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The LRPD Test: Speculative Run-Time
Parallelization of Loops with Privatization

and Reduction Parallelization
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Abstract—Current parallelizing compilers cannot identify a significant fraction of parallelizable loops because they have complex or
statically insufficiently defined access patterns. As parallelizable loops arise frequently in practice, we advocate a novel framework
for their identification: speculatively execute the loop as a doall and apply a fully parallel data dependence test to determine if it
had any cross-iteration dependences; if the test fails, then the loop is reexecuted serially. Since, from our experience, a significant
amount of the available parallelism in Fortran programs can be exploited by loops transformed through privatization and reduction
parallelization, our methods can speculatively apply these transformations and then check their validity at run-time. Another
important contribution of this paper is a novel method for reduction recognition which goes beyond syntactic pattern matching: It
detects at run-time if the values stored in an array participate in a reduction operation, even if they are transferred through private
variables and/or are affected by statically unpredictable control flow. We present experimental results on loops from the PERFECT
Benchmarks, which substantiate our claim that these techniques can yield significant speedups which are often superior to those
obtainable by inspector/executor methods

Index Terms—Compilers, parallel processing, speculative, run-time, DOALL, reduction, privatization.
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1 INTRODUCTION

O achieve a high level of performance for a particular
program on today’s supercomputers, software devel-

opers are often forced to tediously hand-code optimizations
tailored to a specific machine. Such hand-coding is difficult,
increases the possibility of error over sequential program-
ming, and the resulting code may not be portable to other
machines. Restructuring, or parallelizing, compilers ad-
dress these problems by detecting and exploiting parallel-
ism in sequential programs written in conventional lan-
guages. Although compiler techniques for the automatic
detection of parallelism have been studied extensively over
the last two decades (see, e.g., [29], [43]), current paral-
lelizing compilers cannot extract a significant fraction of the
available parallelism in a loop if it has a complex and/or
statically unknown access pattern. Typical examples of ap-
plications containing such loops are complex simulations
such as SPICE for circuit simulation, DYNA-3D and
PRONTO-3D for structural mechanics modeling, GAUS-
SIAN and DMOL for quantum mechanical simulation of
molecules, CHARMM and DISCOVER for molecular dy-
namics simulation of organic systems, and FIDAP for mod-
eling complex fluid flows [12].

Thus, in order to realize the full potential of parallel
computing it has become clear that static (compile-time)
analysis must be complemented by new methods capable

of automatically extracting parallelism at run-time [10], [12],
[15]. Run-time techniques can succeed where static compi-
lation fails because they have complete information about
the access pattern. For example, input-dependent or dy-
namic data distribution, memory accesses guarded by run-
time dependent conditions, and subscript expressions can
all be analyzed unambiguously at run-time. In contrast, at
compile-time, the access pattern of some programs cannot
be determined, sometimes due to limitations in the current
analysis algorithms, but often because the necessary infor-
mation is just not available, i.e., the access pattern is a func-
tion of the input data. For example, most dependence
analysis algorithms can only deal with subscript expres-
sions that are linear in the loop indices. In the presence of
nonlinear expressions, a dependence is usually assumed.
Also, generally compilers conservatively assume data de-
pendences in the presence of subscripted subscripts. Al-
though more powerful analysis techniques could remove
this last limitation when the index arrays are computed
using only statically known values, nothing can be done at
compile-time when the index arrays are a function of the
input data [22], [37], [49].

1.1 Speculative doall Parallelization
In this paper, we propose a novel framework for paral-
lelizing do loops at run-time. The proposed framework dif-
fers conceptually from previous methods in two major
points.

•� Instead of finding a valid parallel execution schedule
for the loop that satisfies all cross-iteration depen-
dences, we focus on the problem of simply deciding if
the loop is fully parallel, that is, determining whether
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or not the loop has cross-iteration dependences. (This
approach was also taken in [32].)

•� Instead of distributing the loop into inspector and ex-
ecutor loops, we speculatively execute the loop as a
doall, i.e., execute all its iterations concurrently, and
apply a run-time test to check if there were any cross-
iteration dependences. If the run-time test fails, then
we will pay a penalty in that we need to backtrack
and reexecute the loop serially.

Compilers often transform programs to optimize per-
formance. Two of the most effective transformations for
increasing the amount of parallelism in a loop (i.e., remov-
ing certain types of data dependences) are array privatization
and reduction parallelization. Krothapalli and Sadayappan
[18] proposed an inspector method for run-time privatiza-
tion which relies heavily on synchronization, inserts an ad-
ditional level of indirection into all memory accesses, and
calls for dynamic shared memory allocation. In our previ-
ous work [32], [31], we gave an inspector method without
these drawbacks for determining whether a do loop can be
executed as a doall, perhaps by privatizing some shared
variables. No previous run-time methods have been pro-
posed for parallelizing reduction operations.

In this paper, we present several new ideas: First, we ad-
vocate the use of run-time tests to validate the execution of
a loop that is speculatively executed in parallel. The ad-
vantage of this approach is that the computation of the loop
is performed concurrently with the tests, i.e., the memory
access pattern does not need to be extracted and analyzed
separately as in inspector/executor methods.1 As will be
shown later, the test performed during the speculative loop
execution is almost independent of the original computa-
tion, in effect introducing an additional level of fine grain
parallelism which can be exploited by modern microproc-
essors and, therefore, does not significantly increase execu-
tion time.

The distribution of a loop into an inspector and executor
loop is often not advantageous: If the address computation
of the array under test depends on the actual data compu-
tation, i.e., there is a dependence cycle between data and
address computation, as exemplified by Fig. 1a, then the
inspector becomes both computationally expensive and has
side effects. This means that shared arrays would be modi-
fied during the execution of the inspector loop and saving
the state of these variables would be required—making the
inspector equivalent to the loop itself. Moreover, a fully
parallel execution (doall) of such an inspector cannot
produce a correct address trace and cannot be used in the

1. If desired, all of our run-time tests can be applied in inspector/executor
mode.

computation of a parallel execution schedule that enforces
cross-iteration dependences. Inspectors for such loops may
have to be run sequentially.

Thus, the inspector/executor approach is not a generally
profitable method. However, it should be noted that
speculative parallelization is inherently optimistic. When a
loop is not parallel the incurred potential slowdown may
possibly be greater for the speculative run-time test than for
its inspector counterpart. A parallel inspector, if available,
may also be used to generate a valid execution schedule
using synchronizations. However, our goal is to parallelize
only fully parallel loops, which are quite frequent and offer
the greatest potential for scalable program speedup.

In Section 5, we present experimental results on loops
from the PERFECT Benchmarks which substantiate our
claim that speculative techniques can yield significant
speedups which are often superior to those obtainable by
inspector/executor methods. Second, in addition to array
privatization, the new techniques are capable of testing at
run-time the validity of the powerful reduction paralleliza-
tion transformation. In particular, for an array element (or
section), our run-time methods are able to detect whether it
participated exclusively in a reduction operation, or if all its
accesses were either read-only or privatizable. If all the
memory references in a do loop fall under any of these
categories then the speculative concurrent execution of the
loop was valid, i.e., the loop was indeed parallel. The new
algorithms consider only data dependences caused by ac-
tual cross-iteration data-flow (a flow of values). Thus, they
may potentially qualify more loops as parallel than the
method in [32] which conservatively considered the depen-
dences due to every memory reference—even if no cross-
iteration data-flow occurred at run-time. This situation
could arise for example when a loop reads a shared vari-
able, but then only uses it conditionally.

Another important contribution of this paper is a novel
method for reduction recognition: In contrast to the static
pattern matching techniques employed by compilers until
now, our method detects if the values stored in an array
participate in a reduction operation, even if they are trans-
ferred through private variables and/or are affected by
statically unpredictable control flow.

Our methods for speculatively executing do loops in
parallel are described in Sections 3 and 4. In Section 5, we
present some experimental measurements of loops from the
PERFECT Benchmarks executed on the Alliant FX/80 and
2800. These measurements show that the techniques pre-
sented in this paper are effective in producing scalable
speedups even though the run-time analysis is done with-
out the help of any special hardware devices. It is conceiv-
able, and we believe desirable, that future machines would

Fig. 1. Examples of loops requiring different types of parallelization techniques.
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include special hardware devices to accelerate the run-time
analysis and in this way widen the range of applicability of
the techniques and increase potential speedups [47], [48].

2 PRELIMINARIES

A loop can be executed in fully parallel form, without syn-
chronization, if and only if the desired outcome of the loop
does not depend in any way upon the execution ordering of
the data accesses from different iterations. In order to de-
termine whether or not the execution order of the data ac-
cesses affects the semantics of the loop, the data depend-
ence relations between the statements in the loop body
must be analyzed [7], [20], [29], [43], [50]. There are three
possible types of dependences between two statements that
access the same memory location: flow (read after write),
anti (write after read), and output (write after write). Flow
dependences express a fundamental relationship about the
data flow in the program. Anti and output dependences,
also known as memory-related dependences, are caused by
the reuse of memory, e.g., program variables.

