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Abstract 
W e  present a path profile guided partial dead code 

elimination algorithm that uses predication to enable 
sinking for the rem,oval of decidness a1on.g frequently 
executed paths at the expense of adding additional 
instructions along infrequently executed paths. Our 
approach to  optim.ization is particularly suitable for 
VLICY architectures since it directs the efforts of the 
optim,izer towards aggressively enabling generation of 
fast schedules along frequently executed paths by reduc- 
ing their critical path lengths. The paper presents a 
cost-benefit data flow analysis that uses path pro- 
filing information to  determine the profitability of us- 
ing predication enabled sinkin.g. The cost of predi- 
cation enabled sinking of a statement past a merge 
point is determined by  identifying paths along which 
an additional statement is in.troduced. The benefit 
of predication enabled sinking is determined by  iden- 
tifying paths along which additional dead code elimi- 
nation is achieved due to predication. The results of 
this analysis are incorporated in  a code sinking fram.e- 
work in which predication enabled sinking is allowed 
past merge points only i f  its benefit is determ,ined to 
be greater than the cost. It is also demonstrated that 
trade-ofl can be performed between the compile time 
cost and the precision of cost-benefit analysis. 

1 Introduction 
Traditional approach to code optimization uni- 

formly spends its effort in optimizing all parts of a 
program. Researchers have now recognized that the 
optimization effort is best spent on frequently exe- 
cuted portions of a program that can be identified 
using profiling techniques. Compilers for VLIW archi- 
tectures use sophisticated global instruction schedul- 
ing techniques to generate fast schedules for frequently 
executed paths at the expense of slower schedules for 
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infrequently executed paths. Thus. it is also appro- 
priate for an optimizer for a VLIW architecture to 
aggressively optimize frequently executed paths even 
if their optimization results in introduction of addi- 
tional instructions along infrequently executed pat,hs. 
However, traditional formulations of code optimiza- 
tions are incapable of performing a trade-off between 
the quality of code along frequently and infrequently 
executed paths. In this paper we present an approach 
for optimization that is capable of performing such a 
trade-off. 

The opt,imization strategy that we have developed 
is demonstrated through a new algorithm for par- 
tial dead code elimination (PDE). PDE is an impor- 
tant, optimization for VLIW architectures since critical 
path lengths along frequently executed paths can be 
reduced through PDE [12, 7, 141. Through code sink- 
ing, that is, delaying the execution of a code statement 
to later program points, PDE optimization moves in- 
structions that are dead along critical paths off the 
critical paths [20, 231. Modern architectures [15, 131 
that support predicated execution provide an oppor- 
tunity for aggressively performing PDE since predica- 
tion enables code sinking that is otherwise not pos- 
sible. Furthermore, predication enabled code sinking 
may also introduce predicated versions of an instruc- 
tion along paths where the instruction was not previ- 
ously encountered. Thus, in order to  beneficially ex- 
ploit predication enabled code sinking for PDE, it is 
necessary to develop an approach for trade-off between 
quality of code along frequently and infrequently ex- 
ecuted paths. Existing techniques for PDE [3, 201 do 
not take advantage of predication in performing PDE. 

In a study that we carried out it was found that 
for the SPEC95 integer benchmarks 65% of the func- 
tions that were executed had no more than 5 paths 
with non-zero execution frequency and no function 
had more than 1000 paths with non-zero execution fre- 
quency while the number of static paths through the 
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\6& 6 x = . .  I x = . .  8 

1-2-4-6- 10 
1-2-4-5-7-9- 10 
1-2-4-5-8-9-10 
1-3-4-6-10 
1-3-4-5-7-9-10 
1-3.4-5-8-9-10 50 

I 

Cost[2: x=a*b] = (100+90)*T[x=a*b] = 190*T[x=a*b] 

Benefit[2: x=a*b] = SO*T[p?x=a*b]= 50 

(C) 

Figure 1: Predication Enabled Code Sinking. 

benchmarks were in the millions. Since traditional ap- 
proaches to  PDE remove dead code along some paths 
without adding additional instructions along any path 
[3, 201, they are essentially based on the assumption 
that all paths through the program are equally im- 
portant. However, our approach which can trade-off 
the quality of code generated for infrequently executed 
paths for obtaining better code for frequently executed 
paths is based upon the realistic scenario encountered 
in practice. There are two types of profiling that can 
be used for identifying frequently and infrequently ex- 
ecuted paths. Edge profiling gives the number of times 
each edge in t8he program flow graph is traversed and 
path profiling gives the number of times various acyclic 
paths in a program are traversed. In [a] it is shown 
that different path profiles can give rise to the same 
edge profiles. Thus, it is not possible to accurately 
identify frequently executed paths using edge profiles. 
Furthermore, Ball and Larus [a] have shown that path 
Drofile information can be collected efficiently. There- 

