
Superblock Formation Using Static Program Analysis

Richard E. Hank Scott A. Mahlke Roger A. Bringmann John C. Gyllenhaal Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Abstract

Compile-time code transformations which expose

instruction-level parallelism (ILP) typically take into

account the constraints imposed by all execution sce-

narios in the program. However, there are addi-

tional opportunities to increase ILP along some ex-

ecution sequences if the constraints from alternative

execution sequences can be ignored. Traditionally,

pro�le information has been used to identify impor-

tant execution sequences for aggressive compiler op-

timization and scheduling. This paper presents a

set of static program analysis heuristics used in the

IMPACT compiler to identify execution sequences for

aggressive optimization. We show that the static pro-

gram analysis heuristics identify execution sequences

without hazardous conditions that tend to prohibit

compiler optimizations. As a result, the static program

analysis approach often achieves optimization results

comparable to pro�le information in spite of its in-

ferior branch prediction accuracies. This observation

makes a strong case for using static program analysis

with or without pro�le information to facilitate aggres-

sive compiler optimization and scheduling.

Index terms: superblock, superscalar, VLIW, opti-
mization, code scheduling, static program analysis

1 Introduction

Compilers for superscalar and VLIW processors uti-
lize information about the direction of conditional
branches for advanced optimization and scheduling
techniques. Examples of these techniques include
trace scheduling [1], superblock optimization, and su-
perblock scheduling [2]. The fundamental principle
behind these techniques is to identify frequent execu-
tion sequences. Optimization and scheduling are then
applied to the frequent execution sequences ignoring

constraints associated with the alternative execution
sequences. In this manner, more e�cient schedules
are realized for those frequently executed code se-
quences. Techniques using conditional branch direc-
tion information have been shown e�ective at increas-
ing ILP, which is necessary to fully utilize superscalar
and VLIW processor resources [1] [2].

Pro�ling is an e�ective means to provide the com-
piler with branch direction information. Pro�ling is
the process of selecting a set of inputs for a program,
executing the program with these inputs, and record-
ing its run-time behavior. This information is used by
the compiler during subsequent recompilation of the
program to determine the most frequent direction of
each branch. The bene�t of pro�le information is its
accuracy in predicting branch direction [3] [4]. How-
ever, there are several disadvantages to pro�ling. First
the process of compilation, pro�ling, and recompila-
tion is extremely time consuming. Second, pro�ling
may not be applicable in all environments, such as
embedded systems where gathering the pro�le data is
usually not feasible. Finally, branch prediction data
is limited to sections of the program exercised by the
chosen input sets.

Through the use of pro�le information, it has been
determined that branches typically go in one direction
most of the time [4]. If that direction can be deter-
mined with reasonable accuracy without pro�ling, the
compiler techniques utilizing this information can still
provide the same bene�t. An alternate approach to
pro�le-based branch prediction is to use static analysis
of the program code structure [5] [6] [7] [8]. The com-
piler applies heuristics to determine the most likely
path of each branch. Using static program analysis for
branch prediction has several advantages over pro�le-
based branch prediction. The �rst is speed; there is
no need to pro�le the program and then recompile.
Also, static analysis is feasible in all environments be-
cause run-time information is not required. Finally,

static analysis is independent of the input sets, allow-
ing 100% coverage of all branches. The primary dis-
advantage of static analysis based branch prediction
is that it is less accurate than pro�le-based branch
prediction.

