
Manage OpenMP GPU Data
Environment Under Unified Address

Space

Lingda Li1(B), Hal Finkel2, Martin Kong1, and Barbara Chapman1

1 Brookhaven National Laboratory, Upton, USA
{lli,mkong,bchapman}@bnl.gov

2 Argonne National Laboratory, Lemont, USA
hfinkel@anl.gov

Abstract. OpenMP has supported the offload of computations to accel-
erators such as GPUs since version 4.0. A crucial aspect in OpenMP
offloading is to manage the accelerator data environment. Currently, this
has to be explicitly programmed by users, which is non-trival and often
results in suboptimal performance. The unified memory feature available
in recent GPU architectures introduces another option, implicit manage-
ment. However, our experiments show that it incurs several performance
issues, especially under GPU memory oversubscription. In this paper,
we propose a compiler and runtime collaborative approach to manage
OpenMP GPU data under unified memory. In our framework, the com-
piler performs data reuse analysis to assist runtime data management.
The runtime combines static and dynamic information to make optimized
data management decisions. We have implement the proposed technology
in the LLVM framework. The evaluation shows our method can achieve
significant performance improvement for OpenMP GPU offloading.

Keywords: Data management · Unified memory
OpenMP offloading · Compiler · Runtime · LLVM

1 Introduction

Today’s computing systems rely on accelerators to achieve performance and energy
efficiency goals. As the most popular accelerator nowadays, the massive thread-
ing ability of GPUs can especially benefit applications with large amounts of par-
allelism, such as scientific computing and machine learning. Therefore, GPU is
and will remain a crucial component of supercomputing systems in the foresee-
able future. For instance, in the next OLCF supercomputer, Summit, each node is
equipped with 6 NVIDIA Volta GPUs while the number of CPUs remains 2 [2].

In order to leverage accelerators like GPUs, OpenMP 4.0 introduced the
ability to offload computations to accelerators [3]. It is called device offloading.
Compared to native GPU programming models such as CUDA [15] and OpenCL
[19], using OpenMP for GPU programming has a shorter learning curve for users
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 69–81, 2018.
https://doi.org/10.1007/978-3-319-98521-3_5



70 L. Li et al.

and is more performance portable. Compared to other directive based methods
like OpenACC [1], OpenMP has a broader user community and better compiler
support. Therefore, we expect the number of OpenMP+GPU users will continue
to grow.

However, writing efficient GPU programs is still a non-trivial job with
OpenMP. One of the biggest challenges in GPU programming is how to effi-
ciently program GPU memory. Normally, CPU and GPU are attached with sep-
arate memory since they have different memory preferences. While CPU prefers
low access latency, GPU performance is more sensitive to memory bandwidth
compared with latency. Separate memory also helps reduce memory contention
caused by sharing. Traditionally, CPU and GPU use separate memory spaces for
their individual memory. As a result, they cannot access each other’s memory,
and data exchange has to be managed explicitly by programmers.

To ease the programming of GPU memory, a feature called unified mem-
ory (UM) is introduced in recent NVIDIA GPU architectures. Unified memory
introduces a single memory space which covers both CPU and GPU memory.
From programmers’ perspective, they do not need to worry about the location
of accessed data, and data is moved between CPU and GPU by the underlying
system software automatically if necessary. The burden of programming data
transfer is relieved.

The other major advantage of unified memory is that it enables running
kernels with memory footprints larger than the GPU memory capacity. Without
on demand page migration of unified memory, GPU offloading is possible only if
the dataset fits into the GPU memory. While with it, part of data can reside in
the CPU memory, and they will be fetched into the GPU memory when actually
required at runtime. These advantages promote more usage of unified memory
in future GPU programming.

Every story has two sides. As we will show, unified memory also brings many
challenges along with its benefits. First of all, page fault overhead can be signif-
icant in cases when data transfers dominate in the execution. More importantly,
although unified memory is able to address working sets that exceed the GPU
memory capacity, significant data thrashing often happens in such scenarios.
Programmers often have no clues about these issues. Therefore, we believe it is
crucial to address the performance issues of unified memory for OpenMP offload-
ing, and it would be preferable if the solution is transparent to programmers.

