
Path Profile Guided Partial Dead Code Elimination
Using Predication

Ra.jiv Gupta*
Dept. of Coniputer Science

University of Pittsburgh
Pittsburgh, PA 15260

Abstract
W e present a path profile guided partial dead code

elimination algorithm that uses predication to enable
sinking for the rem,oval of decidness a1on.g frequently
executed paths at the expense of adding additional
instructions along infrequently executed paths. Our
approach to optim.ization is particularly suitable for
VLICY architectures since it directs the efforts of the
optim,izer towards aggressively enabling generation of
fast schedules along frequently executed paths by reduc-
ing their critical path lengths. The paper presents a
cost-benefit data flow analysis that uses path pro-
filing information to determine the profitability of us-
ing predication enabled sinkin.g. The cost of predi-
cation enabled sinking of a statement past a merge
point is determined by identifying paths along which
an additional statement is in.troduced. The benefit
of predication enabled sinking is determined by iden-
tifying paths along which additional dead code elimi-
nation is achieved due to predication. The results of
this analysis are incorporated in a code sinking fram.e-
work in which predication enabled sinking is allowed
past merge points only i f its benefit is determ,ined to
be greater than the cost. It is also demonstrated that
trade-ofl can be performed between the compile time
cost and the precision of cost-benefit analysis.

1 Introduction
Traditional approach to code optimization uni-

formly spends its effort in optimizing all parts of a
program. Researchers have now recognized that the
optimization effort is best spent on frequently exe-
cuted portions of a program that can be identified
using profiling techniques. Compilers for VLIW archi-
tectures use sophisticated global instruction schedul-
ing techniques to generate fast schedules for frequently
executed paths at the expense of slower schedules for

*Supported in part by NSF PYI Award CCR-9157371, NSF
grant CCR-9402226, Intel Corporation, and Hewlett Packard.

0-8186-8090-3/97 $10.00 0 1997 IEEE

David A. Berson Jesse Z. Fang
Microcomputer Research La,b

Intel Corporation
Santa Clara, CA 95052

infrequently executed paths. Thus. it is also appro-
priate for an optimizer for a VLIW architecture to
aggressively optimize frequently executed paths even
if their optimization results in introduction of addi-
tional instructions along infrequently executed pat,hs.
However, traditional formulations of code optimiza-
tions are incapable of performing a trade-off between
the quality of code along frequently and infrequently
executed paths. In this paper we present an approach
for optimization that is capable of performing such a
trade-off.

The opt,imization strategy that we have developed
is demonstrated through a new algorithm for par-
tial dead code elimination (PDE). PDE is an impor-
tant, optimization for VLIW architectures since critical
path lengths along frequently executed paths can be
reduced through PDE [12, 7, 141. Through code sink-
ing, that is, delaying the execution of a code statement
to later program points, PDE optimization moves in-
structions that are dead along critical paths off the
critical paths [20, 231. Modern architectures [15, 131
that support predicated execution provide an oppor-
tunity for aggressively performing PDE since predica-
tion enables code sinking that is otherwise not pos-
sible. Furthermore, predication enabled code sinking
may also introduce predicated versions of an instruc-
tion along paths where the instruction was not previ-
ously encountered. Thus, in order to beneficially ex-
ploit predication enabled code sinking for PDE, it is
necessary to develop an approach for trade-off between
quality of code along frequently and infrequently ex-
ecuted paths. Existing techniques for PDE [3, 201 do
not take advantage of predication in performing PDE.

In a study that we carried out it was found that
for the SPEC95 integer benchmarks 65% of the func-
tions that were executed had no more than 5 paths
with non-zero execution frequency and no function
had more than 1000 paths with non-zero execution fre-
quency while the number of static paths through the

102

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

\6& 6 x = . . I x = . . 8

1-2-4-6- 10
1-2-4-5-7-9- 10
1-2-4-5-8-9-10
1-3-4-6-10
1-3-4-5-7-9-10
1-3.4-5-8-9-10 50

I

Cost[2: x=a*b] = (100+90)*T[x=a*b] = 190*T[x=a*b]

Benefit[2: x=a*b] = SO*T[p?x=a*b]= 50

(C)

Figure 1: Predication Enabled Code Sinking.

