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Abstract
Instruction combiner (IC) is a critical compiler optimiza-
tion pass, which replaces a sequence of instructions with an
equivalent and optimized instruction sequence at basic block
level. There can be thousands of instruction-combining pat-
terns which need to be frequently updated as new coding
idioms/applications and novel hardware evolve over time.
This results in frequent updates to the IC optimization pass
thereby incurring considerable human effort and high soft-
ware maintenance costs. To mitigate these challenges as-
sociated with the traditional IC, we design and implement
a Neural Instruction Combiner (NIC) and demonstrate its
feasibility by integrating it into the standard LLVM compiler
optimization pipeline.

NIC leverages neural sequence-to-sequence (Seq2Seq)mod-
els for generating optimized encoded IR sequence from the
unoptimized encoded IR sequence. To the best of our knowl-
edge, ours is the first work demonstrating the feasibility
of a neural instruction combiner built into a full-fledged
compiler pipeline. Given the novelty of this task, we built
a new dataset for training our NIC neural model. We show
that NIC achieves exact match results percentage of 72%
for optimized sequences as compared to traditional IC and
neural machine translation metric Bleu precision score of
0.94, demonstrating its feasibility in a production compiler
pipeline.

Keywords: Instruction Combining, Sequence to Sequence
models, compiler optimization

1 Introduction
Of late, considerable strides have been made in applying
deep learning (DL) techniques to software engineering itself,
including source code assistance, automatic source code gen-
eration and in building software tools [18]. The emergence
of open-source community software development and large
code repositories such as GitHub have accelerated interest
in applying DL techniques to programming, compiler op-
timizations, code generation etc. Neural models have been
developed for source code [1] and intermediate code repre-
sentations [30]. ML models have been used for cost predic-
tion and heuristics selection in compiler optimizations [19].
Instruction Combining pass is a basic compiler optimiza-

tion pass present in all compilers. Instruction Combiner [IC]
does local instruction level optimizations on basic blocks

(BB) which are jump-free sequential lists of instructions. IC
operates on the compiler’s Intermediate Representation (IR)
and replaces a sequence of one or more instructions with an
optimized and semantically equivalent instruction sequence.
ICs are typically developed with considerable human ef-

fort. There are thousands of patterns that are considered
for replacement and these patterns continually need to be
added/updated/removed as new coding idioms/applications
and new hardware with more sophisticated instruction set
architecture (ISA) evolve over time. A typical IC pass often
spans several thousand lines of code making it complex to
maintain/debug/enhance. Empirical studies show that IC is
the most frequently updated pass in the LLVM compiler [31].
Given the code complexity, software maintenance effort

and its wide usage, IC is an ideal target for improvement
with machine learnt models. However there also exist con-
siderable challenges in replacing a deterministic and human-
written IC with a probabilistic machine learnt NIC. These
challenges include representation of the input instruction
sequence to the neural model, ensuring correctness of the
probabilistic generated code by the neural model, integration
of the neural model into a standard compiler optimization
pipeline etc. This brings up the question of whether it is
feasible to replace traditional IC by a neural model.

In this paper, we design and implement a Neural Instruc-
tion Combiner (NIC) and demonstrate its feasibility by in-
tegrating it into the standard LLVM compiler optimization
pipeline which can generate executable machine code. NIC
leverages neural Seq2Seq model techniques [3] for generat-
ing optimized encoded IR sequence from the unoptimized
encoded IR sequence at the basic block level, modelling it
as monolingual machine translation task. We improve the
standard attention mechanism [29] in Seq2Seq models with
a compiler guided attention approach.

NIC consists of three major components

• NIC Inputter - This is a compiler module which cre-
ates a distilled representation of the IR instruction
sequence corresponding to each BB.

• NICConverter - This is amachine learntmodel which
takes the output of NIC Inputter and converts it to an
equivalent optimized sequence.

• NIC Outputter - This is a compiler module which
takes as input the optimized sequence generated by
NIC Converter and the original list of IR instructions
corresponding to that BB and recreates the standard
LLVM IR optimized instruction sequence for that BB.
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It also performs a set of IR verification checks and
translation validity checking using Alive2 tool [21].