This paper makes the following contributions for this goal.

– First, we analyze the performance of unified memory. The results reveal that
its performance mainly depends on accessed data properties, including size,
access density and reuse situation (Sect. 3).

– We design a compiler-runtime collaborative framework to optimize unified
memory performance and implement it in Clang and LLVM OpenMP runtime
[12]. The proposed method analyzes data object properties to find out proper
optimization strategies, which are applied at runtime (Sect. 4).

– The experimental results demonstrate that our technique can improve unified
memory performance significantly while having low overhead (Sect. 5).



Manage OpenMP GPU Data Environment Under Unified Address Space 71

2 Related Work

Since the introduction of device offloading in OpenMP 4.0, several compilers have
adopted this feature. For instance, [5] describes how to implement this extension
in the LLVM framework. Our optimization uses this work as the baseline.

There are several proposals to simplify and optimize the GPU memory man-
agement. CGCM [10] provides compiler and runtime support to automatize the
GPU memory management for CUDA programs. Pai et al. propose a software
coherence mechanism to reduce redundant data transfers between the CPU and
GPU [17]. Zhao and Xie propose to leverage hybrid DRAM and NVM GPU
memory systems and a data migration mechanism to reduce GPU power con-
sumption [20]. These works aim at traditional GPU programs where data move-
ment is managed explicitly by users, and do not consider unified memory.

Some recent research aims to study or improve the performance of unified
memory. In the presence of heterogeneous memory, Agarwal et al. propose that
the ratio of data allocation in each memory should be proportional to the mem-
ory bandwidth in order to achieve the highest total bandwidth [4]. The method
we propose in this paper is orthogonal to this work.

Several research efforts have studied and optimized OpenMP device data
management. Grinberg et al. introduce a method to use unified memory within
the current OpenMP implementation [8]. Mishra et al. study the OpenMP
offloading performance under unified memory [14]. Cui et al. propose a pipeline
directive to break down OpenMP parallel loops and thus achieve device com-
putation and communication overlapping [7]. Hahnfeld et al. propose to use
existing OpenMP 4.5 directives for similar purposes [9]. Olivier et al. discuss
double buffering for Intel Xeon Phi processors in OpenMP [16]. These methods
are limited to cases where data access patterns are analyzable, and they also
require programming efforts. In contract, our work is able to address unpre-
dictable memory access pattern using unified memory, and does not require
inputs from users.

3 Unified Memory Analysis

As the first step, we compare the performance of unified memory with that of
traditional GPU memory management approach, and analyze how it performs in
different scenarios. Table 1 shows our benchmarks. We use the OpenMP offload-
ing version of BFS, CFD, and SRAD from the Rodinia benchmark suite in our
experiments [6,14]. For each benchmark, we generate inputs with various sizes
to study the performance impact of workload sizes. The detailed experimental
setup is described in Sect. 5.1. We modified the LLVM OpenMP runtime so that
it supports the placement of data in unified memory.

Figure 1 illustrates the GPU execution time when data is placed in unified
memory and transferred implicitly, versus when data is transferred by OpenMP
runtime explicitly. The x axis represents the working set size and y axis repre-
sents the execution time. The measured execution time captures both the GPU



72 L. Li et al.

Table 1. Benchmarks.

Name Domain Description

Breadth first search
(BFS)

Graph algorithms Breadth first search traverses all the
connected components in a graph

Computational fluid
dynamics solver
(CFD)

Fluid dynamics The CFD solver is an unstructured
grid finite volume solver for the
three-dimensional Euler equations for
compressible flow

Speckle reducing
anisotropic diffusion
(SRAD)

Image processing SRAD is a diffusion method for
ultrasonic and radar imaging
applications based on partial
differential equations (PDEs)

(a) BFS. (b) CFD. (c) SRAD.

Fig. 1. GPU performance under traditional approach and unified memory.

computation time and data transfer time between CPU and GPU. Note that
the y axis of BFS is on the logarithmic scale due to the dramatic performance
change in the presence of memory oversubscription. Our key observations are as
follows.