benchmarks were in the millions. Since traditional ap-
proaches to PDE remove dead code along some paths
without adding additional instructions along any path
[3, 201, they are essentially based on the assumption
that all paths through the program are equally im-
portant. However, our approach which can trade-off
the quality of code generated for infrequently executed
paths for obtaining better code for frequently executed
paths is based upon the realistic scenario encountered
in practice. There are two types of profiling that can
be used for identifying frequently and infrequently ex-
ecuted paths. Edge profiling gives the number of times
each edge in t8he program flow graph is traversed and
path profiling gives the number of times various acyclic
paths in a program are traversed. In [a] it is shown
that different path profiles can give rise to the same
edge profiles. Thus, it is not possible to accurately
identify frequently executed paths using edge profiles.
Furthermore, Ball and Larus [a] have shown that path
Drofile information can be collected efficiently. There-

2-4-5-7-9-10. The elimination of partial deadness of
the statement requires the sinking of statement past
the merge point at node 4. Existing code sinking al-
gorithms will not achieve PDE in this case as they
are unable to sink the statement past node 4 because
doing so would block any definitions of 2 that reach
node 4 via node 3. As shown in Figure lb, the sinking
of the statement past node 4 and down to node 8 can
be achieved by predicating the statement. While the
above sinking eliminates dead code along the paths 1-
2-4-6-10 and 1-2-4-5-7-9-10, it also introduces an addi-
tional instruction along path 1-3-4-5-8-9-10. Since the
sum of the execution frequencies of paths 1-2-4-6-10
and 1-2-4-5-7-9-10 (i.e., 100+90=190) is greater than
the execution frequency of path 1-3-4-5-8-9-10 (i.e.,
50), the overall savings will result from predication
enabled sinking. Thus, an optimizer should exploit
path profiling information to reduce dead code along
frequently executed paths even if doing so introduces
some additional instructions along infrequently exe-
cuted paths. For a predication model in which an in-
struction is aborted if the predicate is false, although,
an additional instruction is executed along path 1-3-4-
5-8-9-10, its execution will require a single cycle since
the predicate will evaluate to false along this path and
the multiply operation will not be executed. On the
other hand along the paths that benefit, a multiply op-
eration has been removed which typically takes several
cycles for execution. The above optimization also re-
quires that the result of evaluating predicate p in node
1 must be saved till node 8. In an architecture such as
PlayDoh, the predicates are stored in special predicate
registers [15].

The approach we present first performs data flow
analysis for computing the cost and benefit of sinking
a statement past each relevant merge point. An exten-
sion of a code sinking algorithm by Knoop et al. [20]
that incorporates predication is presented next. This
modified framework uses the cost-benefit information
to enable sinking of a partially dead statement past
merge points where the benefit has been found to be
greater than the cost. In previous work by Fang [6]
the use of predication during sinking was also pro-
posed. However, the algorithms described in [e] apply
to single-entry-single-exit acyclic regions and no cost-
benefit analysis to guide predication is presented.

fore in this paper we rely on path profiling informa-
tion.

The example in Figure l a illustrates our approach.
In t,his example the statement at node 2 (x = a * b) is
partially dead since the value of a: computed by this
statement is not used along paths 1-2-4-6-10 and 1-

In section 2 we present our PDE algorithm in detail.
In section 2.1 data flow analysis for computing cost-
benefit information for acyclic graphs is discussed and
its extensions for loops are presented. We also show
how to trade-off the cornplexity of performing cost-
benefit analysis with the precision of the analysis. In

103

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

section 2.2 we describe a predication based sinking
framework and section 2.3 we describe the insertion
of predicate evaluations required for predication. We
conclude by discussing additional applications of this
approach in section 3.

2 Predication based PDE
The overview of our approach is given in Figure 2.

In this approach we first identify statements that ap-
pear along frequently executed paths. These state-
menk are the target of PDE optimization. By lim-
it,ing the optimization to these statements, we reduce
the overall run-time cost of optimization. Next the
cost and benefit of sinking each frequently executed
statement past various merge points in the program
are identified. A code sinking framework that uses
this cost-benefit information and is capable of pred-
ication based sinking past merge points is then used
to perform PDE. Finally predicates required by the
statements to which predication based code sinking
has been applied are inserted.