2-4-5-7-9-10. The elimination of partial deadness of 
the statement requires the sinking of statement past 
the merge point at  node 4. Existing code sinking al- 
gorithms will not achieve PDE in this case as they 
are unable to sink the statement past node 4 because 
doing so would block any definitions of 2 that reach 
node 4 via node 3. As shown in Figure lb, the sinking 
of the statement past node 4 and down to node 8 can 
be achieved by predicating the statement. While the 
above sinking eliminates dead code along the paths 1- 
2-4-6-10 and 1-2-4-5-7-9-10, it also introduces an addi- 
tional instruction along path 1-3-4-5-8-9-10. Since the 
sum of the execution frequencies of paths 1-2-4-6-10 
and 1-2-4-5-7-9-10 (i.e., 100+90=190) is greater than 
the execution frequency of path 1-3-4-5-8-9-10 (i.e., 
50), the overall savings will result from predication 
enabled sinking. Thus, an optimizer should exploit 
path profiling information to  reduce dead code along 
frequently executed paths even if doing so introduces 
some additional instructions along infrequently exe- 
cuted paths. For a predication model in which an in- 
struction is aborted if the predicate is false, although, 
an additional instruction is executed along path 1-3-4- 
5-8-9-10, its execution will require a single cycle since 
the predicate will evaluate to  false along this path and 
the multiply operation will not be executed. On the 
other hand along the paths that benefit, a multiply op- 
eration has been removed which typically takes several 
cycles for execution. The above optimization also re- 
quires that the result of evaluating predicate p in  node 
1 must be saved till node 8. In an architecture such as 
PlayDoh, the predicates are stored in special predicate 
registers [15]. 

The approach we present first performs data flow 
analysis for computing the cost and benefit of sinking 
a statement past each relevant merge point. An exten- 
sion of a code sinking algorithm by Knoop et al. [20] 
that incorporates predication is presented next. This 
modified framework uses the cost-benefit information 
to enable sinking of a partially dead statement past 
merge points where the benefit has been found to be 
greater than the cost. In previous work by Fang [6] 
the use of predication during sinking was also pro- 
posed. However, the algorithms described in [e] apply 
to single-entry-single-exit acyclic regions and no cost- 
benefit analysis to  guide predication is presented. 

fore in this paper we rely on path profiling informa- 
tion. 

The example in Figure l a  illustrates our approach. 
In t,his example the statement at  node 2 (x = a * b) is 
partially dead since the value of a: computed by this 
statement is not used along paths 1-2-4-6-10 and 1- 

In section 2 we present our PDE algorithm in detail. 
In section 2.1 data flow analysis for computing cost- 
benefit information for acyclic graphs is discussed and 
its extensions for loops are presented. We also show 
how to trade-off the cornplexity of performing cost- 
benefit analysis with the precision of the analysis. In 
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section 2.2 we describe a predication based sinking 
framework and section 2.3 we describe the insertion 
of predicate evaluations required for predication. We 
conclude by discussing additional applications of this 
approach in section 3. 

2 Predication based PDE 
The overview of our approach is given in Figure 2. 

In this approach we first identify statements that ap- 
pear along frequently executed paths. These state- 
menk are the target of PDE optimization. By lim- 
it,ing the optimization to these statements, we reduce 
the overall run-time cost of optimization. Next the 
cost and benefit of sinking each frequently executed 
statement past various merge points in the program 
are identified. A code sinking framework that uses 
this cost-benefit information and is capable of pred- 
ication based sinking past merge points is then used 
to perform PDE. Finally predicates required by the 
statements to which predication based code sinking 
has been applied are inserted. 

Step 1: Using path profiling information 
from the set of program paths P ,  identify 
the frequently executed paths F P ;  and 
of all the statements S ,  consider frequently 
executed statements E S  as those that 
appear along paths in F P .  
for each statement s E F S  { 

for each merge point m to which s can sink { 
For predication based sinking of s enabled at ~n 

estimate Benefit s’s PDE to paths in F P  and 
estimate Cost of s’s PDE to all paths P .  

if Benefit>Cost { enable sinking of s at  m } 
else { disable sinking of s at m }}}  

to statements in F S .  

required for statements in F S .  

Figure 2: Algorithm Overview. 

Step 2: Apply predication based PDE 

Step 3: Introduce predicate evaluations 

During cost-benefit analysis only the frequently ex- 
ecuted paths are accurately analyzed since these are 
the ones of most concern. By considering only these 
paths the run-time cost of cost-benefit analysis is re- 
duced. The benefit we compute is the benefit o€ ap- 
plying PDE to a statement that it experienced by fre- 
quently executed paths. Thus, it is an underestimate 
of the true benefit, On the other hand the cost of 
applying PDE is accurately computed for frequently 
executed paths and overestimated for the remaining 
paths. Thus, the cost is an overestimate of the true 

cost. 