The goal of the paper is twofold. First, we show
that hazard-less paths selected by static analysis tend
to be frequently executed. Thus, the bene�ts of ag-
gressive optimization based on static analysis tend to
approximate the bene�ts achieved with pro�le infor-
mation. This will be demonstrated via superblock for-
mation and superblock optimizations. Second, this
paper points out that branch prediction accuracy is
not necessarily the most meaningful metric for code
optimizations that use branch direction information.
The heuristics used in static program analysis tend to
avoid hazardous conditions such as subroutine calls in
the paths identi�ed for aggressive optimization. As a
result, the static program analysis may actually enable
comparable or better optimization results in spite of
its inferior prediction accuracy. This observation not
only sheds new light on the value of static program
analysis in the absence of pro�le information, it also
argues for using the static program analysis in the
presence of pro�le information. 1

The next section motivates superblock formation
using static branch analysis. Section 3 describes the
static heuristics used for path selection. Section 4 de-
scribes the static analysis based superblock formation
algorithm. Section 5 presents the performance results
of static analysis. Concluding remarks are given in
Section 6.

2 Motivating Superblock For-

mation Using Static Branch

Analysis

The purpose of code optimization and scheduling is
to minimize execution time while preserving program
semantics. When this is done globally, some optimiza-
tion and scheduling decisions may decrease the execu-
tion time for one control path while increasing the time
for another path. By making these decisions in favor
of the more pro�table path, an overall performance
improvement can be achieved. The superblock is the
means by which the IMPACT compiler makes opti-
mization and scheduling decisions in this manner [2].

1Due to space limitations, the use of static program analysis

in the presence of pro�le information is beyond the scope of

this paper. A comprehensive treatment of the subject merits a

separate paper of its own.

B

100

A

1

C
70

D
30

E

100

E’
30

A

1

C
70

B

100

E

70

D
30

a) b)

Figure 1: Superblock formation: a) trace selection, b)
tail duplication.

A superblock is a block of instructions in which
control may only enter at the top but may leave at
one or more exit points. When the execution stream
enters a superblock, it is likely that all basic blocks
in that superblock will be executed. Superblock for-
mation takes place in two steps. Traces, or sets of
basic blocks which tend to execute in sequence [1], are
�rst identi�ed in a program using execution pro�le in-
formation [9]. Tail duplication is then performed to
eliminate any side entrances to the trace [10].

The example shown in Figure 1a) illustrates the for-
mation of superblocks using pro�le information. The
execution frequencies of each block are as shown in
the �gure. Each conditional branch is predicted to
take the path of highest execution frequency. For ex-
ample, the conditional branch terminating block B is
predicted to branch to block C. Thus the a trace is
formed from blocks B, C, and D. Now, to complete
the superblock formation process, tail duplication is
performed on block E to eliminate the side entrance
into the trace. The blocks D and E' may now also be
combined to form a superblock; see Figure 1b).

The formation of superblocks allows optimization
along one execution path while ignoring the con-
straints from alternative execution paths. Consider
the example in Figure 2a). A load of a global vari-
able has been added to block B and a hazard 2 has

2A hazard is an instruction or set of instructions that inhibit

optimization and scheduling. A more rigorous de�nition will be

A

1

C
70

D 30

E

100

E’
30

A 1

C
70

B

100

E

70

st r2,m[?]

B 100
ld r1,m[label]

ld r1,m[label]

a) b)

D 30
st r2,m[?]

Figure 2: Pro�le information selects hazard free path
a) superblock formation, b) optimization.

been placed in block D. In this case, the hazard is an
ambiguous store, i.e. a memory store whose address
is not known at compile time. Consider a loop con-
taining a load instruction and an ambiguous store, the
load cannot be optimized out of the loop since it is un-
clear whether the load and the store access the same
memory location. The ambiguous store poses a simi-
lar problem for scheduling, since the load instruction
may not be speculated above the store in an attempt
to improve the schedule.

Using the same superblocks formed in Figure 1b)
and applying superblock loop invariant code re-
moval [11], the load may be removed from the su-
perblock loop BCE and placed in the loop preheader
A, see Figure 2b). In this example, the superblock
generated (BCE) with pro�le information avoids the
hazard and allows further optimizations to be prof-
itable. Thus, the pro�le information corresponds to
the most pro�table path for optimization.