Step 1: Using path profiling information
from the set of program paths P , identify
the frequently executed paths F P ; and
of all the statements S , consider frequently
executed statements E S as those that
appear along paths in F P .
for each statement s E F S {

for each merge point m to which s can sink {
For predication based sinking of s enabled at ~n

estimate Benefit s’s PDE to paths in F P and
estimate Cost of s’s PDE to all paths P .

if Benefit>Cost { enable sinking of s at m }
else { disable sinking of s at m }}}

to statements in F S .

required for statements in F S .

Figure 2: Algorithm Overview.

Step 2: Apply predication based PDE

Step 3: Introduce predicate evaluations

During cost-benefit analysis only the frequently ex-
ecuted paths are accurately analyzed since these are
the ones of most concern. By considering only these
paths the run-time cost of cost-benefit analysis is re-
duced. The benefit we compute is the benefit o€ ap-
plying PDE to a statement that it experienced by fre-
quently executed paths. Thus, it is an underestimate
of the true benefit, On the other hand the cost of
applying PDE is accurately computed for frequently
executed paths and overestimated for the remaining
paths. Thus, the cost is an overestimate of the true

cost.

2.1 Cost-Benefit Analysis
Predication is a technique that allows sinking of

statements past merge points in situations where the
statement is not available for sinking a t the merge
point along all paths leading to the merge point. The
execution of the statement following its sinking past
the merge point is predicated to ensure that it does not
overwrite values of the lhs-variable in situations where
control reaches the merge point along paths where dif-
ferent, definitions of the Ihs-variable are available. We
first discuss the cost-benefit analysis for acyclic graphs
which consider all paths in the flow graph and later
we present the extensions for handling programs with
loops and performing cost-benefit analysis by limiting
it to frequently executed paths.

The algorithms in this paper use the control flow
graph representation of the program. Similar to the
assumptions made by Knoop et al. in [20], we also as-
sume that each node in the control flow graph contains
a single statement and nodes have been introduced
along critical edges to allow code placement along the
critical edges. However, t,his algorithm can be easily
extended to apply to basic blocks.

To perform cost-benefit analysis for the sinking of
a statement s past a merge point n, we must cate-
gorize the program subpaths that either originate or
terminate at n.

The subpaths from the start of the flow graph to
the merge point n are divided into two categories with
respect to the statement s:

Available subpaths which are program subpaths from
the start node to n along which s is encountered
and s is sinkable to n along the subpath; and

Unavailable subpaths which are program subpaths
from start node to n along which s is not avail-
able for sinking at n. These subpaths include
those along which either s is not encountered or
although s is encountered, it is not sinkable to n.
The sinking of s to n can be blocked by a state-
ment that is data (ant8i, output or flow) dependent
on s.

Program subpaths from n to the end of the program
are also divided into two categories with respect to the
statement s:

Remouable subpaths which are subpaths from n to the
end node along which value computed by state-
ment s is not live at n and it is possible to elimi-
nate the deadness of s along the path by sinking
s and pushing it off the subpath; and

104

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

Unremovable subpaths which are program subpaths
from n to the end node along which either the
value computed by s is not dead or its deadness
cannot be eliminated because sinking of s nec-
essary to push s off the subpath is blocked by
another statement.

The paths which benefit from the sinking of s past
the merge point n are the paths along which dead
code is removed (i.e., those paths prior to optimization
along which the statement s is executed but the value
computed by s is never used) and the dead code would
not have been removed without sinking s past merge
point n. These paths can be obtained by concatenat-
ing available subpaths at n with removable subpaths
at n. The total benefit of predication enabled sinking
of s past the merge point n is measured by summing
up the execution frequencies of the paths that benefit
from the optimization.

The paths which incur cost due to sinking of s past
the merge point n are the paths in the flow graph
along which an additional execution of a predicated
version of statement s is encountered. These paths
are obtained by concatenating unavailable subpaths
with unremovable subpaths. The total cost of predi-
cation enabled sinking of s past the merge point n is
measured by summing up the execution frequencies of
the paths that incur a cost due to the Optimization.

