
Spindle: Informed Memory
Access Monitoring

By Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen
Yu, Xiaosong Ma, and Wenguang Chen (USENIX ATC ‘18)
Presented by Nada Abdalgawad, Luke Lesh, Ivris Raymond, and Ryan Hou

Group 4
1

What is Spindle?

A tool that performs static analysis in order to
obtain regular and predictable patterns in memory

accesses of a program

2

How does the memory access trace look like?

Load address1
Store address1
Load address2
Load address3
Load address4
Store address4
…
…
…

3

● Tells the sequence of memory addresses hence
accesses

● Might have patterns > Spindle

Why is knowing
memory accesses
important?

Performance Optimization

● Locality analysis:
○ Temporal: access same memory

location
○ Spatial: access nearby memory

location
○ Improve cache utilization

● Cache efficiency:
○ Design algorithms and data

structures
○ Exploit cache hierarchies
○ Reduce cache misses

4

Why is knowing
memory accesses
important?

Memory prefetching

● Prefetching of Future Accesses:
○ Predict future memory accesses
○ Load data into cache before it is

needed

5

Why is knowing
memory accesses
important?

Memory management

● Allocation and Deallocation:
○ Optimize memory allocation

patterns
○ Reduce fragmentation

● Memory leak detection:
○ Anomalies: repeated allocations

without corresponding
deallocations

○ Maintains stability and reliability of
an application

6

Why is knowing
memory accesses
important?

Debugging and Profiling

● Identifying Bottlenecks:
○ Identify performance bottlenecks

due to memory usage
○ Focus optimization on crucial parts

of the code

● Root Cause Analysis:
○ Diagnosing the root cause of

problems
■ Segmentation faults
■ Out-of-memory errors
■ Inefficient memory usage

7

Why is knowing
memory accesses
important?

Resource Planning

● Resource Utilization:
○ Efficiency of system resources

utilization
○ Useful in environments with

constrained resources
■ Embedded systems
■ Cloud computing

8

Other tools

● Valgrind and Intel PIN can produce a full list of memory access trace

● Problems

9

S l o w Large Files

Spindle Overview

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n
(M

A
S

)

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

Cropped Bubble Sort Image: GeeksforGeeks Bubble Sort Algorithm Article 10

https://www.geeksforgeeks.org/bubble-sort/

Intraprocedural Analysis

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

11

Memory Dependence Trees

%A = mul i32 8, %F1
%B = mul i32 4, %F2
%C = add i32 %B, %A
%D = load i32* %C

%C

+

*

%F24

*

%F18

12

Types of Leaf Nodes

● Constant value (compile time)
● Loop induction variable (compile time or runtime)
● Base memory address (compile time or runtime)
● Function parameter (compile time or runtime)
● Data-dependent variable (runtime)
● Function return value (runtime)

13

%C

+

*

%F24

*

%F18

Interprocedural Analysis

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

14

Interprocedural Analysis

%C

+

*

%F24

*

%F18

%Z%Y
15

Spindle-Based Tools

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

S-Detector

16

S-Tracer

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

17

S-Tracer

● Memory Trace Collector

● Existing methods: record every memory access

● Large memory trace size

● Slowdown of program

● Use MAS and dynamically collected data:

● Highly compressed memory traces

● Lower runtime overhead

Function BubbleSort(dyn_A, dyn_N) {
 Loop0: L0, 0, dyn_N, 1 {
 Loop1: L1, L0, dyn_N, 1 {
 Load1: dyn_A+L0; Load2: dyn_A+L1;
 Branch: dyn_flag {
 Call Swap(dyn_A, L0, L1);
}}}}
Function Swap(S, i, j) {
 Load3 : S+i; Load4 : S+j;
 Store1: S+i; Store2: S+j;
}

BubbleSort {
 dyn_A:
 0x7fffdfc58320;
 dyn_N:
 10;
 dyn_flag:
 {0,0,1,1,0,...,1,1};
}

Static Trace

Dynamic Trace

18

● Evaluation workloads:

● Regular memory accesses

● Irregular graph algorithms

● Multithreaded

● Compared against the PIN (Intel) tool

● Trace Size

○ Over 100x trace size reduction for

regular access patterns

○ Worst case size reduction: 6.93x

S-Tracer Evaluation

19

● Runtime Overhead

○ PIN: 502x average slow down

○ S-Tracer: 6.5x average slow down

S-Tracer Evaluation

20

S-Detector

Source Code Spindle

M
em

or
y

A
cc

es
s

S
ke

le
to

n

Spindle Based Tools

Intra-Procedural
Analysis

Inter-Procedural
Analysis

S-Tracer S-Detector

Instrumented Code & Runtime Data
Collection

Memory Traces

21

S-Detector

● Memory bug detector
● Invalid Accesses

○ Out-of-bound array access, use after free
● Memory Leaks

○ Unfreed allocated objects after termination

● Existing methods: Insert memory checking instructions
● Problem: Significant program slowdown

22

S-Detector

● Use static information (eg MAS) to eliminate unnecessary instrumentation
● MAS informs us the coarse-grained memory accesses of object

● Prune instruction-level checks by using object-level checks
● Only need to check:

○ Valid Offset: offset < struct_size
○ Valid memory range of [base, base + size]

while (pos - 1 && red_cost >
 (cost_t)new[pos/2-1].flow){
 new[pos-1].tail = new[pos/2-1].tail;
 new[pos-1].head = new[pos/2-1].head;
 // Three more accesses to struct members
 // of new[pos-1] and new[pos/2-1].
 pos = pos/2;
 new[pos-1].tail = tail;
 // Four more accesses to struct members
 // of new[pos-1].
}

addr = base + offset

new:

...head ... tail head ... tail

base
offset

addr

}

23

S-Detector Evaluation

● Average* runtime overhead
● ASan: 66%
● Baseline: 184%
● Optimized: 26%

● Avoided 64% of runtime memory checks

● Evaluated on 11 C programs from the SPEC

CPU 2006 benchmarks

● Compared to AddressSanitizer (Google) and

Dr. Memory

* Geometric mean of all test programs
24

Commentary

● S-Detector PoC only handles invalid accesses and memory leaks, but they chose to compare
to tools that do not do static analysis

● Cannot capture dynamically linked libraries at the IR level
○ Requires fallback to dynamic instrumentation

● No quantitative analysis of the number of memory bugs caught by S-Detector compared to
existing methods

● The MAS representation is currently limited to structured, predictable memory access
components

● The MAS usage is not explained in the paper in very substantial detail
25

26

Thank you
Questions?

Outline
● Motivation (Nada)

○ Why do we care about tracing memory accesses?
○ Why is related work insufficient?

● Framework (Ivris)
○ M-CFG, computable and non computable types, sample trace
○ Adding static analysis helps us improve on current tools

● Static Analysis (Luke)
○ Intra-procedural
○ Inter-procedural

● Evaluation (Ryan)
○ S-Detector and Evaluation
○ S-Tracer and Evaluation

● Weaknesses and Improvements (Nada)

27

Contribution: Static Analysis to Reduce Runtime Overhead

● Reduce the runtime overhead of current memory analysis tools without
compromising function by introducing static analysis

● Provide a representation of the memory accesses constructed from static
analysis usable and modifiable later in instrumentation (MAS)

● Demonstrate flexibility of Spindle’s analysis for constructing a variety of
memory analysis tools

28

Memory Access Skeleton?

● Representation of the memory accesses for a given program
○ Needs to be usable in instrumentation phase and should be able to

have blanks filled in for memory addresses not available at
compile-time

● Segue into the intra and interprocedural analysis we use to construct this

29