2.1 Cost-Benefit Analysis 
Predication is a technique that allows sinking of 

statements past merge points in situations where the 
statement is not available for sinking a t  the merge 
point along all paths leading to  the merge point. The 
execution of the statement following its sinking past 
the merge point is predicated to ensure that it does not 
overwrite values of the lhs-variable in situations where 
control reaches the merge point along paths where dif- 
ferent, definitions of the Ihs-variable are available. We 
first discuss the cost-benefit analysis for acyclic graphs 
which consider all paths in the flow graph and later 
we present the extensions for handling programs with 
loops and performing cost-benefit analysis by limiting 
it to frequently executed paths. 

The algorithms in this paper use the control flow 
graph representation of the program. Similar to the 
assumptions made by Knoop et al. in [20], we also as- 
sume that each node in the control flow graph contains 
a single statement and nodes have been introduced 
along critical edges to allow code placement along the 
critical edges. However, t,his algorithm can be easily 
extended to apply to basic blocks. 

To perform cost-benefit analysis for the sinking of 
a statement s past a merge point n,  we must cate- 
gorize the program subpaths that either originate or 
terminate at  n. 

The subpaths from the start of the flow graph to  
the merge point n are divided into two categories with 
respect to the statement s: 

Available subpaths which are program subpaths from 
the start node to n along which s is encountered 
and s is sinkable to n along the subpath; and 

Unavailable subpaths which are program subpaths 
from start node to n along which s is not avail- 
able for sinking at n. These subpaths include 
those along which either s is not encountered or 
although s is encountered, it is not sinkable to  n. 
The sinking of s to n can be blocked by a state- 
ment that is data (ant8i, output or flow) dependent 
on s. 

Program subpaths from n to the end of the program 
are also divided into two categories with respect to the 
statement s: 

Remouable subpaths which are subpaths from n to the 
end node along which value computed by state- 
ment s is not live at n and it is possible to elimi- 
nate the deadness of s along the path by sinking 
s and pushing it off the subpath; and 
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Unremovable subpaths which are program subpaths 
from n to the end node along which either the 
value computed by s is not dead or its deadness 
cannot be eliminated because sinking of s nec- 
essary to  push s off the subpath is blocked by 
another statement. 

The paths which benefit from the sinking of s past 
the merge point n are the paths along which dead 
code is removed (i.e., those paths prior to optimization 
along which the statement s is executed but the value 
computed by s is never used) and the dead code would 
not have been removed without sinking s past merge 
point n. These paths can be obtained by concatenat- 
ing available subpaths at  n with removable subpaths 
at  n. The total benefit of predication enabled sinking 
of s past the merge point n is measured by summing 
up the execution frequencies of the paths that benefit 
from the optimization. 

The paths which incur cost due to sinking of s past 
the merge point n are the paths in the flow graph 
along which an additional execution of a predicated 
version of statement s is encountered. These paths 
are obtained by concatenating unavailable subpaths 
with unremovable subpaths. The total cost of predi- 
cation enabled sinking of s past the merge point n is 
measured by summing up the execution frequencies of 
the paths that incur a cost due to the Optimization. 

Consider the example in Figure 3. In this exam- 
ple of the four program subpaths from 0 to 4, s is 
arrazlaBle for sinking to 4 along the subpath 0-1-11-4 
and tinavazlable along the remaining subpaths 0-1-2- 
4, 0-1-3-4, and 0-9-4. Of the three program subpaths 
starting at 4, s is dead along two subpaths 4-5-10 and 
4-6-7-10 and live along the subpath 4-6-8-10. However, 
partial deadness of s is removable only along subpath 
4-5-10 and unremot~able along paths 4-6-7-10 and 4- 
6-8-10 since the definition of a a t  node 6 blocks the 
sinking of s past node 6. The only path that benefits 
from predication enabled sinking of s past 4 is 0-1-11- 
4-5-10. The paths that incur a cost due to predication 
enabled sinking of s past node 4 include 0-1-2-4-6-7-10, 

8-10, and 0-9-4-6-8-10. It should be noted that along 
the unatrazlable subpath 0-1-3-4 the value of 2 com- 
puted by s is not used. However, the removal of dead 
code along this subpath is not included in the benefit 
for merge point 4 because it can be derived without 
sinking s past the merge point 4. 

0- 1-3-4-6-7- 10, 0-9-4-6-7- 10, 0- 1-2-4-6-8- 10, 0- 1-3-4-6- 

Definition 1: Given a path p that passes through a 
merge point n and a partially dead statement s, 
the statement, s is available for sinking at  n along 

path p if and only if s is encountered along the 
subpath of p from start to  n and there is no state- 
ment along the subpath of p from s to n that 
blocks the sinking of s t o  n. Otherwise statement 
s is unavailable at n along path p. 

available 
for sinking 

removable 
deai code 

: 5  
i 

unremovable or 
no dead code 

I 

1 
4 

I 

r 

dead code 
removed 

(b) 

Figure 3: Cost-Benefit Analysis. 