Consider the example in Figure 3. In this exam-
ple of the four program subpaths from 0 to 4, s is
arrazlaBle for sinking to 4 along the subpath 0-1-11-4
and tinavazlable along the remaining subpaths 0-1-2-
4, 0-1-3-4, and 0-9-4. Of the three program subpaths
starting at 4, s is dead along two subpaths 4-5-10 and
4-6-7-10 and live along the subpath 4-6-8-10. However,
partial deadness of s is removable only along subpath
4-5-10 and unremot~able along paths 4-6-7-10 and 4-
6-8-10 since the definition of a a t node 6 blocks the
sinking of s past node 6. The only path that benefits
from predication enabled sinking of s past 4 is 0-1-11-
4-5-10. The paths that incur a cost due to predication
enabled sinking of s past node 4 include 0-1-2-4-6-7-10,

8-10, and 0-9-4-6-8-10. It should be noted that along
the unatrazlable subpath 0-1-3-4 the value of 2 com-
puted by s is not used. However, the removal of dead
code along this subpath is not included in the benefit
for merge point 4 because it can be derived without
sinking s past the merge point 4.

0- 1-3-4-6-7- 10, 0-9-4-6-7- 10, 0- 1-2-4-6-8- 10, 0- 1-3-4-6-

Definition 1: Given a path p that passes through a
merge point n and a partially dead statement s,
the statement, s is available for sinking at n along

path p if and only if s is encountered along the
subpath of p from start to n and there is no state-
ment along the subpath of p from s to n that
blocks the sinking of s t o n. Otherwise statement
s is unavailable at n along path p.

available
for sinking

removable
deai code

: 5
i

unremovable or
no dead code

I

1
4

I

r

dead code
removed

(b)

Figure 3: Cost-Benefit Analysis.

Definition 2: Given a path p that passes through a
merge point n and a partially dead statement
s, the statement s is removable from path p
through sinking at n if and only if the value com-
puted by s is not used along path p and it is
necessary to sink s past n in order to reach the
earliest point along pat which s is fully dead (i.e.,
dead along all paths starting at that point). Oth-
erwise statement s is unremovable from path p
through sinking at 7 1 .

105

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

Definztzon 3: Given a path p that passes through a
partially dead statement s and a merge point n ,
the sinking of s past n benefits path p if and only
i f s is avazlable for sinking at n and s is remouable
along path p through sinking a t n. We denote the
set of paths through 12 along which sinking of s is
beneficial as Benefit Paths, (1 2) .

Definztzon 4: The benefit of predication enabled
sinking of a statement s past a merge point n
in an acyclic graph, denoted as B e n e f i t , (n) , is
the sum of the execution frequencies of the paths
in Benef i fPaths , (n) times the number of cycles,
T [s] , that it takes to execute the operation in
statement s:
Benef i t , (n) = T[s] x c Freq(p) .

pEBeiaefz tPnths (T I)

Defiriitzon 5: Given a path p that passes through a
merge point n and a partially dead statement s,
the sinking of s past n costs path p if and only
if s is unnziaalable for sinking a t n and s is unre-
motiable a t n along path p. We denote the set of
paths through n along which sinking of s results
in a cost as CostPaths,(n).

Definztzon 6: The cost of predication enabled sinking
of a statement s past a merge point n in an acyclic
graph, denoted as Cost,(n), is the sum of the exe-
cution frequencies of the paths in CostPaths,(n)
times the number of cycles, T[p?s], that it takes
to execute predicated statement p?s when p eval-

easily adaptable to the situation in which only subset
of paths are known to be frequently executed. The
steps of the analysis are described next.

Availability Analysis
N - A V A I L , (n) (X - A V A I L , (n)) is aone bit vari-

able which is 1 if there is a path through n along which
s is available for sinking at n’s entry(exit); otherwise
its value is 0. Forward data flow analysis with the OT

confluence operation is used to compute these values.
At the entry point of the flow graph the availability
value is set to 0, it is changed to 1 when statement s
is encountered, and it is set to 0 if a stat,ement that
blocks the sinking of s is encountered. In the equa-
t,ions BLOCIi , (n) is a one bit, variable which is l(0)
if n blocks s, that is, n is data (anti, output or flow)
dependent upon s.

N - APATHS, (n) (X - A P A T H S , (n)) is a bit
vector which holds the set of paths along which the
value of N - AVAIL , (n) (X - A V A I L , (n)) is 1 a t
n‘s entry(exit). At, the entry to a node ?I for which
N-AVAILC, (n) is 0, the set of paths is set to null, that
is, to 0’. Otherwise the paths in N - A P A T H S , (n) are
computed by unioning the sets of paths along which
s is available a t the exit of one of n’s predecessors
(i.e., unioning X - APATHS, (p) , where p is a prede-
cessor of n) . In order to ensure that only paths that
pass through n are considered, the result is intersected
with OnPaths(n). The value of X - APATHS, (n) is
OnPaths(n) if n contains s and N - APATHS, (n) if
n does not block s.

