
RL4ReAl: Reinforcement Learning for Register Allocation
S. VenkataKeerthy, Siddharth Jain, Anilava Kundu,

Rohit Aggarwal, Albert Cohen, Ramakrishna Upadrasta

Presented by: Haocheng Ren, Yuning Cong, Xiuru Ruan
Group 18

Outline

1. Quick Recap
2. Issues of ML in Register Allocation
3. Reinforcement Learning
4. Overall RL4ReAl Workflow
5. Details in the workflow
6. Evaluation
7. Commentary

Quick Recap

1. Coloring: assign PR
2. Spilling: if no available PR, put into memory
3. Splitting: split a variable across multiple registers or between registers and memory

Issues of ML in Register Allocation

Applicability and Effectiveness

1. Register allocation is complex
a. sub-tasks (spilling, splitting, etc.)

2. Absolute correctness from ML-based approach
a. live range
b. register type

3. Integration
a. ML models, RL algo in python
b. compiler frameworks in C++

Reinforcement Learning

1. A branch of ML
2. How?

a. Agent learns a policy
b. Positive/Negative reward

3. In register allocation
a. Hierarchical Multi-Agent RL (state, action, reward)

i. Node Selection Agent (Top)
1. State space
2. Action
3. Reward

ii. Task Selection Agent (Mid)
iii. Coloring Agent (Low)
iv. Splitting Agent (Low)

RL4ReAl Workflow

MIR2Vec

1. Create Triplets
a. (opcode, NEXT, opcode)
b. (opcode, ARGi, arg)

2. Feed the triplets to TransE to obtain
embeddings of each MIR instruction
opcode and argument

MOV

Register Constraints - I

1. Type constraint
- Virtual registers can only be assigned with physical registers of the same type

2. Interference constraint
- No adjacent nodes of an interference graph should be allocated the same

color

Register Constraints - II

3. Congruence constraint
a. Some registers are physically part of

some other wider registers

b. Registers that adhere to this part of
relation belong to the same congruence
class

c. Virtual registers with overlapping live
ranges should not be assigned with
physical registers of the same congruence
class

Node Selector

1. State Space
a. Embedding of each vertex in Graph
b. Spill weights of the vertices

2. Action
a. Select an uncolored vertex for allocation

3. Reward
a. Same reward of the task selector agent

Task Selector

1. State Space
a. Embedding of the vertex v picked by the node

selector
b. Number of available registers
c. Number of interferences of v
d. Life-time of v
e. Spill weight of v

2. Action
a. Select a task among coloring and splitting

3. Reward
a. Same reward of the coloring agent if choosing

to color
b. 0 if choosing to split

Splitting Agent

1. State Space
a. Embedding of the vertex v picked by the node

selector
b. Spill weights at each use of v
c. Distance between each successive use of v

2. Action
a. learn an optimal split point in the live range

among all the points of use of v
3. Reward

a. Difference in spill weights of v before and after
splitting

Coloring Agent

Decide the register to be assigned

1. State space
a. Embedding of the vertex v picked by the node

selector
b. Number of available registers satisfying the

constraints (legal registers)
c. Number of uncolored vertices in G
d. Spill weight M(v) of v

2. Action
a. Pick a legal register if available, spill v

otherwise
3. Reward

a. +M(v) if a legal register exists, -M(v) otherwise

Experimental Evaluation

1. MIR2Vec representations: train on C++ Boost Library source file and SPEC
CPU 2017 benchmarks with –O3; TransE model with triplet (𝑜𝑝, 𝑁𝐸𝑋𝑇, 𝑜𝑝) or
(𝑜𝑝, 𝐴𝑅𝐺𝑖, 𝑎𝑟𝑔) relation

2. Target Processors: x86 / AArch64
3. Involved registers: general-purpose, vector, floating point
4. RL Training datasets: 5k random functions from SPEC CPU 2017

benchmarks
5. Benchmark: 13 benchmarks in SPEC CPU 2006 and SPEC CPU 2017

Benchmarks – Hot Functions

- Register Pressure: Maximum number of overlapping live ranges
- Most hot functions have over 120 vertices: near linear correlation with register

pressure
- < 120 vertices: Greedy

Evaluation-x86

- L: Trained with Local reward
- G: Trained with Global reward
- Evaluated

speedup(+)/slow-down(-) by
seconds

- Close to Greedy
- Policy Improvement Cycle

Evaluation-Runtime

- Take a deeper dive into
comparison with Greedy

- Greedy show no improvement
over Basic on 2006 due to
BZ2_compressBlock

- RL4REAL fix the failure

Comments

Pros:

1. Developed an overall RL framework for register allocation on real-world
dataset

2. Architecture independent: MIR specific

Cons:

1. No single allocator that performs best across all benchmarks
2. Network structure for sub-task agents are relatively trivial (only FC)
3. Relies on LLVM-gRPC as integration method
4. End-to-end structure lacks detailed intermediate analysis

Thank you!

Q&A