Given the novelty of this task, we create a new dataset
for training our NIC neural model. We show that NIC can
achieve exact match of 72% on optimized sequences as com-
pared to traditional IC and Bleu precision score (a standard
metric for neural machine translation quality which indi-
cates the overlap between machine translation and ground
truth reference translation) of 0.94 [23]. To the best of our
knowledge, ours is the first work demonstrating the feasibil-
ity of a neural instruction combiner built into a full-fledged
compiler. We also outline the open challenges that still need
to be addressed later in the paper.
Similar in spirit and complementary to our work is the

work on building super optimizers from program binaries [5].
They work by harvesting instruction sequences from bina-
ries, enumerating their equivalent efficient target sequences
by exhaustive search techniques, and creating an offline
database of optimized instruction sequences. This work is
limited to X86 instruction set. We point out that NIC can
in fact leverage the binary instruction sequences harvested
through super optimizers as training data. This can be done
by lifting up the binary instructions to LLVM IR using ex-
isting de-compilation tools [9]. We plan to explore this in
future work. In our case, we automatically learn a neural
model for instruction combiner, modelling it as monolingual
machine translation from an un-optimized instruction se-
quence to an optimized instruction sequence at the compiler
IR level. Since our neural model operates on a distilled IR
representation (which we describe in section 2), it is possi-
ble to port our NIC to any compiler if we can provide the
NIC Inputter/Outputter modules which can convert from a
compiler’s IR to NIC’s encoded/distilled representation and
vice versa. Unlike super optimizers which work on specific
binary instruction sets, this allows wider portability across
platforms.

2 Background
The heart of any compiler is the optimizer which works on
the compiler Intermediate Representation (IR) of the input
program. A function in compiler’s IR is split up into basic
blocks (BB). IC attempts to replace a source sequence of
one or more instructions in a BB by an equivalent and opti-
mized sequence of instructions (IC can also replace single
instructions with equivalent but optimized instructions). IC
transformations typically include algebraic simplifications,
instruction canonicalization, local constant propagation, con-
stant folding etc.

In the IC pass the instruction sequence is scanned against
multiple pattern-matching rules and once a sequence which
matches the pattern is found, an equivalent and efficient
transformed sequence of the identified pattern is applied
to generate the new instruction sequence that replaces the

original sequence. Table 1 shows an example instruction
source instruction sequence wherein IC replaces a divide
(UDIV) by power of 2 with shift right (ASHR) in the target
instruction sequence since shifts are inexpensive than divide
instruction.
Maintenance efforts in the IC pass typically occur in pat-

tern matching part of the pass [31]. Once a source pattern
itself has been matched correctly to determine the corre-
sponding equivalent target sequence, generating the new
sequence by up-dating the source instruction sequence is a
straightforward task. Huge software code costs associated
with IC and the fact that it is ubiquitous in all compilers
opens the possibility of replacing the hand-coded rule driven
pattern matching IC pass with a machine learnable IC pass.
We attempt to do this by building a Neural Instruction Com-
biner (NIC) pass built on the LLVM compiler framework.
We model this as a neural machine translation task from un-
optimized IR sequence to an optimized IR sequence for each
BB using Seq2Seq models [3]. We provide a brief overview
of Seq2Seq models in section 3.2.1.

In our case the input and the output sentences both belong
to the same language of LLVM compiler IR and we model
the problem as a monolingual machine translation task. This
brings up the following open questions:

• What should be the input sentence representation and
output sentence representation for the machine learnt
model?

• How can we find/build a dataset for this task?
• How do we integrate a machine learnt IC module into
the overall optimizer pipeline?

• Should the neural model directly generate the final
LLVM IR sequence or have the machine learnt model
output be validated and then applied on the source
sequence by the optimizer?

• How do we validate that the IR generated from NIC is
correct for downstream optimization passes?

We attempt to answer these in the next section.

3 Description
NIC consists of three major components

• NIC Inputter - This is a compiler module (not an ML
model) which creates a distilled representation of the
IR instruction sequence corresponding to each BB.

• NICConverter - This is amachine learntmodel which
takes as input, an encoded representation of IR instruc-
tion sequence corresponding to each BB of a function
and converts it to an equivalent optimized sequence.
This model is trained offline and employed in inference
mode in LLVM optimizer.

• NIC Outputter - This is a compiler module which
takes as input the optimized sequence generated by
NIC converter module and the original list of instruc-
tion corresponding to that BB. It recreates the standard



Table 1. Example IC transformation

𝑆𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝐼1 : %𝑠𝑢𝑏103 = 𝑠𝑢𝑏 𝑖32 %𝑎𝑟𝑔1, %𝑙𝑜𝑎𝑑1 𝐼1 : %𝑠𝑢𝑏103 = 𝑠𝑢𝑏 𝑖32 %𝑎𝑟𝑔1, %𝑙𝑜𝑎𝑑1
𝐼2 : %𝑑𝑖𝑣104 = 𝑢𝑑𝑖𝑣 𝑖32 %𝑠𝑢𝑏103, 2 𝐼2 : %𝑑𝑖𝑣104 = 𝑎𝑠ℎ𝑟 𝑖32 %𝑠𝑢𝑏103, 1
𝐼3 : %𝑠𝑢𝑏105 = 𝑠𝑢𝑏 𝑖32 %𝑔𝑣𝑎𝑟1, %𝑑𝑖𝑣104 𝐼3 : %𝑠𝑢𝑏105 = 𝑠𝑢𝑏 𝑖32 %𝑔𝑣𝑎𝑟1, %𝑑𝑖𝑣104