1. For working sets that fit into the GPU memory, unified memory
outperforms when less data is actually required at runtime. While tradi-
tional approach needs all data to be present in the GPU memory before computa-
tion starts, unified memory only transfers the actually accessed data at runtime
and thus may result in less data transfer. However, the data transfer bandwidth
is lower under unified memory, because it incurs extra address translation and
page fault processing overhead.

Here, we define the ratio of actually accessed data size and total data size as
access density. The lower the density is, the less data is transferred under unified
memory. When it is lower than a threshold (mostly depends on the hardware),
the benefit brought by less data transfer outweighs the lower bandwidth disad-
vantage of unified memory. Therefore, unified memory outperforms in such cases.
BFS belongs to this category. For other programs including CFD and SRAD,
traditional approach outperforms.

In summary, for data with high density, we would like to explicitly transfer all
data beforehand to reduce page fault overhead. Otherwise, we should let unified
memory fetch data on demand at runtime.



Manage OpenMP GPU Data Environment Under Unified Address Space 73

2. Unified memory suffers from poor performance for oversubscribing
workloads with data reuse. For working sets that are larger than the GPU
memory size, unified memory is able to work correctly while traditional approach
fails. Its performance is largely decided by data reuse for such workloads. When
large amount of data gets reused, it is likely that reused data will thrash between
CPU and GPU memory. While all 3 benchmarks exhibit various degree of data
thrashing behavior, BFS incurs the largest performance loss.

(a) BFS. (b) CFD. (c) SRAD.

Fig. 2. Data transfer volume under unified memory. H2D and D2H represent traffic
from CPU to GPU and that from GPU to CPU respectively.

Table 2. Unified memory performance summary and optimization strategies.

Data size Reuse Density Performance Optimization

≤GPU memory size \ High Slightly worse (page
fault overhead)

Explicit data copy

Low Better (less data
transfer)

None

>GPU memory size High \ Poor (data thrashing) Data pinning

Low Good None

GPU programs are more likely to suffer from data thrashing because of the
following reason. In the GPU execution paradigm, different threads usually per-
form similar operations on different data items to exploit its massive threading
and data parallel ability. As a result, a large volume of data gets accessed in a
single OpenMP target region (i.e., kernel) call, which fills up the GPU memory
and evicts old data out. Since data reuse usually happens across different GPU
kernel invocations, soon-to-be-reused data is not likely to survive in the GPU
memory under the default replacement algorithm, LRU [11,13,18].

Figure 2 shows the data transfer volume of both directions under different
workloads. For oversubscribing workloads, the dramatic traffic increment of both
directions demonstrates the existence of data thrashing. Data thrashing not only
adversely affects performance, but also wastes a lot energy on redundant data
transfer.



74 L. Li et al.

To avoid data thrashing, we propose to pin data in a certain memory to
prevent harmful data movement. The pinned location, GPU or CPU memory,
should be selected based on the overall locality of a data object. For instance,
data with good locality should be pinned to GPU, and data with poor locality
should be pinned to CPU instead.

3. Unified memory performs well for oversubscribing working sets with
little data reuse. If little data reuse exists, the performance of unified memory
does not show significant difference whether GPU memory is oversubscribed or
not. Since there is no reuse, all data is brought to the GPU memory once and
replacement decisions do not affect performance. On demand data fetching works
well in this case.

Conclusion. Table 2 summarizes the performance of unified memory and corre-
sponding optimization strategies in different scenarios. Data size, access density
and data reuse (i.e., locality) play important roles in the performance of uni-
fied memory. Later we will introduce how we identify different scenarios and
apply optimization strategies accordingly, in order to improve unified memory
performance.

4 Unified Memory Management

In this section, we propose a compiler-runtime combined framework to optimize
GPU unified memory management. The key idea of our framework is to ana-
lyze the properties of data objects in unified memory, and apply optimization
according to the analysis results for each object. The data analysis is performed
by both compiler and runtime in our framework, while the optimization is applied
by runtime. We will introduce each part separately in the rest of this section.

4.1 Static Analysis

The compiler identifies unified memory data objects and performs static analysis
on them. The proposed compiler analysis includes 3 stages: data allocation anal-
ysis, GPU data usage analysis, and data access frequency analysis. All analysis
is performed on the LLVM IR level. We briefly describe them as follows.