If there are flow dependences between accesses in differ-
ent iterations of a loop, then the semantics of the loop can-
not be guaranteed if the loop is executed in fully parallel
form. For example, the iterations of the loop in Fig. 1a
must be executed in order of iteration number because
iteration i + 1 needs the value that is produced in iteration i,
for 1 ≤ i < n. In principle, if there are no flow dependences
between the iterations of a loop, then the loop may be exe-
cuted in fully parallel form. The simplest situation occurs
when there are no anti, output, or flow dependences. In this
case, all the iterations of the loop are independent and the
loop, as is, can be executed as a doall (i.e., a fully parallel
execution). If there are no flow dependences, but there are
anti or output dependences, then the loop must be modi-
fied to remove all these dependences before it can be exe-
cuted in parallel. Not all such situations can be handled
efficiently. In order to remove certain types of dependences
and execute the loop as a doall, two important and effec-
tive transformations can be applied to the loop: privatization
and reduction parallelization.

Privatization creates, for each processor cooperating on
the execution of the loop, private copies of the program
variables that give rise to anti or output dependences (see,
e.g., [11], [23], [24], [39], [40]). The loop shown in Fig. 1b is
an example of a loop that can be executed in parallel by
using privatization; the anti dependences between statement
S2 of iteration i and statement S1 of iteration i + 1, for 1 ≤ i
< n/2, can be removed by privatizing the temporary vari-
able tmp. In this paper, the following criterion is used to
determine whether a variable may be privatized:

Privatization Criterion: Let A be a shared array (or array
section) that is referenced in a loop L. A can be privatized if
and only if every read access to an element of A is preceded
by a write access to that same element of A within the same
iteration of L.

In general, dependences that are generated by accesses
to variables that are only used as workspace (e.g., tempo-
rary variables) within an iteration can be eliminated by pri-
vatizing the workspace. However, according to the above

criterion, if a shared variable is read first, then that variable
cannot be privatized. When the value of all variables which
are read first comes from outside the loop, then such vari-
ables could be privatized if a copy-in mechanism for the
external value is provided. The last value assignment prob-
lem is the conceptual dual of the copy-in problem. If a pri-
vatized variable is live after the termination of the loop,
then the privatization technique must ensure that the cor-
rect value is copied out to the original (nonprivatized) ver-
sion of that variable. It should be noted that the need for
values to be copied into or out of private variables occurs
infrequently in practice.

Reduction parallelization is another important technique
for transforming certain types of data dependent loops for
concurrent execution.

DEFINITION. A reduction variable is a variable whose value is
used in one associative operation of the form x = x ⊗ exp,
where ⊗ is the associative operator and x does not occur in
exp or anywhere else in the loop.

Due to the finite precision of computers, the properties of
the ⊗ operator can only be assumed to be true. It is impor-
tant to note that if the reduction operation is also commuta-
tive, its substitution with a parallel algorithm can be done
with fewer restrictions (e.g., dynamic scheduling of doall
loops can be employed). Reduction variables are therefore
accessed in a certain specific pattern (which leads to a char-
acteristic data dependence graph). A simple but typical ex-
ample of a reduction is statement S1 in Fig. 1c. The operator
⊗ is exemplified by the + operator, the access pattern of
array A(:) is read, modify, write, and the function performed
by the loop is to add a value computed in each iteration to
the value stored in A(:). This type of reduction is sometimes
called an update and occurs quite frequently in programs.

There are two tasks required for reduction paralleliza-
tion: recognizing the reduction variable and parallelizing the
reduction operation. Privatization needs to recognize pri-
vatizable variables by performing only data dependence
analysis. It depends only on the access pattern and not on
the operation type. Several parallel methods are known for
performing reduction operations. One typical method is to
transform the do loop into a doall and enclose the access
to the reduction variable in an unordered critical section
[15], [50]. Drawbacks of this method are that it is not scal-
able and it requires synchronizations which can be very
expensive in large multiprocessor systems. A scalable
method can be obtained by noting that a reduction opera-
tion is an associative and commutative recurrence and can
thus be parallelized using a recursive doubling algorithm
[19], [21]. In this case, the reduction variable is privatized in
the transformed doall, and the final result of the reduction
operation is computed in an interprocessor reduction phase
following the doall, i.e., the result is produced using the
partial results computed in each processor as operands for a
reduction operation (with the same operator) across the
processors. Thus, the difficulty encountered by compilers in
parallelizing loops with reductions arises not from finding
a parallel algorithm but from recognizing the reduction
statements. So far this problem has been handled at compile-
time by syntactically pattern matching the loop statements
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with a template of a generic reduction, and then performing
a data dependence analysis of the variable under scrutiny
to guarantee that it is not used anywhere else in the loop
except in the reduction statement [50].

3 SPECULATIVE PARALLEL EXECUTION OF DO
LOOPS

Consider a do loop for which the compiler cannot statically
determine the access pattern of a shared array A that is ref-
erenced in the loop. Instead of generating pessimistic, se-
quential code when it cannot unequivocally decide whether
the loop is parallel, the compiler could decide to specula-
tively execute the loop as a doall and produce code to de-
termine at run-time whether the loop was in fact fully par-
allel. In addition, if it is suspected that some data depen-
dences could be removed by privatization and/or reduc-
tion parallelization, the compiler may also speculatively
apply these transformations in order to increase the chances
that the loop can be executed as a doall. If the subsequent
run-time test finds that the loop was not fully parallel, then it
will be reexecuted sequentially. In order to speculatively par-
allelize a do loop as outlined above, we need the following:

•� A mechanism of saving/restoring state: to save the
original values of the program variables for the possi-
ble sequential reexecution of the loop.

•� An error (hazard) detection method: to test the valid-
ity of the speculative parallel execution.

•� An automatable strategy: to decide when to use
speculative parallel execution.

An overall organization of a system for specualtive execu-
tion is shown in Fig. 2.

Saving/Restoring State. There are several ways to
maintain backups of the program variables that may be
altered by the speculative parallel execution. If the re-
sources (time and space) needed to create a backup copy
are not too big, then a practical solution is checkpointing
prior to the speculative execution. A more attractive solu-
tion is to privatize all shared variables, copy-in (on de-
mand) any needed external values, and copy-out any live
values if the test passes, thereby committing the results
computed by the doall loop. This method could also yield
better data locality and reduce the cross-processor commu-
nication (e.g., it would generate less coherence traffic in a
cache coherent distributed shared-memory machine). Note
that privatized arrays need not be backed up because the
original version of the array will not be altered during the
parallel execution.

Hazard Detection. There are essentially two types of
errors (hazards) that could occur during the speculative
parallel execution: 1) exceptions and 2) the presence of
cross-iteration dependences in the loop. A simple way to
deal with exceptions is to treat them as an invalid paral-
lel execution, i.e., if an exception occurs, abandon the
parallel execution, clear the exception flag, restore the
values of any altered program variables, and execute the
loop sequentially. Below, we present techniques that can
be used to detect the presence of cross-iteration depen-
dences in the loop and to test the validity of any privati-
zation and/or reduction parallelization transformations
that were applied.

An Automatable Strategy. The main factors that the
compiler should consider when deciding whether to
speculatively parallelize a loop are: the probability that the
loop is a doall, the speedup obtained if the loop is a do-
all, and the slowdown incurred if the loop is not a doall.
For example, the compiler might base its decision on a ratio
of the estimated run-time cost of an erroneous parallel exe-
cution to the estimated run-time cost of a sequential execu-
tion. If this ratio is small, then significant performance
gains would result from a successful (valid) parallelization
of the loop, at the risk of increasing the sequential execution
time by only a small amount. In order to perform a
cost/benefit analysis and to predict the parallelism of the
loop, the compiler should use static analysis and run-time
statistics (collected on previous executions of the loop or
from different codes); in addition, directives about the par-
allelism of the loop might prove useful. In Section 3.3, a
complexity analysis of our run-time tests is presented that
can be used to statically predict the minimum obtainable
speedup and the maximum potential slowdown for a loop
parallelized using our techniques.

3.1 Run-Time Data Dependence Analysis
In this section, we describe an efficient run-time technique
that can be used to detect the presence of cross-iteration
dependences in a loop that has been speculatively exe-
cuted in parallel. If there are any such dependences, then
this test will not identify them, it will only flag their exis-
tence. We note that the test need only be applied to those
scalars and arrays that cannot be analyzed at compile-
time. In addition, if any shared variables were privatized

Fig. 2. Integration of speculative run-time parallelization.
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for the speculative parallel execution, then this test can
determine whether those variables were in fact validly
privatized.

An important source of ambiguity that cannot be ana-
lyzed statically and potentially generates overly conser-
vative data dependence models is the run-time equivalent
of dead code. A simple example is when a loop first reads a
shared array element into a local variable but then only
conditionally uses it in the computation of other shared
variables. If the consumption of the read value does not
materialize at run-time, then the read access did not in fact
contribute to the data flow of the loop and, therefore,
could not have caused a dependence. Since predicates
seldom can be evaluated statically, the compiler must be
conservative and conclude that the read access causes a
dependence in every iteration of the loop. The test given
here improves upon the more conservative Privatizing
doall (PD) test described in [32] by checking only the
dynamic data dependences caused by the actual cross-
iteration flow of values stored in the shared arrays (the PD
test was checking exclusively reference patterns). This is
accomplished using a technique we call dynamic dead refer-
ence elimination, which is explained in detail following the
description of the test.