Definition 2: Given a path p that passes through a 
merge point n and a partially dead statement 
s, the statement s is removable  from path p 
through sinking at n if and only if the value com- 
puted by s is not used along path p and it is 
necessary to sink s past n in order to reach the 
earliest point along pat which s is fully dead (i.e., 
dead along all paths starting at that point). Oth- 
erwise statement s is unremovable  from path p 
through sinking at  7 1 .  
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Definztzon 3: Given a path p that passes through a 
partially dead statement s and a merge point n ,  
the sinking of s past n benefits path p if and only 
i f s  is avazlable for sinking at n and s is remouable 
along path p through sinking a t  n. We denote the 
set of paths through 12 along which sinking of s is 
beneficial as Benefit Paths, ( 1 2 ) .  

Definztzon 4: The benefit of predication enabled 
sinking of a statement s past a merge point n 
in an acyclic graph, denoted as B e n e f i t , ( n ) ,  is 
the sum of the execution frequencies of the paths 
in Benef i fPaths ,  ( n )  times the number of cycles, 
T [ s ] ,  that it takes to execute the operation in 
statement s: 
Benef i t ,  ( n )  = T[s]  x c Freq(p) .  

pEBeiaefz tPnths  ( T I )  

Defiriitzon 5: Given a path p that passes through a 
merge point n and a partially dead statement s, 
the sinking of s past n costs path p if and only 
if s is unnziaalable for sinking a t  n and s is unre- 
motiable a t  n along path p. We denote the set of 
paths through n along which sinking of s results 
in a cost as CostPaths,(n). 

Definztzon 6: The cost of predication enabled sinking 
of a statement s past a merge point n in an acyclic 
graph, denoted as Cost,(n), is the sum of the exe- 
cution frequencies of the paths in CostPaths,(n) 
times the number of cycles, T[p?s], that it takes 
to  execute predicated statement p?s when p eval- 

easily adaptable to the situation in which only subset 
of paths are known to be frequently executed. The 
steps of the analysis are described next. 

Availability Analysis 
N - A V A I L , ( n ) ( X - A V A I L , ( n ) )  is aone  bit vari- 

able which is 1 if there is a path through n along which 
s is available for sinking at n’s entry(exit); otherwise 
its value is 0. Forward data flow analysis with the OT 

confluence operation is used to compute these values. 
At the entry point of the flow graph the availability 
value is set to 0, it is changed to 1 when statement s 
is encountered, and it is set to 0 if a stat,ement that 
blocks the sinking of s is encountered. In the equa- 
t,ions BLOCIi , (n)  is a one bit, variable which is l(0) 
if n blocks s, that is, n is data (anti, output or flow) 
dependent upon s. 

N - APATHS, (n ) (X  - A P A T H S , ( n ) )  is a bit 
vector which holds the set of paths along which the 
value of N - AVAIL , (n ) (X  - A V A I L , ( n ) )  is 1 a t  
n‘s entry(exit). At, the entry to a node ?I for which 
N-AVAILC, ( n )  is 0, the set of paths is set to null, that 
is, to 0’. Otherwise the paths in N - A P A T H S , ( n )  are 
computed by unioning the sets of paths along which 
s is available a t  the exit of one of n’s predecessors 
(i.e., unioning X - APATHS,  ( p ) ,  where p is a prede- 
cessor of n) .  In order to  ensure that only paths that  
pass through n are considered, the result is intersected 
with OnPaths(n). The value of X - APATHS, (n )  is 
OnPaths(n) if n contains s and N - APATHS, (n )  if 
n does not block s. 

uates to false: 

Cost,(n) = Tb?S] x c Fredp).  Figure 4a. 
The data flow equations for this step are given in 

p € C o s t P U t h s s ( n )  

2.1.1 Cost-Benefit for Acyclic Graphs 

In order to implement the computat,ion of cost and 
benefit information for a given statement at various 
merge nodes in the program we proceed as follows. In 
additsion to computing the availability and remouabil- 
i t y  information at program points, we also compute 
the set of paths along which these data flow values 
hold. The set of paths is represented by a bit vector 
in which each bit corresponds to a unique path from 
the entry to the exit of the acyclic flow graph. To 
facilitate the computation of sets of paths, with each 
node n in the flow graph, we associate a bit vector 
OnPaths(n)  where each bit corresponds to a unique 
path and is set to 1 if the node belongs to that path; 
otherwise it is set to 0. Initially in this section we as- 
sume that all paths are frequently executed and must 
be considered during the analysis. In the next section 
we will illustrate how the solution we develop here is 

