
GPUDrano: Detecting Uncoalesced
Accesses in GPU Programs

Authors: Rajeev Alur, Joseph Devietti, Omar S. Navarro Leija and Nimit
Singhania

Presented by group 10: Hanlin Bi, Yuxiang Chen, Ziang Li, Qifa Wang, Zihao Ye

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Intro to GPU Architecture & CUDA Programming

Memory Coalescing & Research Objectives

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Formalization of Uncoalesced Access - Illustration
● Access to A[xy] on left is uncoalesced

access
○ A[N(t+1)+y], A[N(t+2)+y], …,

A[N(t+32)+y]
● On Right is modified, coalesced access

○ A[Nx+t], A[Nx+t+1], …,
A[Nx+t+31]

● Access to M[xt] is similar
● 25% reduction in run-time when N =

1024

Formalization of Uncoalesced Access - Machine Model

● Representation of GPU program
○ <T: all threads, V_L: local var, V_G: global var, K: kernel(instructions)>

● A few assumptions
○ Execute in lock-steps (no longer true for all GPU)
○ Not distinguishing memory levels, considering memory as a whole (Not related)

Formalization of Uncoalesced Access - Semantics
σ: the state of a program
π: active set of threads
⊥: represent an undefined or error state (and vice versa for T)
S: A general statement in the program
AS: denotes an assignment statement within the program
l: local variable
g: global variable
[l’ := g(l)]: global array read
[g(l) := l’]: global array write
W: warp
η: Bandwidth of GPU

Formalization of Uncoalesced Access - Definition

N (σ, π, AS, W): Number of transaction required for the access = a/η, where a is the number of
unique elements in Г(σ, π, AS, W); η = 128 bytes, W = 32 threads, Г = 1 as threshold for most GPU
Ranged-based uncoalesced access
Assume the index variable l is a linear function of tid, l = c*tid+c0
Range of access:
Plug in, N = , K >= 4 and c >= 1 will make N>=1 and thus coalesced

Alignment-based uncoalesced access
Suppose k = 4, c = 1, but c0 = 8. The addresses accessed by warp with tids [0,31] is [32, 159].
Same size, but doesn’t fall into one cache block

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Abstraction

Abstract Semantic

Merge

Final state of ɭ:

example:
Y = (tid < N) ? 10:20;
K = arr[Y]

Uncoalesced Access

AS: global array read or write
Array element size: k bytes

Accessed by more than one thread

Non-linear function or element size
greater than 4 bytes

Presumes default parameters

GPU parameters:
● Bandwidth: 128 B (cache line)
● Thread warp size: 32

Index function:

Range address accessed:

Number of trx needed:

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Dynamic Analysis Approaches

● Utilized the lowest tid thread in each warp as a computing thread
● The computing thread collects all unique address accessed by the warp
● Operated address division into bins for corresponding cachelines
● Aggregates the information from each dynamic instance of an instruction by

averaging
● If average cache line access > 1.0, the it’s not coalesced

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Evaluations
Real Bugs: 143
Uncoalesced Accesses: 180 (some
uncoalesced patterns are not avoidable)

Bug Detect:
Static Analysis: 111
Dynamic Analysis: 69

Scalability:
Static Analysis: fast
Dynamic Analysis: slow on long running
program

Limitation

● Not a precise analysis for function calls and pointers
● Assumed the call context of the kernel is always empty

Other Related Analysis Tools

CuMAPz: runtime trace
CUDA-lite: programmer annotations (available only to affine access pattern)
Dymaxion: eschew static analysis for programmer input
CUPL: similar to GPUDrano, but no formalizations and experimental result
GKLEE: limited to underlying SMT solver and not scalable to larger kernel
PUG: same problem as GKLEE

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Group Comments - Positive

● Formal definitions of both the analysis and the bugs

○ Easy integration with existing performance models

● Scalable framework for tracing memory access patterns

○ Useful across architectures

■ Different DRAM burst size, SIMD processing unit, multi-bank memory, etc

Group Comments - Limitations and Improvements
● A more subdivided definition

○ Not all “bugs” should or even can be fixed

○ We focus on gather/scatter pattern and column-major access on row-major data

● Integration with roofline analysis

○ For a memory bounded program, extend the analysis:

■ Access pattern flaws => bandwidth improvements => performance gains

● Newer GPU architectures no longer guarantee warp-synchronicity

○ AKA independent thread scheduling inside a warp

○ Fails the dynamic analysis, can be fixed by adding sync when inserting bookkeeping

○ Static analysis may not match real-world hardware behavior

○ The paper was written in 2017, the exact year Volta was released

Road Map

Introduction to GPU and CUDA

Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Thank you!