Data Allocation. As the first step, we identify all data objects in unified
memory space and record them. Such objects can be allocated through CUDA
APIs (e.g., cudaMallocManaged()), and OpenMP memory allocation APIs (e.g.,
omp target alloc()). Note that we modified the implementation of omp target
alloc() in the LLVM OpenMP runtime to support unified memory allocation.
The compiler employs a GPU object table (GOT) to keep records of detected
unified memory objects and their information obtained in the following steps.

GPU Usage. Then, we would like to find where these data objects are used
in GPU execution (i.e., which OpenMP offloading regions) for later analysis.
We implement a pass to check all usage of a unified memory object’s allocated



Manage OpenMP GPU Data Environment Under Unified Address Space 75

memory space. When a related address of the object is passed to an OpenMP
target launching function (e.g., tgt target()), we identify one instance of its
GPU usage and record this OpenMP target region in the corresponding GOT
entry.

Data Access Frequency. At last, we design a compile-time analysis pass to
help understand data access frequency within target regions, which will be used
to estimate data reuse and access density that is critical for unified memory
optimization as shown in Sect. 3. First, for a certain data object in GOT, we
would like to calculate the access frequency for every OpenMP target region
that uses it, namely local access frequency (LAF). The existing LLVM pass
BlockFrequencyInfo can help achieve this purpose. This pass takes the taken
probability of branch instructions as input, to derive the execution frequency
of every basic block. It achieves so with static information. Using the informa-
tion provided by BlockFrequencyInfo, we get the execution frequency of each
memory access instruction. Then we accumulate the frequency of all memory
instructions within a target region that relate to a data object to get its LAF.

We would also like to get the global access frequency (GAF) of each data
object, which represents the overall GPU access frequency across the whole pro-
gram. For this purpose, we implement an inter-function/module analysis pass
to build a global call graph that includes both CPU and GPU functions. In this
graph, we calculate the call frequency of each parent and child function pair,
using the results from BlockFrequencyInfo. Then we estimate the overall exe-
cution frequency of each GPU function by traversing all leaf nodes in the built
call graph. Combining the execution frequency and LAFs of all GPU functions,
the GAF of a unified memory object is calculated.

Data Reuse. Since the desired optimization only needs a relative not absolute
data reuse results, i.e., it is good enough to tell object A gets better reuse than
object B, the data reuse of a data object is derived from its GAF directly.
We rank all unified memory objects based on their GAFs, and use the ranking
number to represent the data reuse. Assuming object A has the highest GAF
and B has the lowest GAF, the ranking (i.e., data reuse) of A and B will be 1 and
n respectively, where n is the total number of objects. We modify the OpenMP
runtime interface, so that for every unified memory argument, both data reuse
and LAF information is passed to the OpenMP runtime on offloading. LAFs
will be used by the runtime to estimate access density as will be introduced in
Sect. 4.2.

Completely compiler-based data access analysis has the drawback of low
accuracy and non-awareness of dynamic execution pattern. The latter is critical
for GPU execution since a code fragment can be executed by millions to billions
of threads. For data reuse, a relative result is good enough and thus we use
static analysis results for simplicity. For data size and access density, we leave a
significant part of analysis to the runtime, as will be introduced in Sect. 4.2.

Overhead. The proposed analysis utilizes results from existing LLVM passes
and does not need to be performed recursively. Compared to dozens of default



76 L. Li et al.

analysis and optimization passes in Clang, its time overhead is negligible. In our
experiments, we do not observe notable compile time change when the proposed
analysis is enabled.

4.2 Runtime Analysis

Our runtime analysis utilizes runtime information to help the compiler finalize
data analysis results. Particularly, data size and access density are estimated
combining both runtime and compile-time information.

Data Size. The size of data objects depends on input in many cases and thus it
is natural for runtime to get this information. In the OpenMP offloading runtime
interface, the size of arguments is passed along with arguments themselves, and
it is thus free for runtime to get data size. One problem is the existing data
size is measured in bytes, while we would also like the number of elements for
the access density estimation introduced below. Luckily the element size can be
easily obtained by the compiler through type checking, and we pass it to the
runtime so that the number of elements can be computed by dividing the total
size by the element size.