Removability Analysis 
N -  REM,(n) (X - REM,(n))  is a one bit variable 

associated with n’s entry(exit) which is 1 if there is a 
path through R along which s is dead and any sink- 
ing of s that may be required to remove this deadness 
is feasible; otherwise its value is 0. Backward data 
flow analysis with the or confluence operation is used 
to compute these values. In order to ensure that the 
sinking of s is feasible, the results of availability anal- 
ysis computed previously are used. For example, if 
variable v computed by s is dead a t  n’s exit, then 
X - REM,(n) is set to true only if X - AVAIL , (n )  
is true because the deadness can only be eliminated if 
sinking of s to n’s exit is feasible. The results of avail- 
ability analysis are similarly used in each data flow 
equation of removability analysis. In the equations in 
Figure 4b, N - DEAD, ( n ) ( X  - DEAD, ( n ) )  is a one 
bit variable which is 1 if variable v is fully dead a t  
n’s entry(exit), that is, there is no path starting at n 
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0 if n = entry 
N - AVAIL,(n) = { v X - AVAIL,(m) otherwise 

mEPred(n) 

1 
BLOCK,(n) A N - X - AVAIL,(n) = { - i f s  E n 

AVAIL,(n) otherwise 

if N - AVAIL,(n) = 0 
N - APATHS,(n) = V X - APATHS,(m) otherwise 

mEPred(n)h 
X-AVAIL,( m) = 1 

i f s  E n 

otherwise 
X - APATHS,(n) = if X - AVAIL,(n) = 1 

(a) Ava,ilability Da.ta Flow Analysis. 

let v be the variable defined by s, i.e.,v = lhs(s) : 

X - AVAIL,(n) if X - DEAD,(n) = 1 
X - REM,(n) = X - AVAIL,(n) A v N - REM,(m) otherwise 

m€Succ(n) 

N - AVAIL,(n) 
N - AVAIL,(n) A X  - REM,(n) 

if N - DEAD,(n) = 1 
otherwise 

i 
N - REM,(n) = { 

OnPaths( n) if X - DEAD,(n) A X  - AVAIL,(n) = 1 
- RPATHS,(n) = OnPaths(n) A v N - RPATHS,(m) otherwise 

m€Succ(n)h 
N-REM. (m)=l  

if N - DEAD,(n) AN - AVAIL,(n) = 1 

otherwise 
N - RPATHSs(n) = if N - REM,(n) = 1 

(b) Removability Data Flow Analysis. 

Vn st n is a merge point : 

BENEFITPATHS,(n) = X - RPATHS,(n) A X - APATHS,(n) 

BENEFIT,(n) = BENEFITPATHS,(n)(i) x FREQ(path(i)) 

COSTPATHS,(n) = X - RPATHS,(n) A X  - APATHS,(n) 

COST,(n) = COSTPATHS,(n)(i) x FREQ(path(i)) 

i 

I 

( c )  Cost-Benefit Computation. 

Figure 4: Cost-Benefit Data flow Analysis. 
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along which current value of v is used; otherwise its 
valiie is 0. 

N - RPATH,S , (n) (X - RPATHS,(n)) is a bit 
vector which holds the set of paths along which 
the value of N - REM,(n ) (X  - REM,(n ) )  is 1 
a t  71’s entry(exit). At the entry(exit) of a node 
n for which N - DEAD,(n)(X - DEAD,(n) )  
and N - AVAIL,(n)(X - A V A I L s ( n ) )  are I, 
N - RPATHS,(n)(X - RPATHS, (n ) )  is set to 
OnPofh.s(n) .  Otherwise the paths in X - 

RPATHS,(72) are computed by unioning the sets of 
paths along which s is partially dead and removable 
a t  the entry of one of 12’s successors (i.e., by unioning 
N -  RPATHS, (p ) ,  where p is a successor of n) .  In or- 
der to ensure that only paths that pass through n are 
considered, the result is intersected with OnPaths(n). 
Cost - Benefi t Computation 

B E N E F I T P A T H S , ( n )  is a bit tector which holds 
the set of paths that benefit from predication enabled 
sinking of s past merge node n .  It is computed by 
intersecting the paths in X ~ APATHS,(n) with the 
paths in X - RPATHSS(7t) .  
C‘OSTPATHS,(n) is a bit vector which holds the 

set, of paths that incur a cost due to  predication en- 
abled sinking of ? past merge node n. It is computed 
by intersecting the paths in X - APATHS,(n) with 
the paths in X - LPATHS, (n ) .  

The computations of this step are given in Fig- 
ure 4c. 

The example in Figure 5 illustrates the results of 
the analysis. In this example the cost-benefit of sink- 
ing statement at node 2 past merge points 5 and 9 
is shown. Sinking of thc statement past node 5 en- 
ables elimination of dead code from paths P1 and P2 
while an additional evaluation of predicstcd version of 
statement, in node 2 is introduced along paths P7 and 
P8. For the given path profiles it is therefore benefi- 
cial to  sink the statement past merge point 5. On the 
other hand when we consider sinking past node 9 the 
benefit is lower since only path P2 benefits from this 
sinking. It should be noted that to fully derive the 
benefits of sinking past node 5, the statement must 
also be moved past node 9. This is because sinking 
past 9 is required to eliminate deadness along path 
P2. Therefore if predication based sinking of state- 
ment is enabled a t  merge point 5, it should also be 
enabled at merge point 9. 