Table 2. Example Encoding

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔

𝐼1 : %𝑠𝑢𝑏103 = 𝑠𝑢𝑏 𝑖32 %𝑎𝑟𝑔1, %𝑙𝑜𝑎𝑑1 𝐼1 : 𝑆𝑈𝐵 𝑖32 %𝐴𝑅𝐺1 𝐿𝑂𝐴𝐷
𝐼2 : %𝑑𝑖𝑣104 = 𝑢𝑑𝑖𝑣 𝑖32 %𝑠𝑢𝑏103, 2 𝐼2 : 𝑈𝐷𝐼𝑉 𝑖32 𝑆𝑈𝐵 (𝐼1) 𝐶𝑂𝑁𝑆𝑇 2
𝐼3 : %𝑠𝑢𝑏105 = 𝑠𝑢𝑏 𝑖32 %𝑔𝑣𝑎𝑟1, %𝑑𝑖𝑣104 𝐼3 : 𝑆𝑈𝐵 𝑖32 %𝐺𝑉𝐴𝑅1𝑈𝐷𝐼𝑉 (𝐼2)

LLVM IR optimized instruction sequence for that BB.
The output of NIC Outputter is then passed to the
other downstream optimization passes.

3.1 NIC Inputter
The input to the NIC Inputter is a regular full-fledged LLVM
IR instruction stream corresponding to each BB of a function.
NIC Inputter then creates a compressed encoded represen-
tation of the full LLVM IR instruction stream for that BB.
An LLVM IR instruction contains information such as debug
information, named variables, initializers, instruction level
completers and metadata, which is not needed by IC itself.
Selection of equivalent optimized instruction sequence by
IC pass is dependent on the specific operation (opcode) car-
ried out by the instruction along with the operands of the
instruction.
IC typically does not require the other information con-

tained in a standard LLVM IR instruction. This led us to
create an encoded distilled representation of the full-fledged
LLVM IR instruction sequence as input to the NIC converter
module. Using the distilled representation of the LLVM IR
enables our NIC Converter to deal with a smaller vocabulary
and makes it more efficient. Table 2 shows an example out-
put from the NIC Inputter wherein the column ‘Encoding’
contains the encoded output fromNIC Inputter for the LLVM
IR sequence given in the column ’Instructon Sequence’.
As seen in Table 2, for each LLVM IR instruction, the

distilled representation contains the target opcode, its type,
each of the source operands and their types. In case a source
operand is being produced by an instruction, the source
operand is represented by its opcode. If it is a constant, we
represent it by ‘CONST’ followed by the constant value
if known or by UNKVAL if unknown. In case the source
operand is an incoming argument to the function or a global
variable, we represent it by ARG or GVAR, respectively. We
concatenate the distilled encoded instructions for the BB and
this becomes the input to NIC Converter.

3.2 NIC Converter
NIC Converter is a Sequence-to-Sequence (Seq2Seq) model
which is modelled like a monolingual neural machine trans-
lator. The model is trained offline and is invoked in inference
mode, during the LLVM optimizer pipeline. Figure 1 shows
the components of NIC that are invoked during the infer-
ence path. We describe the training of NIC Converter later
in section 3.2.2.

NIC converter takes as test input, the encoded BB instruc-
tion sequence from NIC Inputter, and predicts an optimized
encoded instruction sequence corresponding to it. NIC Con-
verter consists of a Seq2Seq model internally. The predicted
encoded instruction sequence is then fed to the NIC Output-
ter. The source sentence is the encoded instruction sequence
corresponding to a BB and the target sentence is the opti-
mized sequence for that BB. We next briefly provide a brief
description of Seq2Seq models used in our NIC Converter.

3.2.1 Sequence to Sequence Models. Figure 2 shows an
example Seq2Seq model for neural machine translation. The
Seq2Seq model consists of two subnetworks, the encoder and
the decoder. The encoder and decoder are typically either
Recurrent Neural Networks (RNN) of the form Long Short
Term Memory (LSTM) networks [16] or they can be trans-
former blocks [29]. The input sentence in source language is
represented through token embeddings of the constituent to-
kens/words. The encoder receives the input token embedding
sequence and produces a compact/encoded representation
of the input sequence, trying to summarize or condense all
of its information. In the basic Seq2Seq model, the encoder’s
last cell output is fed to the decoder as initial state. At each
time step, the decoder generates an output token based on
the previous output token and its current state, as well as
updating its own state for the next time step.
In case of RNN based Seq2Seq models, the encoder and

decoder typically consists of fixed length sequence of LSTM
cells (the number of cells in encoder/decoder can be differ-
ent). Encoder and decoder can also consist of stacked layers