Access Density. Density is calculated as the actual accessed element number
divided by total element number. We already discussed how to get the total
element number. The difficult part is how to estimate the number of actually
accessed elements.

Fortunately, the regular code structure of OpenMP target regions makes a
simple solution to calculate the number of accessed elements possible. In the
common scenario which covers more than 90% of offloading regions, an outer
for loop contains all work of an offloading region. Its iterations are distributed
across all GPU threads. The loop body is usually short and has simple control
flow. In such scenarios, the accessed element number in a single iteration is easy
to estimate thanks to the simple loop body. The total accessed number mainly
depends on how many iterations are executed.

We design a compiler-runtime combined scheme to compute total accessed
element number and thus access density. The runtime is responsible to obtain
the number of outer loop iterations, while the compiler estimates the number
of accessed elements in a single iteration, using LAF. If we assume memory
accesses distribute evenly across different elements in a data object, which is
quite reasonable for GPU, the number of accessed elements in a loop body is
equal to its LAF. By multiplying LAF and loop iteration number together at
runtime, we get an estimation of the total accessed element number in a object.
Then the access density can be computed as min(accessed element number/total
element number, 100%).

Discussion. The limitation of our density estimation method is that it assumes
a unified access distribution and does not distinguish elements within a data
object. For instance, if a small fraction of elements receive all data accesses in
an object, the access density estimated using the proposed method will be larger
than the actual value.



Manage OpenMP GPU Data Environment Under Unified Address Space 77

In order to get more accurate analysis results, methods such as profiling and
instrumentation can potentially be used. However, unlike our proposed method
which puts little burden on compiler and runtime, these methods suffer from
significant compiling/runtime overhead and often need help from programmers.
Applying them will also add significant complexity to the implementation. As
Sect. 5 will show, the proposed compiler-runtime combined analysis can already
achieve significant performance improvement.

4.3 Runtime Management

This subsection will describe how we manage unified memory objects based on
the above analysis results, namely data size, data reuse and access density. The
runtime makes two key decisions for each object: (1) where it should be mapped,
GPU or CPU memory, and (2) how it should be transferred if it is mapped to
GPU, explicitly or implicitly (i.e., data transfer is performed on demand). Table 2
has listed our optimization strategies.

Data Mapping. When encountering an OpenMP target call, the runtime will
follow these steps to map the arguments in unified memory before execution
starts. After all properties are collected (i.e., size, reuse and density) as described
earlier, all unified memory objects involved in this call are ranked based on their
reuse. Then we select the proper mapping strategy for each object using the
reuse order (from large to small), so that data with better locality has higher
priority to be mapped to the GPU memory. If there is enough space in the
GPU memory, the current object is mapped to the GPU memory. Otherwise, it
is mapped to that of CPU to prevent data thrashing. In this case, we use the
CUDA API cudaMemAdvise to pin data into the CPU memory.

Data Transfer. If an object is mapped to the GPU memory, we further decide
how it should be transferred based on its density. Objects with small density
(<0.6, an empirical number obtained based on experimental results) should be
transferred implicitly to reduce data transfer volume, otherwise explicit transfer
is used. For explicit transfer, a GPU memory object with the same size is allo-
cated using cudaMalloc for GPU usage, and data transfer primitive cudaMemcpy
is used to synchronize original and new copies. This is the default policy followed
by the current OpenMP implementation. In the case of implicit transfer, we sim-
ply pass the original object to GPU kernels, and let the unified memory driver
handle on demand data transfer during execution.

Book Keeping. To implement the method described above, several book keep-
ing needs to be done at runtime. To keep track of GPU memory, the runtime uses
two 64-bit counters for each GPU. They record the size of GPU memory objects
that are transferred explicitly and implicitly, respectively. We can calculate the
free GPU memory size with these two counters.

The proposed runtime also maintains a table to keep records of active data
objects in the GPU memory. For each object, it records the size, data reuse,
mapping place (GPU or CPU), and transfer mechanism (explicit or implicit).