2.1.2 

The cost of performing cost-benefit analysis depends 
upon the number of paths that must be considered 
during analysis. While in general the number of static 

The Cost of Cost-Benefit Analysis 

pat,hs through a function can be very high, we found 
that in practice the number of paths that need to  be 
considered is small. First only the paths with non-zero 
executions counts need to be considered. Second only 
the paths through a given function are considered at 
any one time. For the SPEC95 integer benchmarks we 
found that in 65% of the functions that were executed 
no more than 5 paths with non-zero frequency were 
found and only 1.4% of functions had over 100 paths. 
No function had greater than 1000 paths. 

6 

11 

- 
Freq. 

125 
25 
10 
10 
10 
10 
50 
50 

~ 

(4 

Path 
P1: 1-2-5-7-12 
P2: 1-2-5-8-9-10-12 
P3: 1-2-5-8-9-11-12 
P4: 1-3-4-5-7-12 
P5: 1-3-4-5-8-9- 10- 12 
P6: 1-3-6-9- I 0- 12 
P7: 1-3-4-5-8-9-1 1-12 
P8: 1-3-6-9-1 1-12 

(b) 

Cost(S)<Benefit(S) 
Cost(5) = Freq(P7+P8)*T[x=a*b] = (50+50)*T[x=a*b] 

Benefit(5) = Freq(PI+P2)*T[p?x=a*b] = 125+25 = 150 
Cost(9)rBenefit(9) 

Cost(9) = Freq(P7+P8)*T[p?x=a*b] = 50+50 = 100 
Benefit(9) = Freq(P2)*T[x=a*b] = 25*T[x=a*b] 

(c) 

=100*T[x=a*b] 

Figure 5: An Example of Cost-Benefit Analysis. 

For the small fraction of functions that have rel- 
atively high number of paths, we are able to  trade- 
off the time spent on performing cost-benefit analy- 
sis with the precision of the cost-benefit information. 
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This is achieved by removing the infrequently executed 
paths from consideration. The estimates of cost and 
benefit comput#ed using this approach are conserva- 
tive, that is, the estimated cost is never lower than 
the true cost, and the estimated benefit is never higher 
than the true benefit, where true cost and benefits are 
obtained by considering all paths. 

Consider the example in Figure 5. Let us assume 
that we ignore the paths through node 10 during our 
analysis. Conservative analysis will make the worst 
case assumptions regarding this node by assuming 
that when predication enabled sinking of x = a * b 
is performed at  node 5, no benefits are derived and 
cost is incurred along the paths through node 10. In 
other words the analysis will assume that along path 
P2 no dead code is removed and along paths P5 and 
P6 a predicated version of statement 2 = a * b will be 
introduced. Thus, the underestimated benefit at node 
5 will be 125 x T [ x  = a * b] and overestimated cost at  
node 5 will be 120. 

The equations for computing the conservative es- 
timates of cost and benefit are given below. The 
Cost Paths, and Benefit Paths, information is com- 
puted only for the frequency executed paths ( F P ) .  
Thus, in computing the cost at  node n we obtain 
a conservative estimate by assuming that predicated 
versions of s will be placed along all paths in P - F P  
that contain n .  In computing the conservative esti- 
mate of the benefit we assume that dead code removal 
is not, achieved for s along any of the paths in P -  F P .  

Co.st,(n) 5 EstCost,(n) 
= T[l,?s] 

x [  CostPaths,(n)(p) x Freq(p) 
p E F P  

Tota l  

+ c F1.eq(p)l 
PEP-FP 

A f l E p  

Benef i t ,  ( 1 1 )  > EstBenefit ,  ( n )  - 
= T[s]  x Benef i tPaths ,  ( n ) ( p )  

PEFP 

2.1.3 Cost-Benefit Analysis for Loops 

In the presence of loops, initially the paths consid- 
ered only include those paths that do not cross loop 
boundaries. In other words the program is viewed as a 
collection of acyclic subgraphs and only paths within 
these subgraphs are profiled. The application of our 
optimization described in the preceding discussion will 
perform predication enabled sinking within an acyclic 
graph if it, is beneficial with respect to the profiles 

for that acyclic graph. However, in order to  achieve 
beneficial sinking of expressions across loop bound- 
aries, simple extensions in the treatment of nodes that 
connect the loop with surrounding code are required. 
These extensions allow us to take advantage of the 
benefits of moving expressions across loop boundaries. 

Consider the movement of partially dead statement 
out of a loop as illustrated in Figure 6. The benefit of 
t,he optimization results from the removal of x = a + b 
along the path 1-2-4-5 within the loop and the cost of 
optimization results from the placement of predicated 
execution of x = a + b along path 6-7-9. If the path 
1-2-4-5 is executed frequently while the path 6-7-9 is 
executed infrequently it is beneficial to  apply this op- 
timization. Note that in this case x is not live along 
the loop back edge (i.e., a t  the entry of the loop). If 
this was not the case, then we would have to  place a 
copy of the st.atement along the loop back edge and 
the sinking beyond node 5 will not be beneficial. 