Figure 1. NIC Converter Inference Path

Figure 2. Seq2Seq Model deployed for Neural Machine Translation Task

of LSTM cells instead of a single layer of LSTM cells. The
encoder layers can be either unidirectional or bidirectional.
Decoder layers are unidirectional. In the case of neural ma-
chine translation, Seq2Seq model is used to translate an input
sentence in one language to a target sentence in another lan-
guage. As shown in the example in Figure 2, given an input
sentence in English, the words in the sentence are repre-
sented using their word embeddings, and fed to the encoder.
The encoder output is passed to the decoder which generates
each word of the target French sentence.
In the case of NIC Converter, the source sentence is the

distilled representation of the unoptimized IR instruction
sequence at the input of the Instruction Combiner (which is
the output from NIC Inputter). This input sentence is repre-
sented as a sequence of token embeddings (the embeddings
are task specific and trained as part of the Seq2Seq model

training). It is then passed through the encoder-decoder net-
work of the Seq2Seq model. The output sequence from the
decoder is the predicted optimized instruction sequence cor-
responding to the input sequence. This becomes the output
of the NIC Converter. Since the encoder compresses the infor-
mation contained in the entire input sequence into a single
output vector from its last stage output (typically known
as context vector), the basic seq2seq models have difficulty
in retaining all the information from long input sequences.
Attention mechanism was proposed to address this issue [3].
Instead of having the context vector taken from the last cell
of the encoder which can result in lossy compression of the
information contained in the input sequence, attention mech-
anism is used to create a context vector which is a weighted
combination of the outputs from all the cells of the encoder
at each step of the decoding process.



Figure 3. RNN based NIC Converter Seq2Seq model

At every decoding step, the decoder will be informed how
much “attention” needs to be paid to each input word us-
ing a set of attention weights. These attention weights pro-
vide contextual information to the decoder for generation
of each output token. All hidden states of the encoder are
used to generate the context vector, weighing each state by
its corresponding attention weight. A detailed mathematical
representation of attention mechanism can be found in [3].

As is typical practice, our Seq2Seq models are based on the
standard encoder-decoder framework with attention [27].
We consider two design choices for the encoder-decoder
network, one based on RNN with a single head attention [3],
and another based on standard transformermodel withmulti-
head attention [29]. The input sentence is converted in-to
fixed length representation using the encoder from which
the decoder emits the target sentence, one token at a time.
Attention mechanism is employed to improve the ability of
the Seq2Seq model to attend to the most relevant encoder
outputs, when decoding each respective token.
A high level block diagram of our RNN based Seq2Seq

model is shown in Figure 3. Our RNN based Seq2Seq model
deploys bidirectional stacked LSTM layers for the encoder
and unidirectional stacked LSTM layers for the decoder. We
use the additive encoder-decoder cross attention mechanism
proposed in [3] for our RNN based Seq2Seq model, wherein
the context vector is a weighted composition of encoder out-
puts by the attention weights. Attention weights are learnt
as part of the task training. Attention block is intended to
capture the soft alignment between the tokens in the source
sentence to the tokens in the target sentence and the learnt
alignment scores are used to compute the context vector for
the decoder. The attention score between the ’ith’ token in
target sentence to the ’jth’ token in the source sentence is
computed as a function of decoder’s hidden state for the
previously emitted token and the encoder’s output for the
current input token. In lay terms, higher the influence of
an input token ’j’ on the output token ’i’, greater would be
its corresponding attention score. Typically the attention
block consists of a feed forward layer followed by a softmax
layer [3].

Figure 4. Transformer based NIC Converter Seq2Seq model

A high level block diagram of our transformer based Seq2Seq
model is shown in Figure 4. Instead of LSTM cells, Trans-
former encoder consists of layers of transformers. Each trans-
former encoder layer consists of two sub-layers namely (a)
multi-head self attention layer and (b) point-wise feed for-
ward layer, with each followed by a layer normalization
sub-layer(LayerNorm) as shown in Figure 4 [2]. While RNN
based Seq2Seq model deploy cross-attention (also known
as inter-attention) only, transformer based Seq2Seq models
deploy both self attention (known as intra attention) and
cross-attention [29]. Self-attention is an attention mecha-
nism relating different positions of a single sequence in order
to compute a representation of the sequence. Basically Self
attention is applied on the tokens of the same sequence and
hence it is known as intra-attention. Transformer decoder
layers are similar to transformer encoder layers except that
they also have in addition, a cross-attention decoder layer



as seen in Figure 4. As part of our evaluation, We experi-
ment with varying number of transformer layers, number
of attention heads and feed forward layer width for our NIC
Converter and report the results in Section 4.2.