The most general version of the test, as applied to a pri-
vatized shared array A, is given below, i.e., it tests for all
types of dependences and also whether the array is indeed
privatizable. If some of these conditions do not need to be
verified, then the test can be simplified in a straightforward
manner, e.g., if the array was not privatized for the specu-
lative parallel execution, then all steps pertaining to the
privatization check should be omitted.

The Lazy (Value-Based) Privatizing doall Test (LPD Test)

1)�Marking Phase. (Performed during the speculative paral-
lel execution of the loop.) For each shared array A[1 : s]
whose dependences cannot be determined at compile
time, we declare read and write shadow arrays, Ar[1 : s]
and Aw[1 : s], respectively. In addition, we declare a
shadow array Anp[1 : s] that will be used to flag array
elements that cannot be validly privatized. Initially, the
test assumes that all array elements are privatizable, and
if it is found in any iteration that the value of an element
is used (read) before it is redefined (written), then it will
be marked as not privatizable. The shadow arrays Ar,
Aw, and Anp are initialized to zero. During each iteration
of the loop, all definitions or uses of the values stored in
the shared array A are processed:

a)�Uses (done when the value that was read is used): If
this array element has not yet been modified (written)
in this iteration, then set the corresponding element in
Ar and set the corresponding element in Anp, i.e., mark
it as not privatizable.

b)�Definitions (done when the value is written): Set the
element in Aw corresponding to the array element that
is modified (written) and clear its corresponding Ar (if
set).

c)�Count the total number of write accesses to A that are
set in this iteration and store the result in twi(A), where
i is the iteration number.

2)�Analysis Phase. (Performed after the speculative parallel
execution.) For each shared array A under scrutiny:

a)�Compute i) tw(A) = ∑twi(A), i.e., the total number of defi-
nitions (writes) that were marked by all iterations in the
loop, and ii) tm(A) = sum(Aw[1 : s]),2 i.e., the total number
of marks in Aw[1 : s]. Note that nod = tm(A) − tw(A) repre-
sents the number of times the elements of A have been
overwritten across iterations (nod > 0 implies the exis-
tence of cross-iteration output dependences).

b)�If any(Aw[:] ∧ Ar[:]),
3 4 i.e., if the marked areas are com-

mon anywhere, then the loop is not a doall and the phase
ends. (Since we define (write) and use (read, but do not
define) values stored at the same location in different it-
erations, there is at least one flow or anti-dependence.)

c)�Else if tw(A) = tm(A), then the loop is a doall (without
privatizing the array A). (Since we never overwrite
any memory location, nod = 0, i.e., there are no output
dependences.)

d)�Else if any(Aw[:] ∧ Anp[:]), then the array A is not pri-
vatizable. Thus, the loop, as executed, is not a doall
and the phase ends. (There is at least one iteration in
which some element of A was used (read) before it has
been modified (written).)

e)�Otherwise, the loop was made into a doall by pri-
vatizing the shared array A. (We remove all memory-
related dependences by privatizing this array.)

Dynamic dead reference elimination. We now describe
how the marking of the read and private shadow arrays, Ar
and Anp, can be postponed until the value of the shared
variable is actually used (Step 1a). More formally, the refer-
ences we want to identify are defined as follows:

DEFINITION. A dynamic dead read reference in a loop is a read
access of a shared variable that does not contribute to the
computation of any other shared variable which is live at
loop end.

A dynamic dead reference is not used in the computa-
tion of the value of a shared variable live at loop end nor is
it used in the control flow affecting such variables. The
value obtained through a dynamic dead read does not con-
tribute to the data flow of the loop. Ideally, such accesses
should not introduce false dependences in either the static
or the run-time dependence analysis. If it is possible to de-
termine the dead references at compile time, then we can
just ignore them in our analysis. Since this is generally not
possible (control flow could be input dependent), the com-
piler should identify the references that have the potential
to be unused and insert code to solve this problem at run-
time. In Fig. 3, we give an example where the compiler can
identify such a situation by following the def-use chain
built by using array names only. To avoid introducing false
dependences, the marking of the read shadow array is
postponed until the value that is read into the loop space is
indeed used in the computation of other shared variables.
In essence, we are concerned with the flow of the values
stored rather than with their storage (addresses). We note

2. sum returns the number of nonzero elements in Aw.
3. any returns the “OR” of its vector operand’s elements, i.e., any(v[1 : n]) =

(v[1] ∨ v[2] ∨ … ∨ v[n]).
4. v[1] ∧ v[2] = TRUE if (v[1] ≠ 0) AND (v[2] ≠ 0).
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that if the search for the actual use of a read value becomes
too complex, then it can be stopped gracefully at a certain
depth and a conservative marking of the shadow array can
be inserted (on all the paths leading to a possible use).

In the PD test described in detail in [32], all memory ref-
erences to the array under test are marked in the same con-
trol block in which they appear, regardless whether the val-
ues stored at those addresses contribute to the global data
flow or not. The PD test is, in essence, equivalent to static
data dependence analysis (otherwise, it is identical to the
LPD test). As can be observed from the example in Fig. 3, the
“lazy” marking employed by the LPD test, i.e., the dynamic
dead reference elimination technique, allows it to qualify
more loops for parallel execution than the more conserva-
tive PD test. In particular, after marking and counting we
obtain the results depicted in the tables. The loop fails the
PD test since Aw(:) ∧ Ar(:) is not zero everywhere (Step 2b).
However, the loop passes the LPD test as Aw(:) ∧ Ar(:) is
zero everywhere, but only after privatization, since tw(A) ≠
tm(A) and Aw(:) ∧ Anp(:) is zero everywhere.

Private shadow structures. The LPD test can take ad-
vantage of the processors’ private memories by using pri-
vate shadow structures for the marking phase of the test.
Then, at the conclusion of the private marking phase, the
contents of the private shadow structures are merged into
the global shadow structures. Note that since the order of
the writes (marks) to an element of the shadow structure is
not important, all processors can transfer their private
shadow structures to the global structure without synchro-
nization. In fact, using private shadow structures enables
some additional optimization of the LPD test as follows:
Since the shadow structures are private to each processor,
the iteration number can be used as the “mark.” In this way,
no reinitialization of the shadow structures is required be-
tween successive iterations, and checks such as “has this
element been written in this iteration?” simply require
checking if the corresponding element in Aw is marked with

the iteration number. Another benefit of the iteration num-
ber “marks” is that they can double as time-stamps, which
are needed for performing the last-value assignment to any
shared variables that are live after loop termination.

An example using iteration numbers as “marks” in pri-
vate shadow arrays is shown in Fig. 4. If the speculative exe-
cution of the loop passes the analysis phase, then the scalar
reduction results are computed by performing a reduction
across the processors using the processors’ partial results.
Otherwise, if the test fails, the loop is reexecuted sequentially.

The shadow structures can have various implementa-
tions, depending on the nature of the access pattern. A
dense access pattern will benefit from shadow arrays, which
provide random access and efficient use of memory space.
Note that the state information used by the run-time test,
Aw, Ar, Anp, can be represented with only two fields since
there are at most four distinct states per shadowed element
(read-only, write-first, read-first, not-referenced).On the other
hand, a sparse access into a large program data structure
may benefit from shadow hash tables. Instead of “marking”
into an array we insert the “marks” into private hash tables
which will be merged during the analysis phase. Hash ta-
bles will compact a sparse region into tight storage and
maintain the benefit of random access (constant access
time), albeit at a higher cost per reference.

3.1.1  Processor-Wise Version of the LPD Test
The LPD Test determines whether a loop has any cross-
iteration data dependences. It turns out that essentially the
same method can be used to test whether the loop, as exe-
cuted, has any cross-processor data dependences [1]. The only
difference is that all checks in the test refer to processors rather
than to iterations, i.e., replace “iteration” by “processor” in
the description of the LPD test so that all iterations assigned
to a processor are considered as one “super-iteration” by
the test. It is important to note that a loop that is not fully
parallel (it has cross-iteration dependences) could potentially

Fig. 3. (a) The transformation of a do loop, (b) using the original version of the PD test, and (c) the lazy version. The markwrite (markread)
operation marks the indicated element in the shadow array Aw (Ar and Anp) according to the criteria given in Steps 1a and 1b of the LPD test.
Since dynamic dead read references are not marked in the LPD test, the array A fails the PD test and passes the LPD test, as shown in (d) and
(e), respectively.
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pass the processor-wise version of the LPD test because data
dependences among iterations assigned to the same processor
will not be detected. This is desirable (and correct) provided
that each processor executes its assigned iterations in increas-
ing order. The processor-wise version of the test can therefore
parallelize more loops and, at the same time, incur less time
and space costs: The shadow structures need to be initialized
only once and can use Boolean values (2 bits per shadowed
memory element) for marking. When last value assignment is
required, then last written value needs to be copied out from
the privatized array to the original shared array. For balanced
loops, where static scheduling performs well, the needed last-
write-timestamps are expressed implicitly in the value of the
processor identifier.