uates to false:

Cost,(n) = Tb?S] x c Fredp). Figure 4a.
The data flow equations for this step are given in

p € C o s t P U t h s s (n)

2.1.1 Cost-Benefit for Acyclic Graphs

In order to implement the computat,ion of cost and
benefit information for a given statement at various
merge nodes in the program we proceed as follows. In
additsion to computing the availability and remouabil-
i t y information at program points, we also compute
the set of paths along which these data flow values
hold. The set of paths is represented by a bit vector
in which each bit corresponds to a unique path from
the entry to the exit of the acyclic flow graph. To
facilitate the computation of sets of paths, with each
node n in the flow graph, we associate a bit vector
OnPaths(n) where each bit corresponds to a unique
path and is set to 1 if the node belongs to that path;
otherwise it is set to 0. Initially in this section we as-
sume that all paths are frequently executed and must
be considered during the analysis. In the next section
we will illustrate how the solution we develop here is

Removability Analysis
N - REM,(n) (X - REM,(n)) is a one bit variable

associated with n’s entry(exit) which is 1 if there is a
path through R along which s is dead and any sink-
ing of s that may be required to remove this deadness
is feasible; otherwise its value is 0. Backward data
flow analysis with the or confluence operation is used
to compute these values. In order to ensure that the
sinking of s is feasible, the results of availability anal-
ysis computed previously are used. For example, if
variable v computed by s is dead a t n’s exit, then
X - REM,(n) is set to true only if X - AVAIL , (n)
is true because the deadness can only be eliminated if
sinking of s to n’s exit is feasible. The results of avail-
ability analysis are similarly used in each data flow
equation of removability analysis. In the equations in
Figure 4b, N - DEAD, (n) (X - DEAD, (n)) is a one
bit variable which is 1 if variable v is fully dead a t
n’s entry(exit), that is, there is no path starting at n

106

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

0 if n = entry
N - AVAIL,(n) = { v X - AVAIL,(m) otherwise

mEPred(n)

1
BLOCK,(n) A N - X - AVAIL,(n) = { - i f s E n

AVAIL,(n) otherwise

if N - AVAIL,(n) = 0
N - APATHS,(n) = V X - APATHS,(m) otherwise

mEPred(n)h
X-AVAIL,(m) = 1

i f s E n

otherwise
X - APATHS,(n) = if X - AVAIL,(n) = 1

(a) Ava,ilability Da.ta Flow Analysis.

let v be the variable defined by s, i.e.,v = lhs(s) :

X - AVAIL,(n) if X - DEAD,(n) = 1
X - REM,(n) = X - AVAIL,(n) A v N - REM,(m) otherwise

m€Succ(n)

N - AVAIL,(n)
N - AVAIL,(n) A X - REM,(n)

if N - DEAD,(n) = 1
otherwise

i
N - REM,(n) = {

OnPaths(n) if X - DEAD,(n) A X - AVAIL,(n) = 1
- RPATHS,(n) = OnPaths(n) A v N - RPATHS,(m) otherwise

m€Succ(n)h
N-REM. (m)=l

if N - DEAD,(n) AN - AVAIL,(n) = 1

otherwise
N - RPATHSs(n) = if N - REM,(n) = 1

(b) Removability Data Flow Analysis.

Vn st n is a merge point :

BENEFITPATHS,(n) = X - RPATHS,(n) A X - APATHS,(n)

BENEFIT,(n) = BENEFITPATHS,(n)(i) x FREQ(path(i))

COSTPATHS,(n) = X - RPATHS,(n) A X - APATHS,(n)

COST,(n) = COSTPATHS,(n)(i) x FREQ(path(i))

i

I

(c) Cost-Benefit Computation.

Figure 4: Cost-Benefit Data flow Analysis.

107

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

along which current value of v is used; otherwise its
valiie is 0.