3.2.2 Training of NIC Converter. For the current work,
we train NIC Converter in a supervised manner using data
obtained from traditional IC similar to behavior cloning [4].
As shown in Figure 5, training data is generated in an offline
phase by the compiler using the NIC Inputter module. Given
a source file in high level language supported by the com-
piler, the compiler takes the input one function at a time and
generates the BB level IR instruction sequences correspond-
ing to each BB in the function. The compiler invokes the
NIC Inputter on these unoptimized instruction sequences
to obtain the encoded source sequences and then passes the
original (unencoded) instruction sequences through the tra-
ditional (non-neural) IC phase. The optimized instruction
sequences at the output of the traditional IC phase are then
passed through NIC Inputter and encoded target sequences
are obtained. The compiler maintains the BB level mapping
between the unoptimized and optimized encoded sentence
pairs and creates the list of sentence pair <unoptimized
encoded instruction sequence, IC optimized encoded instruc-
tion sequence> corresponding to each BB. This is done at
each function level. Given a set of source files in a high-level
language, this process is repeated for all source files, and a
list of sentence pairs are generated as training data for the
NIC Converter by the compiler. We then train the Seq2Seq
model to create the machine learnt NIC convert-er model,
using the standard cross-entropy loss objective at each to-
ken level. We design and implement a variant of standard
Seq2Seq model wherein we use compiler knowledge to guide
the attention process, which we describe next.

3.2.3 Compiler Guided Attention Training. Attention
enables the decoder to selectively consider relevant words
of the source sentence when emitting each to-ken in the
target sentence. Standard attention is learnt with the indi-
rect objective of improving the translation quality and is not
learnt in a supervised manner with respect to word/phrase
alignment between source/target sentence since direct word
alignment information is not typically available for the train-
ing data in general. Hence it may not always correlate well
with the alignment between source and target sentences.
However, in case of NIC Converter, since the compiler has
exact knowledge of which source instructions are respon-
sible for generating the corresponding target instructions
at each constituent token level, we leverage the compiler
knowledge in improving the soft alignments learnt by the
attention network.

During training data generation, a compiler guided atten-
tion matrix CA is created by the compiler for each BB. CA

matrix terms are fixed attention scores provided by the com-
piler and are not learnt during training. For each source sen-
tence, compiler has information of which source instruction
tokens map to corresponding optimized target instruction to-
kens and uses this to set each element of the CAmatrix. Each
element CA[i, j] corresponds to the probability of whether
the ih token in target sentence (of length T) is mapped to jth
token in the source sentence and the total probability of one
is distributed among the relevant mapped tokens while the
non-relevant mapped tokens are set to zero. This is like hard
attention with CA[i, j] being non-zero if target token ‘i’ is
mapped to source instruction token ‘j’ by the compiler and
else zero.
We smooth this hard attention matrix with a small cor-

rection term delta, adding it to all zero terms and adjusting
non-zero terms accordingly to maintain the row sum as 1.
CA matrix has similar semantics and same dimension as the
learnt attention matrix ‘A’ with standard attention. In case
of single head attention, A is the single head cross attention
weights, and in MHA, we use the decoder cross-attention
weights of last layer’s head 0 as the learnt attention matrix
‘A’.

We use CA matrix to force the learnt attention weights ‘A’
to be closer to it during the training process by adding an ad-
ditional loss term to the training objective. This is compiler
attention mismatch loss term which is the divergence of the
learnt attention weights in each training step from the com-
piler guided attention matrix CA. We model the Compiler
Attention Mismatch (CAM) loss between CA and A matrices
using the standard cross entropy loss function as below:

𝐶𝐴𝑀 𝐿𝑜𝑠𝑠 (𝐶𝐴,𝐴) = −(1/𝑇 )
∑︁
𝑖

∑︁
𝑗

𝐶𝐴[𝑖] [ 𝑗] ∗ 𝑙𝑜𝑔(𝐴[𝑖] [ 𝑗])

(1)
𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 + 𝐶𝐴𝑀 𝐿𝑜𝑠𝑠

(2)

Compiler guided attention is not used during inference, as
we hypothesize that compiler guided attention will enable
the model to learn the appropriate attention weights during
training itself.

3.3 NIC Outputter
The NIC Outputter takes two inputs:

• the predicted instruction sequence from the NIC Con-
verter

• the original unmodified full-fledged LLVM IR instruc-
tion stream corresponding to that BB.