3.1.2 Supporting Copy-In of External Values
Suppose that a loop is determined as fully parallel by the
LPD test except for the accesses to one element a. If the first
times(s) a is accessed by the loop through a read, and for
every later iteration that accesses a it is always written be-
fore it is read, then the loop could actually be executed as a
doall by having the initial accesses to a copy-in the global
value of a, and having the iterations that wrote a use private

copies of a. In this way loops with a (Read)∗(Write/Read)∗

access pattern can be safely transformed into a doall. The
LPD test can be augmented to detect this situation by
keeping track of the maximum iteration ir

+  that read a (be-

fore it was ever written), and the minimum iteration iw
−  that

wrote a. Then, if i ir w
+ −≤ , the loop can be executed in paral-

lel. In order to collect this information, we need two addi-
tional private shadow structures, which are merged, pair-
wise, into the global shadow structure.

In the processor wise LPD test, these additional shadow
structures are not necessary because the information is avail-
able implicitly through static scheduling. If the iteration space
is assigned to the processors in contiguous chunks, i.e., proces-
sor i gets iterations (n/p) ∗ i through (n/p) ∗ (i + 1) − 1, 0 ≤ i < p,
then we need only check that the first write to a appears on a
processor with an id that is not less than the last processor id in
which a is marked as nonprivatizable or read-only.

3.2 Run-Time Reduction Parallelization
As mentioned in Section 2, there are two tasks required for
reduction parallelization: recognizing the reduction variable
and parallelizing the reduction operation. Of these, we focus
our attention on the former since, as previously noted, tech-
niques are known for performing reduction operations in
parallel. So far, the problem of reduction variable recognition
has been handled at compile-time by syntactically pattern
matching the loop statements with a template of a generic
reduction, and then performing a data dependence analysis
of the variable under scrutiny to validate it as a reduction
variable [50]. There are two major shortcomings of such pat-
tern matching identification methods.

1)�The data dependence analysis necessary to qualify a
statement as a reduction cannot be performed statically
in the presence of input-dependent access patterns.

2)�Syntactic pattern matching cannot identify all poten-
tial reduction variables (e.g., in the presence of sub-
scripted subscripts).

Below, we show how each of these two difficulties can be
overcome with a combination of static and run-time methods.

3.2.1 The LRPD Test: Extending the LPD Test for
Reduction Validation

In this section, we consider the problem of verifying that a
statement is a reduction using run-time data dependence
analysis. The potential reduction statement is assumed to
syntactically pattern match the generic reduction template x =
x ⊗ exp; reduction statements that do not meet this criterion
are treated in the next section. To verify that such a state-
ment is a reduction, we need to check that the reduction
variable x satisfies the definition given in Section 2, i.e., that
x is only accessed in the reduction statement, and that it
does not appear in exp.

Our basic strategy is to extend the LPD test to check all
statically unverifiable reduction conditions. We first con-
sider how the test would be augmented to check only that
the reduction variable is not accessed outside the single
reduction statement. This situation could arise if the reduc-
tion variable is an array element whose subscript expres-
sions are not statically analyzable. For example, although

Fig. 4. The simplified code generated for the do loop in (a) is shown in (b) and (c). Privatization is not tested because of a read before a write
reference. The markredux operations are as described in Fig. 5.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 16,2023 at 23:07:02 UTC from IEEE Xplore.  Restrictions apply. 



RAUCHWERGER AND PADUA: THE LRPD TEST: SPECULATIVE RUN–TIME PARALLELIZATION OF LOOPS 167

statement S3 in the loop in Fig. 5a matches a reduction
statement, it is still necessary to prove that the elements of
array A referenced in S1 and S2 do not overlap with those
accessed in statement S3, i.e., that: K(i) ≠ R(j) and L(i) ≠ R(j),
for all 1 ≤ i, j ≤ n. Thus, the LRPD test must check at run-
time that there is no intersection between the references in
S3 and those in S1 and/or S2; in addition, it will be used to
prove, as before, that any cross-iteration dependences in S1
and S2 are removed by privatization. To test this new con-
dition, we use another shadow array Anx to flag the array
elements that are not valid reduction variables. Initially, all
array elements are assumed to be valid reduction variables,
i.e., Anx[:] = .false.. In the marking phase of the test, i.e.,
during the speculative parallel execution of the loop, any
array element defined or used outside the reduction state-
ment is invalidated as a reduction variable, i.e., its corre-
sponding element in Anx is set to true. As before, after the
speculative parallel execution, the analysis phase of the test
is performed. An element of A is a valid reduction variable
if and only if it was not invalidated during the marking
phase, i.e., it was not marked in Anx as not a reduction vari-
able for any iteration. The other shadow arrays Anp, Aw, and
Ar are initialized, marked, and interpreted just as before.

The LRPD test can also solve the case when the exp part
of the RHS of the reduction statement contains references to
the array A that are different from the pattern matched LHS
and cannot be statically analyzed. To validate such a state-
ment as a reduction we must show that no reference in exp
overlaps with those of the LHS. This is done during the
marking phase by setting an element of Anx to true if the
corresponding element of A is referenced in exp.

In summary, the LRPD test is obtained by modifying the
LPD test. The following step is added to the Marking Phase.

1(d). Definitions and uses: If a reference to A is not one of
the two known references to the reduction variable
(i.e., it is outside the reduction statement or it is con-
tained in exp), then set the corresponding element of
Anx to true (to indicate that the element is not a reduc-
tion variable). (See Figs. 5a and 5b.)

In the Analysis Phase, Steps 2d and 2e are replaced by the
following:

2(d′). Else if any(Aw[:] ∧ Anp[:] ∧ Anx[:]), then some element
of A written in the loop is neither a reduction variable
nor privatizable. Thus, the loop, as executed, is not a
doall and the phase ends. (There exist iterations

Fig. 5. The transformation of the do loops in (a) and (c) is shown in (b) and (d), respectively. The markwrite (markread) operation marks the
indicated element in the shadow array Aw (Ar and Anp) according to the criteria given in Steps 1a and 1b of the LPD test. The markredux op-
eration sets the shadow array element of A_nx to true. In (d), the type of the reduction is tested by storing the operator in A_nx. A_nx can be
true, false, +, *.
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(perhaps different) in which an element of A is not a
reduction variable and in which it is used (read) and
subsequently modified.)

2(e′). Otherwise, the loop was made into a doall by paral-
lelizing reduction operations and privatizing the
shared array A. (All data dependences are removed
by these transformations.)

If the analysis phase validates (passes) the speculative
parallel execution of the loop, then, as before, the last-value
assignments are performed for any live shared variables,
and the scalar result of each reduction is computed using
the processors’ partial results in a reduction across the
processors. (See Fig. 4.) (If reductions are implemented by
placing the reduction statements in critical sections, then
this last step is not necessary.)

Multiple potential reduction statements. A more com-
plicated situation is when the loop contains several reduc-
tion statements that refer to the same array A. In this case,
the type of the reduction operation performed on each ele-
ment must be the same throughout the loop execution, e.g.,
a variable cannot participate in both a multiplicative and an
additive reduction since the resulting operation is not asso-
ciative and is, therefore, not parallelizable. The solution to
this problem is to mark the shadow array Anx with the re-
duction type. Whenever a reference in a reduction state-
ment is marked, the current reduction type (e.g., summa-
tion, multiplication) is checked with previous one. If they
are not the same, the corresponding shadow element of Anx
is set to true.

In Figs. 5c and 5d, we show how a loop containing two
potential reduction statements with different operators and
an exp operand that contains references to the array under
test can be transformed to perform a run-time dependence
and reduction test. The subsequent analysis of the shadow
arrays will detect which elements were used in a reduction
and which are privatizable or read-only. If any element is
found not to belong to one of these categories, then the
speculative parallelization was incorrect and a sequential
reexecution must be initiated.

As a final remark, we note that a more aggressive im-
plementation could promote the type of a reduction at run-
time: If a memory element is first involved in a “+” reduc-
tion and then switches over to a “*” reduction and stays
that way for all the remaining references, then the specula-
tive parallel execution can still yield valid partial results on
each processor. It is important to remember that a reduction
type can be promoted in only one direction (it cannot be
demoted back to its initial type) and only once per loop
invocation. Of course, the reduction across processors must
reflect the reduction operator promotion.

3.2.2 Static Reduction Recognition and Run-Time Check
As mentioned at the beginning of this section, syntactic
pattern matching is not a sufficiently powerful method to
detect all the values that are “subject” to a reduction opera-
tion. In particular, syntactic pattern matching will fail to
identify a reduction whenever all the references on the
RHS of the assignment “look different” from the reference
on the LHS. Thus, if a statement is in fact a reduction, but
the references on the LHS and/or the RHS are indirect,

then syntactic pattern matching will fail. This situation
could arise naturally, e.g., through the use of temporary
variables or subscripted subscripts. In the latter case, it can
only be determined at run-time if any of the array elements
are reduction variables.

In the following, we show that a combination of static
and run-time techniques can be used to successfully iden-
tify several types of potential reductions that could not be
recognized with pattern matching techniques. The general
strategy is to speculate that every assignment to the array
of interest is a potential reduction, unless proven otherwise
statically or by other heuristics. At run-time this assump-
tion is then validated or invalidated on an element by ele-
ment basis.