Now, lets assume the weights for blocks C and D

are interchanged as shown in Figure 3a). The pro�le
information results in the formation of the superblock
BDE. Unfortunately, since this superblock includes
the ambiguous store, the load instruction cannot be
optimized out of the loop; see Figure 3b). The use
of pro�le information has led to the formation of a
superblock that does not permit the loop invariant
optimization allowed in the previous example. As this

given in Section 3

A

1

C
30

D 70

E

100

E’
30

C
30

E

70

st r2,m[?]

B 100
ld r1,m[label] ld r1,m[label]

D 70
st r2,m[?]

a) b)

B 100

A

1

Figure 3: Pro�le information selects path with hazard:
a) superblock formation, b) optimization.

example shows, accurate branch prediction does not
always lead to better optimization and scheduling op-
portunities.

This leads us to consider a set of static branch
analysis heuristics that avoid including hazardous in-
structions within superblocks while at the same time
eliminating the overhead of pro�ling from the compi-
lation process. Figure 4a) shows the superblock BCE
formed using static analysis. The static heuristics pre-
fer the path fromB toC since it avoids the ambiguous
store. As a result, the more pro�table path is able to
be optimized which results in more e�cient code 30%
of the time. This loop will execute more e�ciently
than the loop in Figure 3b) despite the less accurate
branch prediction. Figures 3 and 4 demonstrate that
by excluding these undesirable instructions from a su-
perblock, the improved opportunities for optimization
and scheduling may overcome the apparent lack of ac-
curacy in the static heuristics.

3 Static Analysis Heuristics

Traditionally, a static branch analyzer attempts to
determine the most likely direction of conditional
branches. The merit of the analyzer is measured by
computing the resulting branch prediction accuracy.
With compiler optimization and scheduling, the pri-
mary goal of the static branch analyzer is to maxi-
mize optimization and scheduling freedom. Therefore,

A

1

C
30

D 70

E

100

E’
70

A 1

C
30

B

100

E

30

st r2,m[?]

B 100
ld r1,m[label]

ld r1,m[label]

D 70
st r2,m[?]

a) b)

Figure 4: Static heuristics select less frequent hazard
free path: a) superblock formation, b) optimization.

the heuristics and the e�ectiveness measures of con-
ventional static branch analysis must be modi�ed for
compiler optimization and scheduling.

Conditional branches may be classi�ed in two ma-
jor categories, loop branches and non-loop branches.
A branch is a loop branch if either of its edges is a
loop back edge or a loop exit [12]. Prediction of loop
branches is straight forward; loop back edges are likely
and predicted taken, whereas loop exits are unlikely
and are predicted not taken. This corresponds with
the typical assumption of compilers that loops tend to
iterate many times. Few techniques attempt to go be-
yond loop back-edges to �nd additional optimization
and scheduling opportunities. Therefore, the predic-
tion of loop branches does not signi�cantly a�ect com-
piler optimization and scheduling.

Prediction of non-loop branches, on the other hand,
is a fundamental part of many global optimization
and scheduling techniques. For superblock techniques,
the predictions are utilized to form superblocks. Su-
perblock optimization and scheduling are restricted
when hazardous instructions are included within a su-
perblock. Therefore, the primary step of the static
branch analyzer is to select branch directions so as to
avoid hazards. The secondary step is to predict the
most likely direction of the remaining branches using
a set of path selection heuristics. In the remainder of
this section, the speci�c heuristics for hazard avoid-
ance and path selection are discussed.

3.1 Hazard Avoidance

A hazard is an instruction or group of instructions
whose side e�ects may not be completely determined
at compile time. Hazards force a compiler to make
conservative optimization and scheduling decisions in
order to ensure program correctness is maintained. As
a result, suboptimal code is often produced by the
compiler. Six classes of hazardous instructions have
been identi�ed:

1. I/O instructions

2. subroutine calls

3. synchronization instructions

4. ambiguous stores

5. subroutine returns

6. jumps with indirect target addresses

Classes one through four are instructions which
modify part of the program state that may not be pre-
cisely determined at compile time. These hazards typ-
ically act as a barrier when included in a superblock
since few instructions may be optimized or scheduled
across them. For example, a memory access cannot
be moved above or below a subroutine call without
detailed interprocedural analysis. Similarly, a store
whose address is not known at compile time (ambigu-
ous store) prevents all optimizations of memory in-
structions in which the ambiguous store lies in be-
tween.