4 
(2J-b x=a+b 

191 

Benefit(5: x=a+b) = Freq( 1 -2-4-5)*T[x=a+bl 
Cost(5: x=a+b) = Freq(6-7-9)*T[p?x=a+b] 

(C) 

Figure 6: Predication Ena.bled Sinking for Loops. 

In summary we should enable the opt,imizat,ion past 
a merge point t8hat is a loop exit as well as the tail of 
the loop if the following conditions given below hold. 
In these conditions texit denotes the tail of the loop 
that is also the loop exit and postexit is the node fol- 
lowing tezit. 

Benefit,(tezit) > Cost , ( tez i t ) ,  where 

Benefit ,( tezit)  = T[s]  x c Freq(p)  1 

p E X - A P A T H S , , . z p  ( t e m t )  
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Cont,(tezit) = T[~.?s]  x 

arid N - LIVE,(heud)  = 0 

c F r e d P ) ,  analysis in the preceding step. For the example in Fig- 
ure 5 the delayability analysis will det,ermine t,hat the 
assignment 2 = a * b can sink to nodes 7, 10 and 11. 
The paths along which delayability predicate is found 

P E N -  L P A T H  Sz ( p o a t e x t t )  

2.2 Predication based Sinking Framework 
The framework that we propose is an extension of 

the partial dead code elimination framework devel- 
oped by Knoop et al. [20]. Knoop’s framework in- 
volves two main steps that are applied repeatedly till 
no further optiniizat#ion is possible. The first step per- 
forms assignment sankang to enable dead code elimina- 
tion and the second step performs assignment elimzna- 
tzon to remove dead code. The repeated application of 
the above steps is required due to second order effects. 

The extended framework that we propose consists 
of three steps. The first step, enable predication, 
predication-based sinking at join points in the flow 
graph based upon the results of cost-benefit analysis. 
The second step performs assignment sinking. This 
step performs sinking that would have been performed 
by Knoop’s algorithm as well as addit,ional sinking en- 
abled by predication. The final step of assignment 
elzmznation remains unchanged. 

The data flow equations for enabling predication 
and the revised data flow equations for assignmeiit 
sinking are presented in Figure 7. Predication enabled 
sinking is allowed at join nodes at, which the cost of 
sinking is less than the benefit derived from sinking. 
In addition, sinking is also enabled at, a join node if 
it has been enabled a t  an earlier join node. This is 
to ensure that the benefits of sinking computed for 
the earlier join node can be fully realized. Recall that 
this situation was encountered in the example of Fig- 
ure 5 (in order to  fully derive the benefits possible by 
enabling sinking a t  node 5, it is necessary to enable 
sinking a t  node 9). In order to derive the full benefit of 
sinking statement past merge point 5, our analysis will 
also enable sinking of the statement be also enabled a t  
merge point 9. The application of this analysis to the 
example of Figure 6 with loops will cause predication 
to be enabled a t  merge point 5. 

The assignment sinking analysis consists of two 
steps: delayability analysis which performs sinking 
and insertion point compututzon that identifies the 
points to which the statement must be placed fol- 
lowing sinking. The delayability analysis has been 
extended to  allow predication enabled sinking. This 
analysis is essentially responsible for determining how 
far the sinking of a statement can be allowed. Notice 
that in our analysis N -  DELAY ED, ( n )  is always set 
to  true if E P R E D J O I N , ( n )  is true, that is, sinking a t  
the node has been enabled based upon the cost-benefit 

to be ttrue are shown by solid lines in Figure 9a. The 
insertion points will be found to be the entry points 
of the above nodes and the flow graph after assign- 
ment sinking is shown in Figure 9b. Similarly for the 
example in Figure 6 our analysis determines that the 
statement in node 1 (i.e., .7: = n + b) can sink to nodes 
3, 7 and 8. 

After moving the assignment statement to the ap- 
propriate points determined in the preceding st,ep, 
those assignments that are completely dead are elini- 
inated. For the example in Figure 5 the assignments 
a t  nodes 7 and 10 are eliminated (see Figure 9c) and 
for the example in Figure 6 the assignment introduced 
a t  node 8 is eliminated. 

2.3 Predicate Evaluations 
Once PDE has been performed, we must introduce 

evaluations of the predicate at appropriate points in 
the program. In some situations, such as the example 
of Figure 1, the required predicate is already computed 
by the program and we simply need to save its value 
in a predicate register so that, it is available a t  the 
time that the predicated instruction is encountered. 
However, in general the program may not compute 
the required predicate and an alternate strategy that 
introduces assignments to a predicate variable is re- 
quired. 