Single Statement Reduction Recognition. We first consider a
single statement in which the references on the RHS are
either dependent on the array A (also referenced on the
LHS) or are to values known to be independent of A, e.g.,
constants, loop invariants, or distinct global variables.

The simplest case is when the RHS contains exactly one
reference to A. Consider the potential reduction statement
A(R(i)) = A(X(i)) + exp. If R(i) = X(i), for some values of i,
then the probability that the surrounding loop is parallel is
increased. In this case, the solution is simply to check this
equality condition at run-time, and mark the shadow array
Anx accordingly.

The situation is a bit more complex when the RHS con-
tains multiple references to the array A. Consider the
statement A(R(i)) = A(X1(i)) + A(X2(i)) +… + A(Xk(i)). This
statement is a reduction if and only if R(i) = Xj(i) for exactly
one value of j (see Section 2). As the operation is commuta-
tive and associative, we cannot discount the possibility of a
reduction. In this example, we must check for equality be-
tween R(i) and every Xj(i), 1 ≤ j ≤ k. If this equality condition
is not met exactly once, then Anx(R(i)) is set to true (to indi-
cate it was not a reduction). We note that a more aggressive
strategy could be taken when there are multiple references
to A(R(i)) on the RHS: Promote the “+” reduction to a “*”
reduction. However, as mentioned in Section 3.2.1, the re-
duction type can only be promoted once in the entire loop.
Fig. 6 shows the code generated for run-time validation
when the RHS contains multiple references to A. In the in-
terest of clarity, reduction type promotion is not shown.

Multiple Statement Reduction Recognition: Expanded Reduc-
tion Statements. We now relax all restrictions on the RHS
and allow in it variables that are neither explicit functions
of the array appearing on the LHS nor explicit loop invari-
ants. Our goal is to uncover any possible link between the
LHS and the RHS, if indeed one exists. The general strategy
of our methods is a fairly straightforward demand-driven
forward substitution of all the variables on the RHS, a proc-
ess by which all control flow dependences are substituted
by data dependences as described in [2], [40]. Once this
expression of the RHS is obtained it can be analyzed and
validated by the methods described in the previous section.
In the following, we explain by way of example how our
new method can identify reductions.

In Fig. 7a, statement S3 is first labeled at compile time as
a potential reduction. Then, by following the def-use chains
of the variables on the RHS (i.e., z and y) within the scope
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of the loop we find that in statement S1, z may potentially
carry the value of A(R(i)), while y is a constant with respect
to A. The algorithm then examines statement S3 after for-
ward substitution, but does not actually replace S3 in the
generated code. The substitution is done only for compiler
analysis purposes. This new version of S3, referred to as
S3', is of the form: S3′: A(R(i)) = A(K(i)) + constant. Simi-
larly, S5 becomes S5′: A(L(i)) = A(K(i)) + constant. Next, we
label the statement pairs (S1, S3) and (S1, S5) in the origi-
nal loop as expanded reduction statements (ERSs). If we treat
each ERS as a single reduction statement, then this problem
is reduced to the one treated above.

The code generated for the run time marking of the
ERS is inserted for both sides of an assignment statement
(RHS and LHS), but only in the same basic block where

the assignment is. As we will see in a later example, this
rule insures that both sides are marked when and if there is
an assignment, i.e., it insures that a value is actually passed
from the RHS to LHS. Any uses of values participating in
the reduction that occur outside the ERS invalidate the ERS,
i.e., set the corresponding element of the shadow array Anx
to true. In the case of ERSs obtained through forward sub-
stitution, the value of the reduction reference may pass
through several memory locations (intermediate variables)
before reaching the statement of the LHS. As any use of an
intermediate variable represents a use of a value that par-
ticipates in the reduction, it invalidates the reduction for the
corresponding element of A. The uses can be obtained by
following the def-use chain within the scope of the loop.
However, based on the dead reference elimination principle
described in Section 3.1, only references that are not dead
will be processed (marked). In Fig. 7a, statement S4 passes
the value of A(K(i)) to the local variable t, which in turn
passes it to A(L(i)) in S5. The same value is also passed to
the shared variable B(f(i)) in S6. Both uses (in S5 and S6)
should, in principle, invalidate Anx(K(i)). On the other hand,

Fig. 6. The code generated for the do loop in (a) is shown in (c). In (c),
the procedure in (b) is called. The markredux operations are as
described in Fig. 5.

Fig. 7. The code generated for the do loop in (a) is shown in (b). The
markredux operations are as described in Fig. 5.
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statement S5 is another potential reduction of the same
type as in S3 and, thus, only the use in S6 invalidates
Anx(K(i)). The transformed code is shown in Fig. 7b.

We note that if one of the intermediate variables is itself
an array element addressed indirectly, then an additional
run-time test must be performed. For example, if S1 and S3
in Fig. 7a were of the form: S1: X(N(i)) = A(K(i)) and S3:
A(R(i)) = X(P(i)) + y, then an additional test would be
needed to check if N(i) = P(i), i.e., if a value is passed form
S1 to S3. However, if the array X is privatizable, and occurs
only in these two statements, then this additional run-time
test is not necessary, i.e., if N(i) = P(i), then the marking of
the read of A(K(i)) will be performed when X(P(i)) is used
in S3.

Taking control flow into account. The final situation we
consider is when the forward substitution procedure must
take into account conditional branches and carry informa-
tion into the ERS (see Fig. 8). The additional difficulty pre-
sented by this case is the fact that the exact form of the RHS
is not known statically. What is known, however, is the set
of all possible RHS forms, which can be computed by fol-
lowing all potential paths in the control flow graph. A di-
rect approach uses a gated static single assignment (GSSA) [6],
[41] representation of the program. In such a representation,
scalar variables are assigned only once. At the points of
confluence of conditional branches a φ function of the form
φ(B, X1, X2) is used (in the GSSA representation) to select
one of the two possible definitions of a variable (X1 or X2),
depending on the Boolean expression B. By proceeding
backwards through the def-use chains (which include the
φ functions) it is easy to expand a scalar variable in terms
of Boolean expressions, other scalar variables, and array

elements. In the example of Fig. 8, the variable w in state-
ment S9 would be expanded as follows:

w ⇒
⇒ φ(B3, t, A(M(i)))
⇒ φ(B3, φ(B2, z, A(J(i)), A(M(i))))
⇒ φ(B3, φ(B2,φ(B1, A(K(i))), A(L(i)), A(J(i)), A(M(i))))

which means that the value of w is:

w

A K i B B B

A L i B B B

A J i B B

B

=
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0 52 7 0 5
0 52 7 0 5
0 52 7 0 5

if is true
if is true
if is true

A M i if is true

3 2 1
3 2 1
3 2

3

1( )

This compound equation can then be used to generate a
markread and a markredux operation at statement S9
where w is read. To save unnecessary work, we only ex-
pand those scalars that are on the RHS of assignments to
shared variables or in potential reduction statements (e.g.,
in the case of z in statement S8). All other scalar references
can be safely ignored. Fig. 8b shows the program in Fig. 8a
after the insertion of the markread and markredux opera-
tions, which are based on the expansion of the scalar vari-
ables. The possible drawback of this approach is that the
number of potential reductions and the number of terms in
the logic expressions generated may be quite large. If this
happens, we can gracefully degrade to a more conservative
approach: Test only some of the expressions of the ERS and
invalidate all the rest.

It is important to note that the loop in Fig. 8 exempli-
fies the type of loop found in the SPICE2G6 program
(subroutine LOAD) which can account for 70 percent of

Fig. 8. The code generated for the do loop in (a) is shown in (b). The markredux operations are as described in Fig. 5. The expressions in the
markread and markredux operations are abbreviations of if then else statements representing the different assignments to z (S8)
and w (S9) as in (1). The operators “*,” “+,” and “not” represent logical “and,” “or,” and “complement” operators, respectively.
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the sequential execution time (Its vectorization has been
dealt with before in [42]).

Finally, we mention that reductions such as min, max,
etc., would first have to be syntactically pattern matched,
and then substituted by the min and max functions. From
this perspective, they are more difficult to recognize than
simpler arithmetic reductions. However, after this trans-
formation, our techniques can be applied as described
above.

3.3 Complexity of the LRPD Test
The time required by the LRPD test is T(n, s, a, p) = O(s +
na/p + log p), where p is the number of processors, n is the
total iteration count of the loop, s is the number of elements
in the shared array(s), and a is the (maximum) number of
accesses to the shared array in a single iteration of the loop.
We assume that the implementation of the test uses private
shadow structures, that all accesses to the shared array(s)
are tested, and that each processor is assigned O(n/p) itera-
tions. The analysis below is valid for all variants of the
LRPD test. As mentioned later, the implementation of
shadow structures with hash tables can reduce the com-
plexity of the LRPD test to O(na/p + log p).