78 L. Li et al.

Overhead. The proposed runtime is integrated seamlessly within the existing
LLVM OpenMP target offloading runtime. We do not introduce any expensive
operation into it. In our experiments, we find that there is virtually no difference
for the runtime execution time with or without our modification. Besides, all
performance results in Sect. 5 include the runtime overhead, if there is any.

5 Evaluation

5.1 Experimental Methodology

To evaluate the performance of our benchmarks, we use the OLCF SummitDev,
which is the prototype machine of Summit. Each SummitDev node is equipped
with 2 POWER8 CPUs and 4 Tesla P100 GPUs. They are connected through
NVLink 1.0, which provides up to 160 GB/s IO bandwidth per GPU. The Tesla
P100 GPU has 56 SMs and is equiped with 16 GB HBM2 memory. It supplies a
local memory bandwidth of 732 GB/s.

We use the up-to-date Clang [5] that supports OpenMP GPU offloading to
compile benchmarks. To enable offloading for NVIDIA GPUs, we pass the flag
-fopenmp-targets=nvptx64-nvidia-cuda along with -fopenmp to Clang. All
benchmarks are compiled under the O2 optimization level. The Linux kernel
version is 3.10.0 and the CUDA version is 9.0.69 on SummitDev.

(a) BFS.

(b) CFD. (c) SRAD.

Fig. 3. Performance of various schemes.



Manage OpenMP GPU Data Environment Under Unified Address Space 79

5.2 Performance Results

Figure 3 illustrates the GPU performance under unified memory (UM), tradi-
tional approach (w/o UM), and our compiler-runtime collaborative OpenMP
Target data Management framework (OTM). Again, note that the execution
time (y axis) of BFS is on the logarithmic scale. While OTM helps BFS and
SRAD achieve significant performance improvement, it fails to do so on some
CFD workloads. Detailed analysis is as follows.

BFS. BFS receives the most performance gain from our approach. Under fitting
workloads, OTM outperforms w/o UM by 113% on average and has similar
performance compared to UM. Under oversubscribing workloads, OTM achieves
a dramatic average speedup of 3.37× compared with UM.

There is a large amount of data reuse existing in BFS, because the same
vertex and neighbor vertices are likely to be accessed in multiple iterations.
However, the traversal happens in an irregular order, and thus it is difficult
to optimize its performance using traditional methods. With OTM, the data
structure that is used to store edges of each vertex, which is less frequently
accessed but has the largest size, is often pinned to the CPU memory. This
prevents it from thrashing other more important data in the GPU memory, so
that data locality can be exploited within the GPU memory.

Note that there is a performance drop for OTM at the workload of 20 GB.
This is because at this point, OTM decides to pin several small data objects
into the CPU memory instead of a larger one, due to the GPU memory capacity
limitation. As a result, having multiple objects in the CPU memory collectively
has a larger impact on performance. When the workload is larger, once again,
a large data object is pinned to the CPU memory. We will address this issue
by enabling finer grained data mapping control in the near future, to further
improve performance.

CFD. On average, OTM and UM has similar performance across all workloads.
On some workloads, OTM is outperformed by UM. The reason that OTM fails
to improve CFD performance, is that OTM currently does not handle complex
scenarios well. Compared with BFS and SRAD, CFD has more complex data
structures and control flow. Multiple target regions interleave with each other in
multiple ways, and different regions use different sets of data objects as well as
share some of them. Under some workloads, we find that for every target region,
OTM pins some of its data objects into the CPU memory, which slows down
all target region execution. The smarter choice here is to keep all data required
by some target regions in the GPU memory to accelerate their execution, while
have mixed data location for other kernels. We will develop technology to solve
this problem soon.

SRAD. OTM helps SRAD achieve an average speedup of 2.55× across all over-
subscribing workloads compared with UM. Since the data reuse in SRAD is
limited compared with that in BFS, the speedup of OTM is more moderate.

For smaller workloads, the performance of OTM is similar to that of UM
while lower than the traditional approach by 30.7% on average. By taking a



80 L. Li et al.

closer look, we find that OTM transfers some highly reused data objects using
unified memory’s on demand fetching, while they should be transferred explic-
itly. This is because loop nests exist in some target regions, which confuses the
proposed compiler analysis. More accurate analysis methods can be used to alle-
viate this problem. Luckily selecting the incorrect data transfer manner does not
impose a large performance penalty. The data mapping location has much more
significant performance impact, in which OTM makes optimized decisions for all
3 benchmarks.