Given that NIC Converter predicts the most probable tar-
get instruction sequence, we also enforce specific checks
in the NIC Outputter to ensure that the generated target
sequence does not violate the compiler integrity checks. NIC



Figure 5. NIC Converter Training path

Outputter performs a verification check first on the gen-
erated target sequence. It checks that for each instruction
in the generated sequence, the number of operands corre-
sponding to that opcode are correct, and that each operand
has previously been defined in the generated instruction
sequence, and that the last instruction in the sequence is a
branch/return instruction. In case any of these conditions are
violated, it discards the generated target instruction sequence
and outputs the source instruction stream corresponding to
that BB as is.
If the verification checks on the generated sequence are

satisfied, then NIC Outputter takes the generated instruction
sequence and applies it on the source instruction stream cor-
responding to that BB to produce the transformed full LLVM
IR instruction stream. If NIC Converter predicted output is
the same as its input, (the NIC Converter has not found any
suitable transformation for the given input sequence) NIC
Outputter just reproduces the unmodified source IR sequence
as is without any checks. NIC Outputter also invokes the
LLVM function level verification. This checks that the CFG
(Control Flow Graph) is valid, all instructions are associated
with a BB and specific instruction level checking based on
the instruction type (the types of operands of binary opera-
tor are of the same type, the Static Single Assignment [11]
form is valid, shifts and logicals happen only on integral
types etc). These checks serve to ensure that the generated
IR is valid.
We then check for translation validity of the generated

sequence by passing it through a well-known LLVM IR trans-
lation validity checker ALIVE2 [21]. ALIVE2 is a fully auto-
matic bounded translation validation tool for LLVM that sup-
ports all of its forms of undefined behavior. ALIVE2 checks
pairs of instruction sequences in LLVM IR for refinement us-
ing an SMT solver. A refinement relation is satisfiedwhen, for
every possible input state, a target sequence displays a subset
of the behavior of the source sequence. In the absence of
undefined behaviors, refinement degenerates to simple equiv-
alence. Checking for translational validity between source
and target sequences ensures semantic equivalence between
source and target instruction sequences [21]. ALIVE2 does

not require any changes in LLVM Compiler. While ALIVE2
can check for any intra-procedural optimization validity in
LLVM, in our case, we use it to verify the translation validity
of the NIC generated seqquences which are limited to basic
block level local code rewriting transformations. Instruction
sequences rejected by ALIVE2 as non-valid are rejected at
the NIC Outputter.

4 Experimental Evaluation
4.1 Dataset Description
Given the novelty of our task, there are no readily available
datasets which can be used to train the NIC Converter model.
Hence, we build a new dataset for this task and plan to
make it available publicly. The dataset consists of sentence
pairs both from the same language of LLVM IR. The source
sentence is the encoded distilled sequence of the LLVM IR
instruction sequence of a BB at the input of traditional IC
Pass. The target sentence is the encoded distilled sequence
of that instruction sequence at the output of the traditional
IC Pass.
As part of the dataset, we provide along with these sen-

tence pairs of encoded basic block IR sequences, the full-
fledged LLVM instruction sequence at the input and output
of traditional IC Pass. The full-fledged IR sequences are just
for informational purpose and are not used during train-
ing/inference of the NIC converter model. The training data
is generated by invoking our modified version of LLVM com-
piler pipeline on the C/C++ application source files. NIC
inputter is the only component invoked during training
data generation. The full-fledged instruction sequence corre-
sponding to each BB at input and output of the traditional
IC Pass are passed through the NIC inputter to generate the
training data. Our NIC Converter Seq2Seq model is trained
in a supervised manner using this dataset.

Training data is generated by invoking our modified ver-
sion of LLVM compiler pipeline on the C/C++ application
source files. For generating the training data, we used a col-
lection of C/C++ source files from LLVM Application Test



Table 3. NIC Experimental Results

Model Bleu Rouge-1 r Rouge-1 p Rouge-2 r Rouge-2 p Rouge-l r Rouge-l p EM(unopt) EM(opt)
Bidirectional LSTM:
3 layer encoder,
unidirectional
greedy decoder

0.93 0.98 0.90 0.96 0.91 0.97 0.93 0.93 0.68

Transformer with
layers=4,

dmodel=128, dff=512,
heads=8

0.94 0.98 0.90 0.96 0.91 0.97 0.94 0.94 0.72

Transformer with
layers=6,

dmodel=512,
dff=2048, heads=8

0.91 0.98 0.90 0.96 0.91 0.96 0.93 0.93 0.71

Transformer with
layers=2,

dmodel=512,
dff=2048, heads=8

0.93 0.98 0.90 0.96 0.91 0.97 0.94 0.93 0.70

Transformer
layers=4,

dmodel=128, dff=512,
heads=8 and no POS

Emb

0.94 0.98 0.90 0.96 0.92 0.97 0.94 0.94 0.70

Transformer with
layers=4,

dmodel=512,
dff=2048, heads=16

0.93 0.98 0.90 0.96 0.91 0.97 0.93 0.94 0.71

Bi-directional LSTM
(3 layer encoder, 1
layer decoder) with
guided compiler

attention

0.93 0.98 0.89 0.96 0.91 0.96 0.94 0.93 0.70

Transformer with
layers=4,

dmodel=128, dff=512,
heads=8 with

compiler guided
attention

0.94 0.98 0.90 0.96 0.92 0.97 0.93 0.94 0.72

Suite and from Angha Bench Test Suite [12]. LLVM appli-
cation test suite consists of code fragments as well as large
complete programs. Angha Bench consists of more than
a million of C code snippets extracted from various open
source repositories and made compilable by automatically
adding the requisite type declarations. This results in 759K
sentence pairs.
We note that two different basic blocks instruction se-