The marking phase (Step 1) takes O (na/p + s + log p)
time. We record the read and write accesses and the reduc-
tion and privatization flags in private shadow arrays using
iteration number “marks.” In order to check whether for a
read of an element there is a write in the same iteration, we
simply check that element in the shadow array—a constant
time operation. All accesses can be processed in O(na/p)
time, since each processor will be responsible for O(na/p)
accesses. After all accesses have been marked in private
storage, the private shadow arrays can be merged into the
global shadow arrays in O(s + log p) time; the log p contri-
bution arises from the possible write conflicts in global
storage that could be resolved using software or hardware
combining. The counting in Step 2a can be done in parallel
by giving each processor s/p values to add within its pri-
vate memory, and then summing the p resulting values in
global storage, which takes O(s/p + log p) time [21]. The
comparisons in Step 2b (2d) of Aw with Ar (with Anp and
Anx) take O(s/p + log p) time.

If the loop passes the test, then the final result of each re-
duction must be computed (unless the reduction was paral-
lelized using critical sections) and last value assignments must
be performed for the live private variables. If the reduction
operation is parallelized using critical sections, then no over-
head is added, i.e., the original sequential reduction operation
and its transformed parallel version require the same number
of operations (within a small constant factor). However, if the
reduction is parallelized using recursive doubling, then an
overhead O(s + log p) is incurred when the processors’ partial
results are merged pair-wise into the scalar reduction results.
Similarly, the private variables with the latest time stamps (it-
eration number “marks”) can be selected for last value as-
signment in time O(s + log p).

Hash tables. If s @ na/p, then the number of operations
in the LRPD test does not scale since each processor must
always inspect every element of its private shadow struc-
ture when transferring it to the global shadow structure

(even though each processor is responsible for fewer ac-
cesses as the number of processors increases). Another re-
lated issue is that the resource consumption (memory)
would not scale. However, if “shadow” hash tables are
used, then each processor will only have private shadow
copies of the array elements accessed in iterations assigned
to it, which will increase the cost per access by a small constant
factor. Thus, if hash tables of size O(na/p) are used, then the
complexity of the marking phase becomes O(na/p + log p).
Similarly, using hash tables the analysis phase and any needed
last value assignments and/or processor-wise reduction op-
erations can be performed in time O(na/p + log p).

4 PUTTING IT ALL TOGETHER

In the previous sections, we described run-time techniques
that can be used for the speculative parallelization of loops.
These techniques are automatable and a good compiler
could easily insert them in the original code. In this section,
we give a brief outline of how a compiler might proceed
when presented with a do loop whose access pattern cannot
be statically determined. In Fig. 2, we present a global view
of how the run-time parallelization technology interacts
with the compilation and execution system. Fig. 9 shows
how the run-time system can be integrated into an adaptive
feedback loop. We further present a few general optimiza-
tion strategies.

4.1 At Compile Time
1)�A cost/benefit analysis is performed using both static

analysis (based on the asymptotic complexity of the
LPRD test given below) and run-time collected statistics
to determine whether the loop should be:

Fig. 9. Adaptive framework.
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a)�Speculatively executed in parallel using the LRPD
test,

b)�First tested for full parallelism, and then executed
appropriately (using an inspector/executor version
of the LRPD Test), or

c)�Executed sequentially.

2)�Generate the code needed for the speculative parallel
execution. A parallel version of the original loop is
augmented with the markread (which includes the
marking of the np flag), markwrite, and markredux
operations for the LRPD test; if necessary to identify
reduction variables, the loop is also augmented as de-
scribed in Section 3.2.2. In addition, code is generated
for: the analysis phase of the LRPD Test, the potential
sequential reexecution of the loop, and any necessary
checkpointing/restoration of program variables.

4.2 At Run-Time
1)�Checkpoint if necessary, i.e., save the state of program

variables.
2)�Execute the parallel version of the loop, which in-

cludes the marking phase of the test.
3)�Execute the analysis phase of the test, which gives the

pass/fail result of the test.
4)�If the test passed, then compute the final results of all

reduction operations (from the processors’ partial re-
sults) and copy-out the values of any live private vari-
ables. If the test failed, then restore the values of any
altered program variables and execute the sequential
version of the loop.

5)�Collect statistics for use in future runs, and/or for
schedule reuse in this run.

4.2.1 Determining When to Apply the Test
Although it is not strictly necessary for the compiler to per-
form any cost/performance analysis, the overall usefulness
of the tests will be enhanced if their run-time overhead is
avoided when the test is likely to fail. There are three main
factors that the compiler should consider when deciding
whether or not to apply the test: the probability that the test
will pass (i.e., that the loop is in fact a doall), the speedup
that would be obtained if the test passes, and the slowdown
incurred if the loop is not a doall.

In order to predict the outcome of the test, the compiler
should use both static analysis and run-time statistics. As
shown in Fig. 9, the compiler and run-time system form a
feedback loop. Statistical information about parallelism is
collected at run-time (after every run-time test) and used
at different levels of the adaptive system. Based on the
outcome of the previous n instantiations of a loop, the
system can decide (through compiler generated code exe-
cution) to either continue to speculate that the loop is par-
allel or execute sequentially. The same information can be
stored in a file at the end of the program, processed fur-
ther, and read-in during the next run of the program.
Moreover, it can be used as input to any recompilation.
For example, if a loop is never found to be parallel a re-
compilation will generate only sequential code for it. In
addition, user directives about the parallelism of the loop
might prove useful.

In the remainder of this section, we give an approximate
estimate of the potential speedup and slowdown for run-
time parallelization using the LRPD test. While a more ac-
curate analysis could prove very useful in predicting actual
speedups, our analysis is only intended to be used by a
compiler when deciding whether the application of the
LRPD test can be potentially profitable. Given a fully par-
allel loop L, the ideal speedup, Spid, is the ratio between its
sequential and its parallel execution times, Tseq and Tdoall,
respectively. However, when L is parallelized using the do-
all test, the attainable speedup, Sp, must account for the
overhead required by the marking and analysis phases of
the test, Tmark and Tanalysis, respectively.

            Sp
T
Tid

seq

doall
=

Sp
T

T T T
seq

mark analysis doall
= + +

Using static analysis, the compiler can compute an esti-
mate for Sp by estimating Tseq, Tdoall, Tmark, and Tanalysis. The
values Tseq and Tdoall can be estimated using some archi-
tectural model, e.g., instruction counting. Our analysis in
Section 3.3 predicts that Tmark = Tanalysis = O(na/p + log p),
where p is the number of processors, n is the number of
iterations of the loop, and a is the maximum number of
accesses to the shared array in a single iteration of the
loop. In practice, Tanalysis should be fairly well-modeled by
this expression, i.e., Tanalysis < c(na/p + log p), where c is
some small constant. However, the estimate of Tmark may
not always be as good. The reason for this is that our
analysis implicitly assumed that the data access pattern is
known before loop entry. As discussed above, in the worst
case Tmark < Tdoall, i.e., the inspector loop is computation-
ally equivalent to the original loop. However, in all cases,
an estimate of Tmark can be obtained by static analysis of
the inspector loop. It is important to note that the instruc-
tions added for marking the references under test are al-
most independent of the activity of the loop itself. Thus,
marking introduces an almost independent thread of exe-
cution that can be executed concurrently with the loop
and which can be exploited by multiple issue microproc-
essors. The net result may be a significant reduction of the
impact of reference marking on the overall execution time
of the speculative loop.

Note that in the worst possible case Tmark < Tanalysis < Tdoall,
and even then the attainable speedup predicted for the do-
all test is ≈ 1

3 Spid . Although 33 percent of ideal speedup
may not appear impressive on an eight processor machine,
these tests were designed for massively parallel processors
(MPPs), and on such a machine this in an excellent per-
formance when compared to the alternative of sequential
execution.

It is also instructive to examine the slowdown incurred by
a failed test, i.e., when the loop must be executed sequen-

tially. In this case, Tseq is increased by Tmark + Tanalysis. Note
that since the doall test is fully parallel, in the worst case
we have T T Tmark analysis p seq≈ ≈ 1 , i.e., when the marking
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phase is work-equivalent to the loop. Thus, the cost of per-
forming a failed test is proportional to 1

p seqT :

T T T T p T p Tseq mark analysis seq seq seq+ + ≈ + = +
�
��

�
��

2
1

2
.

Therefore, unless it is known a priori with a high degree of
confidence that the loop is not parallel, the test should
probably be applied, i.e., the potential payoff is worth the
risk of slightly increasing the sequential execution time.

Based on the outcome of the cost/performance analysis,
the compiler determines whether the test should be per-
formed, and if it decides to use the test, it must also de-
cide how the test should be applied: using the inspec-
tor/executor paradigm (i.e., first test, and then execute) or
in a speculative manner (i.e., test and execute simultane-
ously, as described in Section 3). In practice, when Tmark ap-
proaches Tdoall, speculative use of the tests may be benefi-
cial. The overhead needed to save/restore state must also
be considered when deciding whether to use speculative
parallel execution.