Classes 5 and 6 represent a di�erent type of hazard
which must be avoided for e�ective compiler optimiza-
tion and scheduling. These hazards are instructions
for which likely succeeding instructions may not be
identi�ed. For subroutine returns, the return point
may be any of the static call sites of the function.
Also, optimizing across subroutine returns requires in-
terprocedural optimization and scheduling. Therefore,
a superblock is terminated when a subroutine return is
encountered. Similarly, a jump with indirect address
can go to any location whose label has been used as
data, so it is extremely di�cult to determine a likely
target with static analysis. Again, superblocks are
terminated when such a jump is encountered.

The static branch analyzer predicts conditional
branches so as to avoid optimization and scheduling
hazards. The heuristic utilized is stated as follows: If
a successor block contains a hazardous instruction or
unconditionally passes control to a block containing
a hazardous instruction and the successor block does
not post-dominate the branch, select the other path.

3.2 Path Selection

After all branches which may be predicted using haz-
ard avoidance heuristics are performed, path selection
heuristics are used to predict the remaining branches
which are not predicted. Path selection heuristics pre-
dict the direction of a conditional branch using the op-
code of the branch, its operands, and/or the contents
of the successor blocks. The heuristics are presented
from highest to lowest priority in determining the pre-
diction of the branch.
Pointer Heuristic. If the branch contains one

or more operands which are pointers, the following
heuristics are used: a pointer is not likely to be NULL
and two pointers are not likely to be equal [8]. The
branch direction satisfying these conditions is selected
as the likely target. This heuristic is made more e�ec-
tive by annotating conditional branch instructions in
the intermediate language of the compiler to indicate
pointer operands.
Loop Heuristic. A conditional branch which ei-

ther enters or avoids a loop is predicted to enter the
loop [8]. Since programs tend to spend a great deal of
time in loops, the intuitive prediction for a branch of
this type is to enter the loop.
Opcode Heuristic. Branch prediction using the

branch opcode has been frequently utilized by re-
searchers and designers [5] [6] [7]. By performing
an analysis of a set of benchmark programs for an
architecture, one can determine whether a particu-
lar branch opcode is usually taken or not taken. All
branches with the same opcode are then predicted us-
ing the direction indicated by the study. The major
problem with opcode based prediction is that the re-
sults tend to vary greatly between benchmarks.

A more limited heuristic is used in this study to re-
duce the variance in prediction accuracy among bench-
marks [8]. The following two opcode heuristics are
applied by our branch analyzer:

1. Negative numbers are unlikely.

2. Floating point comparisons are unlikely to be
equal.

The �rst heuristic predicts a branch target which
results when all branch operands are non-negative.
For example, a branch on condition a < 0 is predicted
as not taken since \a" must be negative for the branch
to be taken. This heuristic is applied for both integer
and
oating point comparisons. The second heuris-
tic extends predictability of
oating point branches
by predicting all equal comparisons as unlikely and all
not equal comparisons as likely.

1) bne r1,r2,label1 - Select fall thru (Guard Heuristic)
..

2) beq r1,r2,label2 - Select taken (Store Heuristic)
..

3) bne r1,r2,label3 - Select taken (Pointer Heuristic)

Figure 5: Set of branches with related operands before
correction.

1) bne r1,r2,label1 - taken
..

2) beq r1,r2,label2 - fall thru
..

3) bne r1,r2,label3 - taken

Figure 6: Set of branches with related operands after
correction.

