MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

GPUDrano: Detecting Uncoalesced
Accesses in GPU Programs

Authors: Rajeev Alur, Joseph Devietti, Omar S. Navarro Leija and Nimit
Singhania

Presented by group 10: Hanlin Bi, Yuxiang Chen, Ziang Li, Qifa Wang, Zihao Ye

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation

Comments

Q&A

Intro to GPU Architecture & CUDA Programming

Device code can:
— R/W per-thread registers Devico) Gad
— R/W per-grid global memory

Block (0,0) Block (1, 0)
Host code can

— Transfer data to/from per grid global
memory

ol ol

Thread (0,0) | Thread (1,0) | | Thread (0,00 Thread (1,00

| We will cover more later. I “
Host

Integrated C programs with CUDA extensions

\ 4

NVCC Compiler

Host Code @ @ Device Code (PTX)

Host C Compiler/

Device Just-in-Time
Linker

Compiler

U 4

Heterogeneous Computing Platform with
CPUs, GPUs

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Memory Coalescing & Research Objectives

M accesses are not coalesced

L IVU

Access
direction in Mip My; Mya Mia
Kernel M[Row*Width+k]
code Mzp Mz; Mzx Mas
Mag M3y M3» Mss

Load iteration 1

T,

Load iteration 0

T

N accesses are coalesced

Access

direction in

Kernel
code

Load iteration 0

To Ty T, Ts

Load iteration 1

To T, T, T

U

Noo|No, | No2| Noj

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

DRAM Burst

= Accessing data in different bursts (rows)
o Need to access the array again

Timeline: | N

. Accessing data in the same burst (row)
o No need to access the array again, just the multiplexer

Timeline: | e

. Accessing data in the same burst is faster than accessing
data in different bursts

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Formalization of Uncoalesced Access - lllustration

e Access to A[xy] on left is uncoalesced
access
o A[N(t+1)+y], AIN(t+2)+y], ..., /1 N0 /1 6N =0

if(tid+t+1 >= N) return; if (tid+t >= N) return;

A[N(t+32)+y] x = tid+t+1; // z+—1 y = tid+t; // y—1

for(y=t; y<N; y+t){ // y—(for(x=t+1; x<N; x++){ // =z—

On Right is modified, coalesced access LT I e gres Baeactr 46 brd

Nxx + y // Ty xy = Nxx + y; // zy—1

Nxt + y; // ty—1

o A[Nx+t], AINx+t+1], ..., #uu /gtly].l. e Ee ey
A[Nx+t+31] = : if(y == t)
Access to M[xt] is similar

£] %
250A) red UCtIOﬂ |n ru n_tlme When N = (a) Original Fan2 snippet (b) Fixed Fan2 snippet
1 024 Fig. 2: Kernel snippets from Gaussian Elimination program.

MIxt]1=B[t]; Blx] -= MI[xt]»B[t];

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Formalization of Uncoalesced Access - Machine Model

e Representation of GPU program
o <T: all threads, V_L.: local var, V_G: global var, K: kernel(instructions)>
e Afew assumptions
o Execute in lock-steps (no longer true for all GPU)
o Not distinguishing memory levels, considering memory as a whole (Not related)

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Formalization of Uncoalesced Access - Semantics

o: the state of a program

r: active set of threads

1 : represent an undefined or error state (and vice versa for T)
S: A general statement in the program

AS: denotes an assignment statement within the program

I: local variable

g: global variable

[I’ := g(I)]: global array read
[g(l) :=I']: global array write
W: warp

n: Bandwidth of GPU

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Formalization of Uncoalesced Access - Definition

Nom, ASS W)= |J [o(lt).ko(l,t)k+k—1]

teWnm

N (o, , AS, W): Number of transaction required for the access = a/n, where a is the number of
unique elements in (o, ™, AS, W); n = 128 bytes, W = 32 threads, I' = 1 as threshold for most GPU
Ranged-based uncoalesced access

Assume the index variable | is a linear function of tid, | = ¢c*tid+c0

Range of access:! (31|kc| + k — 1) bytes

Plugin, N = |kc|/4, K>=4 and ¢ >= 1 will make N>=1 and thus coalesced

Alignment-based uncoalesced access
Suppose k =4, ¢c =1, but cO = 8. The addresses accessed by warp with tids [0,31] is [32, 159].
Same size, but doesn’t fall into one cache block

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Abstraction

0, exists cg s.t. forallt € T, o(l,t) = ¢
/! t,N—0 /] t, N _ . .
SO sl e T EeEaE itctig. alo)(l) =41, exists co s.t. forallt €T, o(l,t) = tld.(t) + co
x = tid+t+1; // 21 y = tic —1, exists ¢y s.t. for all t € T, o(l,t) = —tid(¢) + co
for(y=t; y<N; y+&){ // y—0 for (x=1
xt N*xx + t;|// zt— T | xt N*x+t;|// rt>—>0|
N*x + y; |// zy— T XV N*x + v:l // zu—1
Nxt + y; (// ty—0 i
Alxyl -= MIxtI*Altyl; T, forallte T, o(l,t) = true

f(== t) J— .
" Blx] —= Hlzt]+B[t]; T, exists t € T s.t. o(l,t) = false

¥ _ and for all t' € T'\ ¢, o(l,t") = true
(a) Original Fan2 snippet a(a)(l) - < F, for all t € T, U(l, t) = false
F~, exists t € T s.t. o(l,t) = true

and for all t' € T'\ ¢, o(l,t') = false

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Abstract Semantic

[$:](6, %) = 61
[Sal(61, %) = b2
[S1;S2](6,7) = 62
¥ = [A S(D)
[S1(6,%") = 61
N A