4.2.2 Schedule Reuse
Thus far, we have assumed that a doall test is run each
time a loop is executed in order to determine if the loop is
parallel. However, if the loop is executed again, with the
same data access pattern, the first test can be reused, amor-
tizing the cost of the test over all invocations. This is a sim-
ple illustration of the schedule reuse technique, in which a
correct execution schedule is determined once and subse-
quently reused if all of the defining conditions remain in-
variant (see, e.g., Saltz et al. [37]). If it can be determined at
compile time that the data access pattern is invariant across
different executions of the same loop, then no additional com-
putation is required. Otherwise, some additional computation
must be included to check this condition, e.g., for subscripted

subscripts, the old and the new subscript arrays can be
compared. We remark that most programs are of a repeti-
tive nature and, thus, there exists the potential for schedule
reuse. A simple example in which schedule reuse could be
considered is for multiply nested loops. If possible, it is
generally best to parallelize the outer loop in the nesting.
However, if this is not possible, then it may be the case that
schedule reuse could be attempted when parallelizing the
inner loops.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained on
two modestly parallel machines with 8 (Alliant FX/80 [4])
and 14 processors (Alliant FX/2800 [5]) using a Fortran im-
plementation of our run-time library. The codes were
manually instrumented with calls to the run-time library.
However, we remark that our results scale with the number
of processors and the data size and thus can therefore be
extrapolated for massively parallel processors (MPPs).

We considered seven do loops from the PERFECT
Benchmarks [8] that could not be parallelized by any com-
piler available to us. Our results are summarized in Table 1.
We have applied the LRPD test in both speculative and in-
spector/executor mode (with the notable exception of
TRACK). For the speculative version we have augmented
the loop with marking code and calls to initializa-
tion/checkpointing and analysis routines before and, re-
spectively, after the loop. For the inspector/executor ex-
periments, we have extracted a parallel inspector loop, i.e., a
loop that only computes and traverses the original access
pattern without modifying the shared arrays. Because an
inspector is side effect free, no checkpointing was necessary.
We then applied the LRPD test to the parallel inspector
loop in the same manner as we have applied it in the
speculative version. If the test passed, the original loop was

TABLE 1
SUMMARY OF EXPERIMENTAL RESULTS

   All benchmarks are from the PERFECT Benchmark Suite.
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then executed in parallel (the executor), otherwise, it was
executed sequentially.

For both experiments, a serial version of the loop is pro-
vided for the case when the LRPD test fails. For each loop,
we note the type of test applied: doall indicates cross-
iteration dependences were checked (Lazy Doall (LD) test),
privat indicates privatization was checked (LPD test), reduct
indicates reduction parallelization was checked (LRD test).
For each method applied to a loop, we give the speedup that
was obtained and the potential slowdown that would have
been incurred if, after applying the method, the loop had to be
reexecuted sequentially. If the inspector/executor version of
the LRPD test was applied, the computation performed by
the inspector is shown in the table: The notation privatiza-
tion indicates the inspector verified that the shared array
was privatizable and then dynamically privatized the array
for the parallel execution, branch predicate and subscript array
mean that the inspector computed these values, and repli-
cates loop means that the inspector was work-equivalent to
the original loop.

In addition to the summary of results given in Table 1,
we show in Figs. 10 through 16 the speedup and the poten-
tial slowdown measured for each loop as a function of the
number of processors used. For reference, these graphs
show the ideal speedup, which was calculated using an
optimally parallelized (by hand) version of the loop. The
potential slowdown reported is the percentage of the exe-
cution time that would be paid as a penalty if the test had

failed and the loop was then executed sequentially. In cases
where extraction of a reduced inspector loop was impractical
because of complex control flow and/or interprocedural
problems, we only applied the speculative methods. Note
that the reported slowdowns are a worst case scenario in
which a dependence is found at the end of the analysis
phase and not earlier during the parallel speculative execu-
tion of the loop (in practice, as soon as a dependence is
found, speculative execution is halted).

Whenever necessary in the speculative executions, we
performed a simple preventive backup of the variables po-
tentially written in the loop. In some cases, the cost of sav-
ing/restoring might be significantly reduced by using an-
other strategy. In order for our methods to scale with the
number of processors, the shadow arrays must be distrib-
uted over the processor space, rather than replicated on
each processor (Section 3.3). For this purpose, we tried us-
ing hash tables. Since we had at most 14 processors, the
extra cost of the hash accesses dominated the benefit of re-
ducing the size of the shadow arrays. This was particularly
true for the loops from the SPICE and TRFD Benchmarks.
For these reasons the best results (which are reported here)
were obtained using shadow arrays. However, on a larger
machine we would expect the use of hash tables to generate
more scalable speedups than those shown here.

The graphs show that in most cases the speedups scale
with the number of processors and are a very significant
percentage of the ideal speedup. When they do not scale, as

Fig. 10.

Fig. 11.
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mentioned above, we believe that the use of hash tables (for
MPPs) will preserve the scalability of our methods. We note
that with the exception of the TRFD loop (Fig. 12), the
speculative strategy gives superior speedups versus the
inspector/executor method. For both methods the potential
slowdown is small, and decreases as the number of proces-
sors increases. As expected, the potential slowdown is
smaller for the inspector/executor method.

We now make a few remarks about individual loops for
which Table 1 does not give complete information.

The loop from TRACK is parallel for only 90 percent of its
invocations. In the cases when the test failed, we restored

state, and reexecuted the loop sequentially. The speedup
reported includes both the parallel and sequential instan-
tiations (Fig. 13).

Loop 40 from SPICE is representative of the type of the
loop contained in the LOAD subroutine, which accounts for
70 percent of the sequential execution time. Since all the
arrays are equivalenced to a global work array, all accesses
in the loop were shadowed in the LRD test, i.e., each array
element was proven to be either a reduction variable, read-
only, or independent (i.e., accessed in only one iteration).
For this loop, we used an inspector/executor version of the
LRD test (instead of a speculative parallelization) because

Fig. 12.

Fig. 13.

Fig. 14.
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of complex memory management problems for the shadow
arrays in the presence of highly irregular and sparse access
patterns. The ideal speedup of loop 40 is not very large
since the loop is small, imbalanced between iterations, and
traverses a linked list. The linked list traversal was paral-
lelized using techniques we developed for automatically
parallelizing while loops [33]. Thus, although the obtained
speedup is modest, it represents a significant fraction of the
ideal speedup (see Fig. 16). Therefore, since loop 40 is one
of the smallest loops in the LOAD subroutine, we expect to
obtain better speedups on the larger loops (since they have
larger ideal speedups).

The speedups obtained for the loops from both OCEAN
and TRFD are modest because they are kernels. In the case
of the loop from TRFD, we were able to reuse the schedule
and improve our results significantly. Because of the large
data set accessed, the loop from TRFD is the only case in
which speculative execution proved to be inferior to the
inspector/executor method (saving state was a significant
portion of the execution time).

6 PREVIOUS RUN-TIME TECHNIQUES FOR
PARALLELIZING LOOPS

As mentioned in Section 1, there has been some work on
developing techniques for the run-time analysis and sched-
uling of loops with cross-iteration dependences. Note that
this is a more general problem than the one studied in this

paper since the construction of a valid parallel execution
schedule requires finding and analyzing all cross-iteration
dependences in the loop, whereas we have been concerned
with simply detecting the presence of any dependences that
prohibit parallelization. Therefore, these techniques are
necessarily more complex than the PD test and, in almost
all cases, use global synchronization primitives, make con-
servative assumptions regarding cross-iteration depen-
dences, have significant sequential components, and/or do
not find an optimal parallel execution schedule for the it-
erations of the loop. Most of these schemes partition the set
of iterations into subsets called stages so that the iterations
in each stage can be executed in parallel, i.e., there are no
data dependences between iterations in a stage. Stages
formed by a regular pattern of iterations are named wave-
fronts. They are executed sequentially by placing a syn-
chronization barrier between each pair of consecutive
wavefronts.

One of the first run-time methods for scheduling par-
tially parallel loops was proposed by Zhu and Yew [49]. It
computes the stages one after the other in successive phases.
In a phase, an iteration is added to the current stage if it is
the lowest iteration (not assigned to a previous stage) that
accesses (reads or writes) any of the data (variables) used in
that iteration, i.e., none of the data accessed in that iteration
is accessed by any lower unassigned iteration. In each phase,
the lowest unassigned iteration to access any variable (e.g.,
array element) is found using atomic compare-and-swap

Fig. 15.

Fig. 16.
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synchronization primitives to record the minimum such
iteration in a shadow version of that variable. By using
separate shadow variables to process the read and write
operations, Midkiff and Padua [27] improved this basic
method so that concurrent reads from a memory location
are allowed in multiple iterations. Recently, Chen et al. [13]
proposed another variant of the Zhu and Yew method
which improves performance in the presence of hot-spots
(i.e., many accesses to the same memory location) by first
doing some of the computation in private storage. Xu and
Chaudhary [46], [45] improve upon [13] by not serializing
on multiple reads to the same location. All of the above
mentioned methods construct maximal stages in the sense
that each iteration is placed in the earliest possible stage,
giving a minimal depth schedule, i.e., a minimal number of
stages.

Polychronopoulos [30] gives a method that assigns it-
erations to stages in a different way: Each wavefront con-
sists of a maximal set of contiguous iterations which con-
tain no cross-iteration dependences. It is easy to see that
this method may not yield a minimum depth schedule.
Like the method of Zhu and Yew and its variants, this
method uses shadow versions of the variables to detect
possible dependences. The wavefronts can be constructed
sequentially by inspecting all the shared variable accesses,
or in parallel with the aid of critical sections. Note that since
all computations are performed at run-time, it is important
for them to be efficiently parallelizable.