Guard Heuristic. A branch which guards a use of
one of its source operands is predicted in the direction
which leads to the use [8]. The underlying assumption
behind this heuristic is that the guard is detecting ex-
ception conditions and the desired path will be the
one where the operand is used before being rede�ned.
Unfortunately on many of the cases where this heuris-
tic performs well, it is subsumed by the more accurate
pointer heuristic.

Branch Direction Heuristic. The �nal heuristic
applied by our branch analyzer selects the branch path
based on the direction of the taken path. Backward
branches are predicted taken and forward branches are
predicted not taken. The idea is that if the taken
path is backwards, then the branch is likely to be the
back edge of a loop and therefore likely taken. On the
other hand, if the taken path of the branch is forward
the branch is likely to fall through. This heuristic
is also used by several current architectures to per-
form dynamic branch prediction, namely the HP PA-
RISCTM [13] and the DEC AlphaTM [14]. The use-
fulness of this heuristic for static prediction is ques-
tionable. On one hand, if the branch is backwards
it is probably a loop back edge and will be predicted
taken if this is the case. On the other hand, predicting
forward branches as not taken, in our experience, per-
forms poorly on integer benchmarks, thus this heuris-
tic is used only if none of the previous heuristics apply.

Related Branches. After all path selection
heuristics are applied, the predicted direction of each
branch is made consistent with the predicted direc-
tions of any related branches. Branches are related if
they have the same operands. Given a set of related
branches, all branches are made consistent with the
strongest individual prediction.

trace formation()
f

perform loop detection
sort by loop nesting level
for each loop f

create breadth �rst list of loop blocks
for each unvisited block f

grow trace(block)
g

g
create breadth �rst list of function blocks
for each unvisited block

grow trace(block)
g

Figure 7: Trace formation algorithm.

The heuristic is illustrated with the example in Fig-
ure 5. The individual heuristic prediction of each of
these branches is as shown in the �gure. Branch 3)

has the strongest individual prediction, pointer heuris-
tic and the analyzer makes the assumption that r1 and
r2 are very unlikely to be equal. Thus the predictions
branches 1) and 2) are likely to be incorrect and are
corrected. The �nal predicted direction of each branch
is shown in Figure 6. The performance of this heuris-
tic is heavily dependent on the strongest individual
heuristic prediction in the group of related branches.

4 Static Analysis Based Su-

perblock Formation

Traditionally superblocks were formed by using pro�le
information to select a trace in both the forward and
backward direction from a particular basic block [9].
Without pro�le information the compiler no longer has
detailed information regarding the execution charac-
teristics of the function. The previous section dis-
cussed the static heuristic used to determine branch
paths. However, these heuristics only provide infor-
mation in the forward direction.

After the branch paths have been identi�ed, su-
perblock formation is performed. As discussed in Sec-
tion 2, superblock formation takes place in two steps:
trace formation and tail duplication. The trace for-
mation algorithm, shown in Figure 7, begins by per-
forming loop analysis to generate static instruction ex-
ecution frequencies. The loops are processed starting
from the innermost nesting level, the idea being that

grow trace(seed block)
f

trace = f seed block g
current block = seed block

while (1) f
mark current block visited
if current block contains indirect jump

break;
if current block contains subroutine return

break;
likely block = predicted target
if likely block visited

break;
/� loop back-edge �/
if likely block dominates current block

break;
trace = trace [likely block

current block = likely block

g
g

Figure 8: Trace growth algorithm.

we want to form traces in the most frequently exe-
cuted portions of the code �rst. The header of the
loop is chosen as a seed and a trace is grown using the
algorithm shown in Figure 8. The trace growing algo-
rithm adds the most desirable destination block of the
branch as indicated by the static analysis heuristics.
Blocks are added to the trace until one of the next
four situations arise:

� The current block contains an indirect jump.

� The current block contains a subroutine return.

� The next block has already been visited.