N - RPATH,S , (n) (X - RPATHS,(n)) is a bit
vector which holds the set of paths along which
the value of N - REM,(n) (X - REM,(n)) is 1
a t 71’s entry(exit). At the entry(exit) of a node
n for which N - DEAD,(n)(X - DEAD,(n))
and N - AVAIL,(n)(X - A V A I L s (n)) are I,
N - RPATHS,(n)(X - RPATHS, (n)) is set to
OnPofh.s(n) . Otherwise the paths in X -

RPATHS,(72) are computed by unioning the sets of
paths along which s is partially dead and removable
a t the entry of one of 12’s successors (i.e., by unioning
N - RPATHS, (p) , where p is a successor of n) . In or-
der to ensure that only paths that pass through n are
considered, the result is intersected with OnPaths(n).
Cost - Benefi t Computation

B E N E F I T P A T H S , (n) is a bit tector which holds
the set of paths that benefit from predication enabled
sinking of s past merge node n . It is computed by
intersecting the paths in X ~ APATHS,(n) with the
paths in X - RPATHSS(7t) .
C‘OSTPATHS,(n) is a bit vector which holds the

set, of paths that incur a cost due to predication en-
abled sinking of ? past merge node n. It is computed
by intersecting the paths in X - APATHS,(n) with
the paths in X - LPATHS, (n) .

The computations of this step are given in Fig-
ure 4c.

The example in Figure 5 illustrates the results of
the analysis. In this example the cost-benefit of sink-
ing statement at node 2 past merge points 5 and 9
is shown. Sinking of thc statement past node 5 en-
ables elimination of dead code from paths P1 and P2
while an additional evaluation of predicstcd version of
statement, in node 2 is introduced along paths P7 and
P8. For the given path profiles it is therefore benefi-
cial to sink the statement past merge point 5. On the
other hand when we consider sinking past node 9 the
benefit is lower since only path P2 benefits from this
sinking. It should be noted that to fully derive the
benefits of sinking past node 5, the statement must
also be moved past node 9. This is because sinking
past 9 is required to eliminate deadness along path
P2. Therefore if predication based sinking of state-
ment is enabled a t merge point 5, it should also be
enabled at merge point 9.

2.1.2

The cost of performing cost-benefit analysis depends
upon the number of paths that must be considered
during analysis. While in general the number of static

The Cost of Cost-Benefit Analysis

pat,hs through a function can be very high, we found
that in practice the number of paths that need to be
considered is small. First only the paths with non-zero
executions counts need to be considered. Second only
the paths through a given function are considered at
any one time. For the SPEC95 integer benchmarks we
found that in 65% of the functions that were executed
no more than 5 paths with non-zero frequency were
found and only 1.4% of functions had over 100 paths.
No function had greater than 1000 paths.

6

11

-
Freq.

125
25
10
10
10
10
50
50

~

(4

Path
P1: 1-2-5-7-12
P2: 1-2-5-8-9-10-12
P3: 1-2-5-8-9-11-12
P4: 1-3-4-5-7-12
P5: 1-3-4-5-8-9- 10- 12
P6: 1-3-6-9- I 0- 12
P7: 1-3-4-5-8-9-1 1-12
P8: 1-3-6-9-1 1-12

(b)

Cost(S)<Benefit(S)
Cost(5) = Freq(P7+P8)*T[x=a*b] = (50+50)*T[x=a*b]

Benefit(5) = Freq(PI+P2)*T[p?x=a*b] = 125+25 = 150
Cost(9)rBenefit(9)

Cost(9) = Freq(P7+P8)*T[p?x=a*b] = 50+50 = 100
Benefit(9) = Freq(P2)*T[x=a*b] = 25*T[x=a*b]

(c)

=100*T[x=a*b]

Figure 5: An Example of Cost-Benefit Analysis.

For the small fraction of functions that have rel-
atively high number of paths, we are able to trade-
off the time spent on performing cost-benefit analy-
sis with the precision of the cost-benefit information.

108

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

This is achieved by removing the infrequently executed
paths from consideration. The estimates of cost and
benefit comput#ed using this approach are conserva-
tive, that is, the estimated cost is never lower than
the true cost, and the estimated benefit is never higher
than the true benefit, where true cost and benefits are
obtained by considering all paths.

Consider the example in Figure 5. Let us assume
that we ignore the paths through node 10 during our
analysis. Conservative analysis will make the worst
case assumptions regarding this node by assuming
that when predication enabled sinking of x = a * b
is performed at node 5, no benefits are derived and
cost is incurred along the paths through node 10. In
other words the analysis will assume that along path
P2 no dead code is removed and along paths P5 and
P6 a predicated version of statement 2 = a * b will be
introduced. Thus, the underestimated benefit at node
5 will be 125 x T [x = a * b] and overestimated cost at
node 5 will be 120.