Krothapalli and Sadayappan [18] proposed a run-time
scheme for removing anti (write-after-read) and output
(write-after-write) dependences from loops. These types of
dependences are also known as memory-related dependences
because they arise from the reuse of storage and are not
essential to the computation, as are flow (read-after-write)
dependences, which express a fundamental relationship
about data flow in the program. Their scheme includes a
parallel preprocessing phase which uses critical sections as
in the method of Zhu and Yew, to determine the number
and types of accesses to each memory location. Next, for
each memory location they build a flow graph, allocate any
additional storage needed to remove the anti- and output
dependences, and explicitly construct the mapping between
all the memory accesses in the loop and the storage (both
old and new). Then, the loop is executed in parallel using
synchronization (locks) to enforce the flow dependences.
This scheme relies heavily on synchronization, inserts an
additional level of indirection into all memory accesses, and
calls for dynamic shared memory allocation.

The problem of analyzing and scheduling loops at run-
time has been studied extensively by Saltz et al. [9], [35],
[36], [37], [44]. In most of these methods, the original source
loop is transformed into an inspector, which performs some
run-time data dependence analysis and constructs a (pre-
liminary) schedule, and an executor, which performs the
scheduled work. The original source loop is assumed to have
no output dependences. In [37], the inspector constructs stages
that respect the flow dependences by performing a sequen-
tial topological sort of the accesses in the loop. The executor
enforces any anti dependences by using old and new ver-
sions of each variable. Note that the anti dependences can

only be handled in this way because the original loop does
not have any output dependences, i.e., each variable is
written at most once in the loop. The inspector computation
(the topological sort) can be parallelized somewhat using
the DOACROSS parallelization technique of Saltz and Mir-
chandaney [35], in which processors are assigned iterations
in a wrapped manner, and busy-waits are used to ensure
that values have been produced before they are used
(again, this is only possible if the original loop has no out-
put dependences).

Recently, Leung and Zahorjan [22] have proposed some
other methods of parallelizing the inspector of Saltz et al.
These techniques are also restricted to loops with no output
dependences. In sectioning, each processor computes an
optimal parallel schedule for a contiguous set of iterations,
and then the stages are concatenated together in the appro-
priate order. Thus, sectioning will usually produce a sub-
optimal schedule since a new synchronization barrier is
introduced into the schedule for each processor. In boot-
strapping, the inspector of Saltz et al. (i.e., the sequential
topological sort) is parallelized using the sectioning
method. Although bootstrapping might not optimally par-
allelize the inspector (due to the synchronization barriers
introduced for each processor), it will produce the same
minimum depth schedule as the sequential inspector of
Saltz et al.

In summary, the previous run-time methods for paralleliz-
ing loops rely heavily on global synchronizations (communi-
cation) [13], [18], [22], [27], [30], [35], [37], [49], are applicable
only to restricted types of loops [22], [35], [37], have significant
sequential components [30], [35], [37], and/or do not extract
the maximum available parallelism (they make conservative
assumptions) [13], [22], [30], [35], [37], [49].

A high level comparison of the various methods is given
in Table 2.

7 RELATED WORK

7.1 Race Detection for Parallel Program Debugging
A significant amount of work has been invested in the research
of hazards (race conditions) and access anomalies for debug-
ging parallel programs. Generally, access anomaly detection
techniques seek to identify the point in the parallel execution
at which the access anomaly occurred. In [3], [16], the authors
discuss methods that statically analyze the source program
and methods that analyze an execution trace of the program.
Since not all anomalies can be detected statically, and execu-
tion traces can require prohibitive amounts of memory, run-
time access anomaly detection methods that minimize memory
requirements are desirable [38], [14], [28]. In fact, a run-time
anomaly detection method proposed by Snir, and optimized
by Schonberg [38] and later by Nudler and Rudolph [28], bears
similarities to a simplified version of the LRPD test presented
in Section 3 (i.e., a version without privatization). In essence,
all nodes in an arbitrary concurrency graph (a DAG) with
nested forks and joins is labeled in such a way as to uniquely
reflect the possibility of a race condition, i.e., concurrent read
and/or write accesses to a shared variable. At execution time
the race detection mechanism maintains an access history of
the shared locations and is checked “on the fly” for an illegal
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reference sequence, i.e., a race condition. However, Schon-
berg’s method requires a large amount of storage for recording
the access history, i.e., O(T) for each monitored variable,
where T is the number of dynamically concurrent threads.
Viewed in the framework of the LRPD test, a separate
shadow array for each iteration in a loop must be main-
tained. In 1991, Mellor-Crummey [25] improved this tech-
nique by dramatically reducing the memory requirements;
the maximum access history storage is O(N), where N is the
maximum level fork-join nesting. Since, in current systems
at most two levels of parallelism are supported, this mem-
ory overhead seems quite manageable, making the tech-
nique more attractive to race detection. The execution time
overhead is still very high, because every reference moni-
tored has to be logged and checked against the access his-
tory in a critical section. In [26], an order of magnitude in-
crease in execution time of instrumented codes is reported
for experiments on a sequential machine. Even after re-
ducing the shadowed references through compile time
analysis, the time expansion factor remains around 5. The
need for critical sections for the parallel execution of this
experiment would only add to the run-time overhead of
this technique. While the method may not be suitable for
performance-oriented parallelization of doall loops, it is a
clever technique for debugging arbitrary fork-join parallel-
ism constructs.

7.2 Optimistic Execution
A concept related to the speculative approach described in
this paper is virtual time, first introduced in [17] and defined
as a “... paradigm for organizing and synchronizing dis-
tributed systems.... [It] provides a flexible abstraction of real
time in much the same way that virtual memory provides
an abstraction of real memory. It is implemented using the
Time Warp mechanism, a synchronization protocol distin-
guished by its reliance on look-ahead rollback, and by its
implementation of rollback via antimessages.” The granu-

larity and overhead associated with this method seem to
make it more applicable to problems such as discrete event
simulation and database concurrency control rather than
loop parallelization. In fact, this concept has been applied
in database design.

8 CONCLUSION

In this paper, we have approached the problem of paral-
lelizing statically intractable loops at run-time from a new
perspective—instead of determining a valid parallel execu-
tion schedule for the loop, we speculate that the loop is
fully parallelizable, a frequent occurrence in real programs.
We proposed efficient, scalable run-time techniques for
verifying the correctness of a speculative parallel execution,
i.e., methods for checking that there were in fact no cross-
iteration dependences in the loop. From our previous expe-
rience with static analysis and parallelization of Fortran
programs, we have found that the two transformations
most effective in removing data dependences are privatiza-
tion and reduction parallelization. Thus, our new run-time
techniques for checking the validity of speculative applica-
tions of these transformations increases our chance of ex-
tracting a significant fraction of the available parallelism in
even the most complex program. The methods in this paper
employ a dependence analysis based on the actual ex-
change (definition or use) of values rather than on the
memory references themselves. This approach leads to the
exploitation of more parallelism than was previously possi-
bly, e.g., our general method for reduction recognition that
does not rely on syntactic pattern matching.

Our experimental results show that the concept of run-
time data dependence checking is a useful solution for
loops that cannot be analyzed sufficiently by a compiler.
Both speculative and inspector/executor strategies have
been shown to be viable alternatives for even modestly
parallel machines like the Alliant FX/80 and 2800. We

TABLE 2
A COMPARISON OF RUN-TIME PARALLELIZATION TECHNIQUES FOR do LOOPS

In the table entries, P and R show that the method identities privatizable and reduction variables, respectively. The superscripts have the following mean-
ings: 1) the method serializes all read accesses, 2) the performance of the method can degrade significantly in the presence of hotspots, 3) the scheduler/executor
is a doacross loop (iterations are started in a wrapped manner) and busy waits are used to enforce certain data dependences, 4) the inspector loop sequentially
traverses the access pattern, 5) the method is only applicable to loops without any output dependences (i.e., each memory location is written at most once), 6) the
method only identifies fully parallel loops.
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would like to emphasize that our methods are applicable to
all loops, without any restrictions on their data or control
flow.

We believe that the significance of the methods presented
here will only increase with the advent of massively parallel
processors (MPPs) for which the penalty of not parallelizing
a loop could be a massive performance degradation. As we
have shown, our run-time tests are efficient and scalable, and
thus if the target machine has many (hundreds) processors,
then the cost of our techniques will become a very small
fraction of the sequential execution time. In other words,
speculating that the loop is fully parallel has the potential to
offer large gains in performance (speedup), while at the same
time risking only small losses. To bias the results even more
in our favor, the decision on when to apply the methods
should make use of run-time collected information about the
fully parallel/not parallel nature of the loop. In addition,
specialized hardware features could greatly reduce the over-
head introduced by the methods [47].

Finally, we believe that the true importance of this work
is that it breaks the barrier at which automatic paralleliza-
tion had stopped: regular, well-behaved programs. We
think that the use of aggressive, dynamic techniques can
extract most of the available parallelism from even the most
complex programs, making parallel computing attractive.
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