� The next block dominates the current block and
therefore is a loop back-edge.

When growth of a trace is terminated, another seed
block is chosen from a breadth �rst list of the loop
blocks. The process continues until each basic block
within the loop belongs to a trace. After traces have
been formed within each loop the process continues
with the remaining unvisited blocks in the function in
breadth �rst order. Once the traces within the pro-
gram have been identi�ed, IMPACT's standard tail
duplication algorithm is used to form the superblocks.

Benchmark Benchmark Description

cccp GNU C preprocessor

cmp compare �les
compress compress �les

eqn format math formulas for tro�

eqntott boolean equation minimization
espresso truth table minimization

grep string search

lex lexical analyzer generator
li lisp interpreter

qsort quick sort

tbl format tables for tro�
sc spreadsheet

wc word count

yacc parser generator

Table 1: Benchmarks.

5 Experimental Evaluation

In this section the e�ectiveness of superblock for-
mation using static analysis methods is evaluated.
Two important issues are shown. First, hazard-
less paths selected by static analysis tend to be fre-
quently executed. Second, branch prediction accuracy
does not necessarily correspond to optimization qual-
ity and that it is possible for static analysis based
superblock formation to achieve comparable perfor-
mance to pro�le-based support block formation, even
with the presence of less accurate branch prediction.

5.1 Methodology

The branch analyzer has been implemented within the
IMPACT-I C compiler. The IMPACT-I compiler is a
prototype optimizing compiler designed to generate ef-
�cient code for VLIW and superscalar processors [15].
The benchmarks used in this study consist of the 14
non-numeric programs in Table 1. The programs con-
sist of 5 non-numeric programs from the SPECint92
suite and 9 other commonly used non-numeric pro-
grams.

The processor model used in this study is an in-
order issue superscalar with register interlocking. The
processor is assumed to have uniform function units,
64 integer and 64
oating-point registers, and 1 branch
delay slot. The instruction set is based on the instruc-
tion set of the HP PA-RISC processor, and the instruc-
tion latencies assumed are those of the HP PA-RISC
7100 (see Table 2). For each machine con�guration,
the program execution times, assuming an ideal cache,
are derived from execution driven simulations of the
benchmarks in Table 1. For the experiments, the issue
rate of the processor is varied from 1 to 8 and the base

Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2
memory store 1 FP divide(SGL) 8

branch 1 / 1 slot FP divide(DBL) 15

Table 2: Instruction latencies.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Benchmark

St
atic

 hit
 ra

tio/
 pr

ofile
 hit
 ra

te

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c
c

c
p

c
m

p

co
m

p
re

ss e
q

n

eq
nt

ot
t

es
sp

re
ss

o

gr
ep lex

li

qs
or

t sc tb
l

w
c

y
a

c
c

Figure 9: Branch Prediction Accuracy

for all speedup calculations is the result of basic block
scheduling on a single issue processor.

5.2 Results

5.2.1 Prediction Accuracy

The performance of the static analysis based branch
heuristics discussed in Section 3 are shown in Fig-
ure 9. The results in Figure 9 are shown as a per-
centage of pro�le-based prediction hit rate for all con-
ditional branches, both loop and non-loop branches.
This is calculated by summing the number of times
each branch takes the path predicted by our analyzer
divided by the sum of the number of times each branch
takes the path predicted by the pro�le information.
A ratio of one does not imply perfect branch predic-
tion, it indicates that our branch analyzer selected
the same direction that the pro�le-based predictor se-
lected for every branch. Overall, our branch analyzer
agrees with pro�le-based branch predication approxi-
mately 86% of the time. This illustrates that hazard
free paths tend to correspond to the paths selected by
pro�le information.