The example in Figure 10 illustrates the approach 
based upon introduction of a predicate variable. A 
true assignment to the predicate variable is placed a t  
a point that dominates the nodes in which the instruc- 
tion originally resided and where it resides in its pred- 
icated form. In addition, the predicate is set to false 
if control flow follows a path along which the pred- 
icated statement is not to be executed. In general 
only a single true assignment is encountered; however, 
multiple false assignments may be encountered before 
execution reaches the predicated instruction. For the 
example in Figure 10, at most one true assignment 
and two false assignments may be encountered prior 
to reaching the predicate statement. 

In some restricted situations it is possible to deter- 
mine placements of predicate assignments such that 
exactly one predicate assignment is encountered prior 
to reaching the predicated instruction. A set of nodes 
satisfying this property is a generalized dominator of 
the node a t  which the predicated statement is placed 
[8] .  Efficient algorithms for identifying these set of 
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1 
0 otherwise 

if COST,(n) < BENEFIT,(n) and EPRED,(n) = { 
EPRED,(n) = N - REM,(n) A v EPRED,(m) 

m€Pred(n) 

EPRED,(n) if n is a join point 
otherwise EPREDJOIN,(n) = { 

Figure 7: Enabling Predication. 

Delayability Analysis : 

X-DELAYED,(n) = { 
( 0  

1 i f s  E n 
N-DELAY ED, (n) A BLOCK, (n) otherwise 

if n = start 
EPREDJOIN,(n) V A X-DELAYED,(m) otherwise 

mEPred(n) 

Identifying Insertion Points : 

X-INSERT,(n) = X-DELAYED,(n) A v N-DELAYED,(m) 
mESucc(n) 

N-INSERT,(n) = N-DELAYED,(n) A BLOCK,(n) 

Figure 8: Assignment Sinking. 

11 11 1 1  

(a) After Delayability Analysis. (b) After Assignment Sinking. ( c )  After Assignment Deletion. 

Figure 9: Application of PDE Algorithm. 
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nodes can be found in [4, I]. 

I I e x = a*b 

I p = m e l  

p=false p=false w 
Figure 10: Introducing Predication Evaluation. 

Finally it should be noted that there is a cost asso- 
ciated with the placement of an assignment. As long 
as the instruction to which PDE is being applied takes 
greater number of cycles to execute than the setting of 
a predicate register in the target architecture, appli- 
cation of PDE would be useful. Thus, our cost-benefit 
analysis can be easily modified to take into account 
the cost of setting the predicate register. The modi- 
fied equations are given below: 

EstCost,(n) = (Tb?s] + T ~ ] ) x  
[ CostPaths,(n)(p) x Freq(p)  

EstBene f i t s  ( n )  = (T[s ]  - T b ] )  x 
Benef i tPaths ,  ( n ) ( p )  

p E F P  

x F r e d p )  

3 Other Applications 
In this paper we demonstrated the use of path 

profile information to combine predication with the 
PDE optimization in order to aggressively optimize 
frequently executed paths through a program. The 
approach for cost-benefit analysis that we have pre- 
sented is quite general and has also been applied to  
other problems including partial redundancy elimina- 
tion [lo], strength reduction [19], and load-store elim- 
ination from loops [4, 91. 

The example in Figure 11 illustrates the application 
of our approach to partial redundancy elimination. In 

the first flow graph shown in Figure l l a ,  t,he evalu- 
ation of the expression II: + y in node 7 is partmially 
redundant. Along paths that visit node 2 prior to 
reaching node 7 (i.e., paths P I  and P2) the expres- 
sion is evaluated twice. A traditional PRE algorithm 
will not be able to remove this redundancy because it 
will not allow the expression evaluation in node 7 to  
be hoisted above node 6. 

x = ... 
1 1; = ...\I 

2 ..=x+y 3 x = . .  

4 H 
I 8 

x = ... 
1 - J  

Figure 11: Path Profiles and Speculation for Partial 
Redundancy Elimination. 

Now consider the second flow graph in Figure I l b  
in which the expression evaluation has been hoisted 
above node 6 using speculation (that is, unconditional 
execution of expression that is otherwise executed con- 
ditionally) and placed at  node 3. Speculation has en- 
abled the removal of redundancy along paths P1 and 
P2. This is referred to as the benefit of enabling spec- 
ulation at  conditional node 6. At the same time an ad- 
ditional evaluation of z + y has been introduced along 
the path P 5  which is referred to  as the cost of enabling 
speculation at  node 6. If the profile information indi- 
cates that the total number of times paths PI  and 
P2 are executed is expected to be greater than the 
number of times path P5 is executed, then the benefit 
derived from speculation at node 6 is greater than the 
cost of allowing speculation. Thus, in this situation it 
is beneficial to use the placement shown in Figure l l b .  

In [lo] we describe in detail the combination of code 
speculation with the PRE optimization [17, 161. Spec- 
ulation is enabled at  conditional nodes based upon 
cost-benefit analysis. In [I I] we present predication 
based PRE and speculation based PRE algorithms 
that are resource sensitive. These algorithms compute 
code placements where the functional unit required 
for the execution of the placed algorithm is available. 
Only the optimization opportunities for which such 
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placements exist are exploited. 
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