quences when converted to the distilled sequence, can end
up with the same source sentence due to the compressed
representation. Hence we dedup our training data gener-
ated so that each source sentence is unique from all others
in the dataset. The final deduped dataset size is 367𝐾 and

contains 66% of unoptimized sequences (where source and
target sentences are identical) and 34% optimized sequences
(where source and target sentences are different). Given the
imbalanced nature of the dataset (with 34% of sentences are
optimized), we use the Exact Match percentage on optimized
sequences as our primary task evaluation metric. We make
our code and dataset available for review as part of the arte-
fact submission.

4.2 Experimental Results
We evaluate several Seq2Seq models for NIC Converter as
shown in Column 1 of Table 3. The twomain network choices
are RNN and the standard transformer models with greedy



Figure 6. Example Outputs from NIC Converter

decoder (we did not see any significant change with beam
decoder). For transformer models, we experiment with dif-
ferent settings for the number of layers, attention heads,
embedding size dimension (denoted as dmodel) and feed for-
ward layer width (denoted as dff) in Table 3.We implemented
various models in TensorFlow Python framework for evalu-
ation. All parameters are initialized by uniform distribution
over [-0:1; 0:1]. The mini-batch stochastic gradient descent
algorithm is employed to train the model with batch size of
64 and number of training epochs being 10. Hyperparame-
ters were chosen based on experimentation with validation
set. In addition, we use Adam optimizer with custom rate
scheduler [29]. We do a train/validation/test data split of 90%,
5% and 5% respectively. We used the LLVM Compiler release
9 version.

For NIC Converter inference performance, we report the
standard NMT evaluation metrics of Bleu precision [23] and
Rouge scores [20] in Table 3. However, our task being code
optimization, requires generation of exact encoded represen-
tation (even a single wrong token will lead to incorrect code).
our task specific metric is comparison of Exact Match (EM)
results for the entire instruction sequence for each BB between
the predicted sequence and the ground truth.We show the EM
results separately in last 2 columns of Table 3 respectively
for (a) EM(opt) where the ground truth is an optimized trans-
lation of the input sequence and (b) EM(un-opt) where the
ground truth is same as the input sequence.
BLEU (bilingual evaluation understudy) is an algorithm

for evaluating the quality of text which has been machine-
translated from one language to another. Quality of trans-
lation is a mesaure of how much the machine translation is
similar to a human reference translation. BLEU’s output is
always a number between 0 and 1 with a value equal to 1
indicating that machine translation and human translation
were identical. Bleu precision is typically evaluated at multi-
ple n-gram level with average across all n-gram levels being
reported as a single final score. A detailed definition of Bleu
precision can be found in [23]. Rouge score is another well
known set of metrics for evaluating the quality of machine
translation. Rouge stands for Recall-Oriented Understudy

for Gisting Evaluation [20]. Rouge-n score represents the
n-gram overlap between the machine generated and ground
truth reference translations. While originally Rouge was
intended as a recall measure, it has been augmented with
precision scores as well [20].We report both Rouge preci-
sion (denoted as Rouge-* p) and recall (Rouge-* r) scores for
Rouge-1, Rouge-2, Rouge-l n-gram overlaps in Table 3.
Across all models, Bleu and Rouge scores are not signif-

icantly different, indicating their general translation capa-
bility (there were differences only beyond last 2 digits). As
is expected, the EM percentage is much higher for the un-
optimized sequences and is an indicator of model ability to
reproduce the exact input sequence correctly. In case of op-
timized sequences, model’s Exact Match is around 69%-73%
indicating considerable room for further improvements. We
find that transformer model with 8 attention heads, 4 lay-
ers, and embedding dimension 128 has the best Exact Match
results in our experiments.
We find in general that transformer models are better

than RNN models by 2-3% of EM percentage. While com-
piler guided attention improved EM percentage for RNN
model by 2%, it is still lower than that of MHA transformer
models. Compiler guided attention had negligible impact on
transformer models. We hypothesize that this may be due
to MHA’s ability to better capture word alignment informa-
tion in multiple head attention weights compared to single
head attention.We find that removing transformer positional
encodings did not have any impact on model performance,
similar to earlier works [8]. We did not see any improvement
in performance by increasing the number of layers and feed
forward layer dimensions in our transformer models. The
compile time impact was negligible due to the deployment of
NIC Converter in inference mode and the verification checks
in LLVM Compiler pipeline for our test dataset evaluation.