5.2.2 Superblock Performance

The performance of static analysis based and pro�le-
based superblock formation and optimizations for a

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Benchmark

S
p

e
e

d
u

p

0

1

2

3

4

5

6

7

8

c
c

c
p

c
m

p

co
m

p
re

ss

e
q

n

eq
nt

ot
t

es
pr

es
so

gr
ep lex

li

qs
or

t sc tb
l

w
c

y
a

c
c

Basic Block

Static

AAAA
AAAA
AAAA

Profile

Figure 10: 2-issue speedup for basic block scheduling,
static analysis based superblock formation, and pro�le
based superblock formation

2-issue processor is compared in Figure 10. Static
analysis based superblock formation and optimiza-
tions achieve comparable performance to pro�le-based
methods for most benchmarks. This con�rms the con-
clusion made in Section 5.2.1 that hazard free paths
tend to be frequently executed.

The benchmarks compress, eqntott, and qsort

actually performed better than their pro�le-based
counterparts. Choosing hazard free paths to form su-
perblocks exposes more optimization and scheduling
opportunities than simply selecting the most likely
paths. The behavior is illustrated in Figures 3 and 4 in
Section 2. The bene�ts of hazard avoidance are clearly
visible for these benchmarks due to the high e�ective-
ness of the path selection heuristics (94% accuracy
compared with pro�le). For other benchmarks, the
bene�ts of chosing hazard free paths were overshad-
owed by the poor performance of the path selection
heuristics compared with the pro�le-based method.
This is clearly visible in the benchmark cmp due to
the two frequently executed branches that were mis-
predicted by the path selection heuristics. These mis-
predicted branches negated any possible bene�ts of the
hazard avoidance heuristics. This motivates the use of
hazard avoidance heuristics in concert with pro�le in-
formation for path selection.

Figure 11 compares the performance of a 4-issue
processor. As in the 2-issue case, static program anal-
ysis has comparable performance to the pro�le based
method. Notice, that eqntott and compress still
out perform pro�le-based methods. Also, the perfor-
mance di�erence for cmp between static analysis and
pro�le-based is widening. One �nal note, several of
the benchmarks achieve super-linear speedup over the
base processor in the 2-issue and 4-issue case. This
occurs because the base processor only executes tra-

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Benchmark

S
p

e
e

d
u

p

0

1

2

3

4

5

6

7

8

c
c

c
p

c
m

p

co
m

p
re

ss

e
q

n

eq
nt

ot
t

es
pr

es
so

gr
ep lex

li

qs
or

t sc tb
l

w
c

y
a

c
c

Basic Block

Static

AAAA
AAAA
AAAA

Profile

Figure 11: 4-issue speedup for basic block scheduling,
static analysis based superblock formation, and pro�le
based superblock formation

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Benchmark

S
p

e
e

d
u

p

0

1

2

3

4

5

6

7

8

c
c

c
p

c
m

p

co
m

p
re

ss

e
q

n

eq
nt

ot
t

es
pr

es
so

gr
ep lex

li

qs
or

t sc tb
l

w
c

y
a

c
c

Basic Block

Static

AAA
AAA
AAA

Profile

Figure 12: 8-issue speedup for basic block scheduling,
static analysis based superblock formation, and pro�le
based superblock formation

ditionally optimized code.

The performance comparison for 8-issue is shown
in Figure 12. Pro�le-based superblock formation now
has a much larger advantage over the static analysis
based approach for cmp, grep, lex, and wc. This in-
dicates that either better static analysis based branch
prediction heuristics are needed or that pro�le infor-
mation is necessary to adequately take advantage of
the large number of available resources in an 8-issue
machine.

6 Concluding Remarks

We have implemented a set of static program analy-
sis heuristics within the IMPACT compiler to deter-
mine important execution sequences in the absence of
pro�le information. These heuristics try to avoid haz-
ardous conditions such as subroutine calls in the paths
identi�ed for aggressive optimizations. We have shown
that static program analysis heuristics can facilitate

optimizations and scheduling to achieve results com-
parable to pro�ling. Also, we point out that branch
prediction accuracy is not necessarily the most mean-
ingful metric of branch handling for the compiler op-
timizer.