SEQ

62 = /Lklp 5y(6,61)
hile [do S](62,7') = 6
ITE [whi e/\o (62, 7) = 65 WHILE
[[1f Ithen S; else S2](6,7) = 63 [while ldo S](6,#) = 63

Fig. 4: Abstract semantics for compound statements.

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Merge

6(1) is TF or tid-independent— Final state of | 61 (1) U &2(1)

o) tld-dependent ’merged value is set to T.

example:
Y = (tid < N) ? 10:20;
K = arr[Y]

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Uncoalesced Access

(6,7, AS) is “uncoalesced” AS: global array read or write
Array element size: k bytes

— # =T Accessed by more than one thread

- @) =T)v(e(l) e {1,-1} Ak > 4)

Non-linear function or element size
greater than 4 bytes

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Presumes default parameters

GPU parameters:
e Bandwidth: 128 B (cache line)
e Thread warp size: 32

Index function: . I = c.tid + cg.

Range address accessed: (31|kc| + k — 1) byteg

Number of trx needed: |kc|/4

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Dynamic Analysis Approaches

Utilized the lowest tid thread in each warp as a computing thread

The computing thread collects all unique address accessed by the warp
Operated address division into bins for corresponding cachelines
Aggregates the information from each dynamic instance of an instruction by
averaging

If average cache line access > 1.0, the it's not coalesced

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Evaluations

Benchmark |LOC|Real-bugs SA-runtime(s) [DA-bugs|DA-runtime(s)
backprop 110 0.14 7 5.23 Real Bugs: 143
bfs 35 0.07 0-7 3.89
b-+tree 115 9 (1 0.35 7 16.71 Uncoalesced Accesses: 180 (some
CFD 550 12.41 - - H

el b , sosl @ or uncoalesced patterns are not avoidable)
gaussian 30 6 0.07 5-6 6.82
heartwall 1310 39.87 - .
hotspot 115 0.75 : 0.89 Bug Detect:

hotspot3D 50 0.21 327.00 Static Ana'ysis: 111
huffmann 395 0.68 3 2.42

JavaMD 180 0.73 5 511.60 Dynamic Analysis: 69
lud 160 0.34 I 0.83
myocyte 3240 1,813.72 134.13
nn 10 0.06 0.13 Scalability:

nw 170 0.41) 4.17 . .
particle filter| 70 0.58 11.62 Static Analysis: fast

pathfinder | 80 022 : 4.25 Dynamic Analysis: slow on long running
srad-v1 275 0.33 2 185.00
srad v2 250 9 1.38 9 53.94 program
streamcluster| 45 10 10 (0.11 -
143 180 (111) 69
Table 1: Results of GPUDrano’s static analysis (SA) and dynamic analysis (DA)
on Rodinia benchmark programs. “-” indicates the DA hit the 2-hour timeout.

6
25
2
12

26 (

_.
© [{e)
= D0

= O W N

—
[l

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Limitation

e Not a precise analysis for function calls and pointers
e Assumed the call context of the kernel is always empty

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Other Related Analysis Tools

CuMAPz: runtime trace

CUDA-lite: programmer annotations (available only to affine access pattern)
Dymaxion: eschew static analysis for programmer input

CUPL: similar to GPUDrano, but no formalizations and experimental result
GKLEE: limited to underlying SMT solver and not scalable to larger kernel
PUG: same problem as GKLEE

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Group Comments - Positive

e Formal definitions of both the analysis and the bugs
o Easy integration with existing performance models
e Scalable framework for tracing memory access patterns

o Useful across architectures

m Different DRAM burst size, SIMD processing unit, multi-bank memory, etc

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Group Comments - Limitations and Improvements
e A more subdivided definition

o Not all “bugs” should or even can be fixed
o We focus on gather/scatter pattern and column-major access on row-major data
e Integration with roofline analysis

o For a memory bounded program, extend the analysis:

m Access pattern flaws => bandwidth improvements => performance gains

e Newer GPU architectures no longer guarantee warp-synchronicity

o AKA independent thread scheduling inside a warp
o Fails the dynamic analysis, can be fixed by adding sync when inserting bookkeeping
o Static analysis may not match real-world hardware behavior

o The paper was written in 2017, the exact year Volta was released

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Road Map

Introduction to GPU and CUDA
Formalization

Static Analysis

Dynamic Analysis

Evaluation
Comments
Q&A

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Thank you!