The equations for computing the conservative es-
timates of cost and benefit are given below. The
Cost Paths, and Benefit Paths, information is com-
puted only for the frequency executed paths (F P) .
Thus, in computing the cost at node n we obtain
a conservative estimate by assuming that predicated
versions of s will be placed along all paths in P - F P
that contain n . In computing the conservative esti-
mate of the benefit we assume that dead code removal
is not, achieved for s along any of the paths in P - F P .

Co.st,(n) 5 EstCost,(n)
= T[l,?s]

x [CostPaths,(n)(p) x Freq(p)
p E F P

Tota l

+ c F1.eq(p)l
PEP-FP

A f l E p

Benef i t , (1 1) > EstBenefit , (n) -
= T[s] x Benef i tPaths , (n) (p)

PEFP

2.1.3 Cost-Benefit Analysis for Loops

In the presence of loops, initially the paths consid-
ered only include those paths that do not cross loop
boundaries. In other words the program is viewed as a
collection of acyclic subgraphs and only paths within
these subgraphs are profiled. The application of our
optimization described in the preceding discussion will
perform predication enabled sinking within an acyclic
graph if it, is beneficial with respect to the profiles

for that acyclic graph. However, in order to achieve
beneficial sinking of expressions across loop bound-
aries, simple extensions in the treatment of nodes that
connect the loop with surrounding code are required.
These extensions allow us to take advantage of the
benefits of moving expressions across loop boundaries.

Consider the movement of partially dead statement
out of a loop as illustrated in Figure 6. The benefit of
t,he optimization results from the removal of x = a + b
along the path 1-2-4-5 within the loop and the cost of
optimization results from the placement of predicated
execution of x = a + b along path 6-7-9. If the path
1-2-4-5 is executed frequently while the path 6-7-9 is
executed infrequently it is beneficial to apply this op-
timization. Note that in this case x is not live along
the loop back edge (i.e., a t the entry of the loop). If
this was not the case, then we would have to place a
copy of the st.atement along the loop back edge and
the sinking beyond node 5 will not be beneficial.

4
(2J-b x=a+b

191

Benefit(5: x=a+b) = Freq(1 -2-4-5)*T[x=a+bl
Cost(5: x=a+b) = Freq(6-7-9)*T[p?x=a+b]

(C)

Figure 6: Predication Ena.bled Sinking for Loops.

In summary we should enable the opt,imizat,ion past
a merge point t8hat is a loop exit as well as the tail of
the loop if the following conditions given below hold.
In these conditions texit denotes the tail of the loop
that is also the loop exit and postexit is the node fol-
lowing tezit.

Benefit,(tezit) > Cost , (tez i t) , where

Benefit ,(tezit) = T[s] x c Freq(p) 1

p E X - A P A T H S , , . z p (t e m t)

109

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

Cont,(tezit) = T[~.?s] x

arid N - LIVE,(heud) = 0

c F r e d P) , analysis in the preceding step. For the example in Fig-
ure 5 the delayability analysis will det,ermine t,hat the
assignment 2 = a * b can sink to nodes 7, 10 and 11.
The paths along which delayability predicate is found

P E N - L P A T H Sz (p o a t e x t t)

2.2 Predication based Sinking Framework
The framework that we propose is an extension of

the partial dead code elimination framework devel-
oped by Knoop et al. [20]. Knoop’s framework in-
volves two main steps that are applied repeatedly till
no further optiniizat#ion is possible. The first step per-
forms assignment sankang to enable dead code elimina-
tion and the second step performs assignment elimzna-
tzon to remove dead code. The repeated application of
the above steps is required due to second order effects.

The extended framework that we propose consists
of three steps. The first step, enable predication,
predication-based sinking at join points in the flow
graph based upon the results of cost-benefit analysis.
The second step performs assignment sinking. This
step performs sinking that would have been performed
by Knoop’s algorithm as well as addit,ional sinking en-
abled by predication. The final step of assignment
elzmznation remains unchanged.