Currently, we are conducting detailed performance
studies to further understand and improve the static
analysis heuristics. In the future, we would like to
investigate tradeo�s involved in combining pro�le in-
formation with static program analysis. Furthermore,
we would like to study the e�ectiveness of static pro-
gram heuristics in the context of predicated compila-
tion where many of the hard to predict branches can
be eliminated through predicated execution.

Acknowledgements

The authors would like to thank all members of the
IMPACT research group for their comments and sug-
gestions. This research has been supported by the
National Science Foundation (NSF) under grant MIP-
9308013, Joint Services Engineering Programs (JSEP)
under Contract N00014-90-J-1270, Intel Corporation,
the AMD 29K Advanced Processor Development Divi-
sion, Hewlett-Packard, SUN Microsystems, NCR and
the National Aeronautics and Space Administration
(NASA) under Contract NASA NAG 1-613 in co-
operation with the Illinois Computer laboratory for
Aerospace Systems and Software (ICLASS).

References

[1] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Transac-

tions on Computers, vol. c-30, pp. 478{490, July
1981.

[2] W. W. Hwu et al., \The Superblock: An e�ec-
tive structure for VLIW and superscalar compi-
lation," Journal of Supercomputing, pp. 229{248,
July 1993.

[3] W. W. Hwu, T. M. Conte, and P. P. Chang,
\Comparing software and hardware schemes for
reducing the cost of branches," in Proceedings of

the 16th International Symposium on Computer

Architecture, pp. 224{233, May 1989.

[4] J. A. Fisher and S. M. Freudenberger, \Predicting
conditional branch directions from previous runs
of a program," in Proceedings of the 5rd Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems,
pp. 85{95, October 1992.

[5] J. E. Smith, \A study of branch prediction strate-
gies," in Proceedings of the 8th Annual Inter-

national Symposium on Computer Architecture,
pp. 135{148, May 1981.

[6] J. K. F. Lee and A. J. Smith, \Branch prediction
strategies and branch target bu�er design," IEEE
Computer, January 1984.

[7] S. Bandyopadhyay, V. S. Begwani, and R. B.
Murray, \Compiling for the CRISP microproces-
sor," in Proceedings of IEEE COMPCON 1987,
pp. 96{105, February 1987.

[8] T. Ball and J. R. Larus, \Branch prediction for
free," in Proceedings of the ACM SIGPLAN 1993

Conference on Programming Language Design

and Implementation, pp. 300{313, June 1993.

[9] P. P. Chang and W. W. Hwu, \Trace selection
for compiling large C application programs to mi-
crocode," in Proceedings of the 21st International

Workshop on Microprogramming and Microarchi-

tecture, pp. 188{198, November 1988.

[10] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Us-
ing pro�le information to assist classic code op-
timizations," Software Practice and Experience,
vol. 21, pp. 1301{1321, December 1991.

[11] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal,
W. W. Hwu, P. P. Chang, and T. Kiyohara,
\Compiler code transformations for superscalar-
based high-performance systems," in Proceedings

of Supercomputing '92, pp. 808{817, November
1992.

[12] A. Aho, R. Sethi, and J. Ullman, Compilers:

Principles, Techniques, and Tools. Reading, MA:
Addison-Wesley, 1988.

[13] Hewlett-Packard Co., PA-RISC 1.1 Architecture

and Instruction Set Reference Manual. Cuper-
tino, CA: Hewlett-Packard Co., 1990.

[14] Digital Equipment Corporation, Alpha Architec-

ture Handbook. Maynard, MA: Digital Equipment
Corporation, 1992.

[15] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter, and W. W. Hwu, \IMPACT: An archi-
tectural framework for multiple-instruction-issue
processors," in Proceedings of the 18th Inter-

national Symposium on Computer Architecture,
pp. 266{275, May 1991.

