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What is Spindle?

A tool that performs static analysis in order to 
obtain regular and predictable patterns in memory 

accesses of a program
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How does the memory access trace look like?

Load address1
Store address1
Load address2
Load address3
Load address4
Store address4
…
…
…
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● Tells the sequence of memory addresses hence 
accesses

● Might have patterns > Spindle



Why is knowing 
memory accesses 
important?

Performance Optimization

● Locality analysis:
○ Temporal: access same memory 

location
○ Spatial: access nearby memory 

location
○ Improve cache utilization

● Cache efficiency:
○ Design algorithms and data 

structures
○ Exploit cache hierarchies
○ Reduce cache misses
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Why is knowing 
memory accesses 
important?

Memory prefetching

● Prefetching of Future Accesses:
○ Predict future memory accesses
○ Load data into cache before it is 

needed
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Why is knowing 
memory accesses 
important?

Memory management

● Allocation and Deallocation:
○ Optimize memory allocation 

patterns
○ Reduce fragmentation

● Memory leak detection:
○ Anomalies: repeated allocations 

without corresponding 
deallocations

○ Maintains stability and reliability of 
an application
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Why is knowing 
memory accesses 
important?

Debugging and Profiling

● Identifying Bottlenecks:
○ Identify performance bottlenecks 

due to memory usage
○ Focus optimization on crucial parts 

of the code

● Root Cause Analysis:
○ Diagnosing the root cause of 

problems
■ Segmentation faults
■ Out-of-memory errors
■ Inefficient memory usage
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Why is knowing 
memory accesses 
important?

Resource Planning

● Resource Utilization:
○ Efficiency of system resources 

utilization
○ Useful in environments with 

constrained resources
■ Embedded systems
■ Cloud computing
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Other tools

● Valgrind and Intel PIN can produce a full list of memory access trace

● Problems
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S l o w Large Files



Spindle Overview
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https://www.geeksforgeeks.org/bubble-sort/


Intraprocedural Analysis
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Memory Dependence Trees

%A = mul i32 8, %F1
%B = mul i32 4, %F2
%C = add i32 %B, %A
%D = load i32* %C

%C

+

*

%F24

*

%F18
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Types of Leaf Nodes

● Constant value (compile time)
● Loop induction variable (compile time or runtime)
● Base memory address (compile time or runtime)
● Function parameter (compile time or runtime)
● Data-dependent variable (runtime)
● Function return value (runtime)
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Interprocedural Analysis
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Interprocedural Analysis
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Spindle-Based Tools
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S-Tracer
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S-Tracer

● Memory Trace Collector

● Existing methods: record every memory access

● Large memory trace size

● Slowdown of program

● Use MAS and dynamically collected data:

● Highly compressed memory traces

● Lower runtime overhead

Function BubbleSort(dyn_A, dyn_N) {
 Loop0: L0, 0, dyn_N, 1 {
  Loop1: L1, L0, dyn_N, 1 {
   Load1: dyn_A+L0; Load2: dyn_A+L1;
    Branch: dyn_flag {
     Call Swap(dyn_A, L0, L1);
}}}}
Function Swap(S, i, j) {
 Load3 : S+i; Load4 : S+j;
 Store1: S+i; Store2: S+j;
}

BubbleSort {
 dyn_A:
  0x7fffdfc58320;
 dyn_N:
  10;
 dyn_flag:
  {0,0,1,1,0,...,1,1};
}

Static Trace

Dynamic Trace
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● Evaluation workloads:

● Regular memory accesses

● Irregular graph algorithms

● Multithreaded

● Compared against the PIN (Intel) tool

● Trace Size

○ Over 100x trace size reduction for 

regular access patterns

○ Worst case size reduction: 6.93x

S-Tracer Evaluation
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● Runtime Overhead

○ PIN: 502x average slow down

○ S-Tracer: 6.5x average slow down

S-Tracer Evaluation
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S-Detector
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S-Detector

● Memory bug detector
● Invalid Accesses

○ Out-of-bound array access, use after free
● Memory Leaks

○ Unfreed allocated objects after termination

● Existing methods: Insert memory checking instructions
● Problem: Significant program slowdown
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S-Detector

● Use static information (eg MAS) to eliminate unnecessary instrumentation
● MAS informs us the coarse-grained memory accesses of object

● Prune instruction-level checks by using object-level checks
● Only need to check:

○ Valid Offset: offset < struct_size
○ Valid memory range of [base, base + size] 

while (pos - 1 && red_cost >
            (cost_t)new[pos/2-1].flow){
   new[pos-1].tail = new[pos/2-1].tail;
   new[pos-1].head = new[pos/2-1].head;
   // Three more accesses to struct members
   // of new[pos-1] and new[pos/2-1].
   pos = pos/2;
   new[pos-1].tail = tail;
   // Four more accesses to struct members
   // of new[pos-1].
}

addr = base + offset

new:

...head ... tail head ... tail

base 
offset

addr

}
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S-Detector Evaluation

● Average* runtime overhead
● ASan: 66%
● Baseline: 184%
● Optimized: 26%

● Avoided 64% of runtime memory checks

● Evaluated on 11 C programs from the SPEC 

CPU 2006 benchmarks

● Compared to AddressSanitizer (Google) and 

Dr. Memory

* Geometric mean of all test programs
24



Commentary

● S-Detector PoC only handles invalid accesses and memory leaks, but they chose to compare 
to tools that do not do static analysis

● Cannot capture dynamically linked libraries at the IR level
○ Requires fallback to dynamic instrumentation

● No quantitative analysis of the number of memory bugs caught by S-Detector compared to 
existing methods

● The MAS representation is currently limited to structured, predictable memory access 
components

● The MAS usage is not explained in the paper in very substantial detail
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Thank you
Questions?



Outline
● Motivation (Nada)

○ Why do we care about tracing memory accesses? 
○ Why is related work insufficient?

● Framework (Ivris)
○ M-CFG, computable and non computable types, sample trace
○ Adding static analysis helps us improve on current tools

● Static Analysis (Luke)
○ Intra-procedural
○ Inter-procedural 

● Evaluation (Ryan)
○ S-Detector and Evaluation
○ S-Tracer and Evaluation

● Weaknesses and Improvements (Nada)
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Contribution: Static Analysis to Reduce Runtime Overhead

● Reduce the runtime overhead of current memory analysis tools without 
compromising function by introducing static analysis 

● Provide a representation of the memory accesses constructed from static 
analysis usable and modifiable later in instrumentation (MAS)

● Demonstrate flexibility of Spindle’s analysis for constructing a variety of 
memory analysis tools

28



Memory Access Skeleton? 

● Representation of the memory accesses for a given program
○ Needs to be usable in instrumentation phase and should be able to 

have blanks filled in for memory addresses not available at 
compile-time 

● Segue into the intra and interprocedural analysis we use to construct this
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