4.3 Exact Match Results Analysis

Table 4. Exact Match Error Analysis

Type of Error Occurrence
Incorrect Constant 42.3%
Opcode Mismatch 34.9%

Type Issue (Sext/Zext) 6.7%
Operand Mismatch 1.4%

Others 14.7%

We analyzed NIC Converter outputs to understand the
model’s strengths and shortcomings. Figure 6 shows some
samples of the NIC Converter generated sequences. In case
of optimized sequences, we find that NIC not only generates
the optimized opcode, but also correctly fixes up the uses
of the replaced opcode with the newly generated opcode,
allowing us to hypothesize that the model has learnt the
implicit use-def chains [11]in the encoded representation.



Table 4 shows the major reasons for exact match errors by
NIC. One of the common mistakes the model exhibited was
in generating correct values for synthesized constants for
certain operations. A frequent LLVM IR instruction is the
GetElementPtr (GEP) instruction used to get the ad-dress of
a sub element of an aggregate data structure such as a ‘struct’
or ‘array’. For nested aggregate data structures, a sequence
of GEP operations is emitted with appropriate constants
from base address. One of the IC optimization sequences is
coalescing multiple GEP operations into a single GEP with
modified constant indices as operands. We found that NIC
had issues in synthesizing the GEP indices correctly. We
reason that NIC is not able to learn the rules to compute the
GEP offsets correctly based on individual GEP operations.
It ends up reproducing the memorized frequent constant
values as GEP indices generating erroneous sequence.

A similar problem was noticed in the case of ‘Alloca’ in-
struction sequence optimization where stack offsets con-
stant values were generated incorrectly by NIC. These errors
are caught during the verification of the generated code
sequence in the NIC Outputter, dropping the suggested re-
placement from NIC from being applied. For frequently oc-
curring/unique constants such as powers of two occurring
in Shift instructions, the model outputs the correct constants
both in optimized and unoptimized sequences. However, for
arbitrary constants such as those occurring in GEP/Alloca
operands, model ends up making mistakes. The error analy-
sis indicates that our current model does not handle synthe-
sized constants in the instruction sequence well. This needs
to be addressed in future work. Other errors include wrong
OPCODE generation in predicted sequence, unnecessary
operand swap canocalization and incorrect type extension
elimination. These errors can be addressed by expanding
the training dataset used to train the NIC converter and by
deploying contrastive learning during NIC converter train-
ing [? ]. We plan to explore this as part of future work.

5 Related Work
Of late, there has been considerable interest in applying
deep learning techniques to compilers in the areas of phase
ordering [17], selection of optimization heuristics [10] and
as part of optimization itself in register allocation [13] and
inlining [28]. Machine learnt models have been used in op-
timization heuristics selection such as prediction of unroll
factors [26], inlining decisions [25], vectorization [15], [22]
etc.

Our work falls under the category of deployingMLmodels
directly in compiler optimizations. Similar in spirit and com-
plementary to our work, there has been work on building
super optimizers by creating a database of possible optimized
sequences from the binaries [5]. These techniques work by
harvesting instruction sequences from binaries, enumerat-
ing their equivalent efficient target sequences by exhaustive

search techniques, and creating an offline database of opti-
mized instruction sequences which can then be looked up for
a given sequence of instructions. These methods incur high
overheads due to huge candidate search space, and equiva-
lence checking via approximate testing of selected sequences,
making them difficult to deploy. This line of work is limited
to X86 instructions.

There has been work on improving the brute force search
for optimization sequences [24] using random search and
RL methods [6]. NIC can leverage the optimized instruction
sequences generated by super-optimizers by lifting them to
LLVM IR using decompilation techniques [9] (We plan to
explore this in future work) and then using them for train-
ing the NIC Converter making them complementary to our
work. This will enable expanding the NIC training dataset
considerably. Since our neural model operates on an encoded
condensed IR representation, it is possible to port our NIC to
any compiler if we can provide the NIC Inputter/Outputter
modules which can convert from compiler’s IR to NIC’s en-
coded representation and vice versa. Unlike super optimizers
which work on specific binary instruction sets, this allows
wider portability.

6 Open Issues and Conclusion
In this paper, we explored the feasibility of replacing the
traditional Instruction Combiner with a neural instruction
combiner in a widely used production level compiler. We find
that we were able to train a neural instruction combiner mod-
ule and integrate it with LLVM compiler’s optimizer pipeline.
However there are still open issues. Our current work leaves
considerable optimization potential on the table (only 72%
of optimization opportunities are realized by NIC). Validity
checks of generated sequence currently include compiler
driven IR Validity checks and translation validity checking
using ALIVE2 external tool [21]. Leveraging scalable auto-
matic post-editing [7] and program repair techniques [14]
can help improve validity checks in NIC. We also plan to
expand NIC training data with IR instruction sequences that
can be leveraged from existing super-optimizer databases.
These need to be addressed for a robust NIC deployment in
production compilers.
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