorithm should typically be employed for the op-

timization of time-critical sections of code of moderate

size. In general, modifications of our algorithm should

be applied that limit the number of assignment sinking
and dead (faint) code elimination steps. We are cur-
rently investigating heuristics guiding this limitation,

which range from simply cutting the global iteration

process after some given amount of time or a fixed num-

ber of iterations to localizing the optimization process

to ‘hot areas’,
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