In all benchmarks, the data transfer between CPU and GPU is reduced
significantly for large workloads under OTM. Since there are no existing tools
that can extract data transfer volume when data pinning is applied, we do not
compare the data transfer of different methods.

6 Conclusion

In this paper, we develop a compiler-runtime collaborative technology to improve
OpenMP GPU data management under unified memory. There are several future
directions worth exploring besides what we have mentioned in Sect. 5. First,
application experts may wish to provide data locality hints directly rather than
relying on compiler analysis. We plan to explore new OpenMP directives/clauses
for this purpose. Second, ideas presented in this paper are not limited to unified
memory but also applicable to more generic scenarios. We plan to further develop
our techniques to have a generic optimized OpenMP GPU data management
framework.

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

References

1. OpenACC. http://www.openacc.org
2. Summit. https://www.olcf.ornl.gov/summit
3. OpenMP 4.0 specifications (2013). http://www.openmp.org/wp-content/uploads/

OpenMP4.0.0.pdf
4. Agarwal, N., Nellans, D., Stephenson, M., O’Connor, M., Keckler, S.W.: Page

placement strategies for GPUs within heterogeneous memory systems. In: ASPLOS
2015, pp. 607–618. ACM, New York (2015)

5. Antao, S.F., et al.: Offloading support for OpenMP in Clang and LLVM. In: LLVM-
HPC 2016, pp. 1–11. IEEE Press, Piscataway (2016)

6. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization, IISWC 2009, pp.
44–54. IEEE (2009)

7. Cui, X., Scogland, T.R.W., de Supinski, B.R., Feng, W.C.: Directive-based parti-
tioning and pipelining for graphics processing units. In: 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 575–584, May 2017



Manage OpenMP GPU Data Environment Under Unified Address Space 81

8. Grinberg, L., Bertolli, C., Haque, R.: Hands on with OpenMP4.5 and unified mem-
ory: developing applications for IBM’s hybrid CPU + GPU systems (Part I). In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 3–16. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65578-9 1

9. Hahnfeld, J., Cramer, T., Klemm, M., Terboven, C., Müller, M.S.: A pattern for
overlapping communication and computation with OpenMP∗ target directives. In:
de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.)
IWOMP 2017. LNCS, vol. 10468, pp. 325–337. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65578-9 22

10. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. In: PLDI
2011, pp. 142–151. ACM, New York (2011)

11. Jaleel, A., Theobald, K.B., Steely, Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). In: ISCA 2010, pp. 60–
71. ACM, New York (2010)

12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, p. 75. IEEE Computer Society, Washington,
DC (2004)

13. Li, L., Tong, D., Xie, Z., Lu, J., Cheng, X.: Optimal bypass monitor for high
performance last-level caches. In: PACT 2012, pp. 315–324. ACM, New York (2012)

14. Mishra, A., Li, L., Kong, M., Finkel, H., Chapman, B.: Benchmarking and eval-
uating unified memory for OpenMP GPU offloading. In: LLVM-HPC 2017, pp.
6:1–6:10. ACM, New York (2017)

15. NVIDIA: Compute unified device architecture programming guide (2007)
16. Olivier, S.L., Hammond, S.D., Duran, A.: Double buffering for MCDRAM on sec-

ond generation Intel R© Xeon PhiTM processors with OpenMP. In: de Supinski,
B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP
2017. LNCS, vol. 10468, pp. 311–324. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65578-9 21

17. Pai, S., Govindarajan, R., Thazhuthaveetil, M.J.: Fast and efficient automatic
memory management for GPUs using compiler-assisted runtime coherence scheme.
In: PACT 2012, pp. 33–42. ACM, New York (2012)

18. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion
policies for high performance caching. In: ISCA 2007, pp. 381–391. ACM, New
York (2007)

19. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

20. Zhao, J., Xie, Y.: Optimizing bandwidth and power of graphics memory with
hybrid memory technologies and adaptive data migration. In: ICCAD 2012, pp.
81–87. ACM, New York (2012)