The data flow equations for enabling predication
and the revised data flow equations for assignmeiit
sinking are presented in Figure 7. Predication enabled
sinking is allowed at join nodes at, which the cost of
sinking is less than the benefit derived from sinking.
In addition, sinking is also enabled at, a join node if
it has been enabled a t an earlier join node. This is
to ensure that the benefits of sinking computed for
the earlier join node can be fully realized. Recall that
this situation was encountered in the example of Fig-
ure 5 (in order to fully derive the benefits possible by
enabling sinking a t node 5, it is necessary to enable
sinking a t node 9). In order to derive the full benefit of
sinking statement past merge point 5, our analysis will
also enable sinking of the statement be also enabled a t
merge point 9. The application of this analysis to the
example of Figure 6 with loops will cause predication
to be enabled a t merge point 5.

The assignment sinking analysis consists of two
steps: delayability analysis which performs sinking
and insertion point compututzon that identifies the
points to which the statement must be placed fol-
lowing sinking. The delayability analysis has been
extended to allow predication enabled sinking. This
analysis is essentially responsible for determining how
far the sinking of a statement can be allowed. Notice
that in our analysis N - DELAY ED, (n) is always set
to true if E P R E D J O I N , (n) is true, that is, sinking a t
the node has been enabled based upon the cost-benefit

to be ttrue are shown by solid lines in Figure 9a. The
insertion points will be found to be the entry points
of the above nodes and the flow graph after assign-
ment sinking is shown in Figure 9b. Similarly for the
example in Figure 6 our analysis determines that the
statement in node 1 (i.e., .7: = n + b) can sink to nodes
3, 7 and 8.

After moving the assignment statement to the ap-
propriate points determined in the preceding st,ep,
those assignments that are completely dead are elini-
inated. For the example in Figure 5 the assignments
a t nodes 7 and 10 are eliminated (see Figure 9c) and
for the example in Figure 6 the assignment introduced
a t node 8 is eliminated.

2.3 Predicate Evaluations
Once PDE has been performed, we must introduce

evaluations of the predicate at appropriate points in
the program. In some situations, such as the example
of Figure 1, the required predicate is already computed
by the program and we simply need to save its value
in a predicate register so that, it is available a t the
time that the predicated instruction is encountered.
However, in general the program may not compute
the required predicate and an alternate strategy that
introduces assignments to a predicate variable is re-
quired.

The example in Figure 10 illustrates the approach
based upon introduction of a predicate variable. A
true assignment to the predicate variable is placed a t
a point that dominates the nodes in which the instruc-
tion originally resided and where it resides in its pred-
icated form. In addition, the predicate is set to false
if control flow follows a path along which the pred-
icated statement is not to be executed. In general
only a single true assignment is encountered; however,
multiple false assignments may be encountered before
execution reaches the predicated instruction. For the
example in Figure 10, at most one true assignment
and two false assignments may be encountered prior
to reaching the predicate statement.

In some restricted situations it is possible to deter-
mine placements of predicate assignments such that
exactly one predicate assignment is encountered prior
to reaching the predicated instruction. A set of nodes
satisfying this property is a generalized dominator of
the node a t which the predicated statement is placed
[8] . Efficient algorithms for identifying these set of

110

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

1
0 otherwise

if COST,(n) < BENEFIT,(n) and EPRED,(n) = {
EPRED,(n) = N - REM,(n) A v EPRED,(m)

m€Pred(n)

EPRED,(n) if n is a join point
otherwise EPREDJOIN,(n) = {

Figure 7: Enabling Predication.

Delayability Analysis :

X-DELAYED,(n) = {
(0

1 i f s E n
N-DELAY ED, (n) A BLOCK, (n) otherwise

if n = start
EPREDJOIN,(n) V A X-DELAYED,(m) otherwise

mEPred(n)

Identifying Insertion Points :

X-INSERT,(n) = X-DELAYED,(n) A v N-DELAYED,(m)
mESucc(n)

N-INSERT,(n) = N-DELAYED,(n) A BLOCK,(n)

Figure 8: Assignment Sinking.

11 11 1 1

(a) After Delayability Analysis. (b) After Assignment Sinking. (c) After Assignment Deletion.

Figure 9: Application of PDE Algorithm.

111

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

nodes can be found in [4, I].

I I e x = a*b

I p = m e l

p=false p=false w
Figure 10: Introducing Predication Evaluation.

Finally it should be noted that there is a cost asso-
ciated with the placement of an assignment. As long
as the instruction to which PDE is being applied takes
greater number of cycles to execute than the setting of
a predicate register in the target architecture, appli-
cation of PDE would be useful. Thus, our cost-benefit
analysis can be easily modified to take into account
the cost of setting the predicate register. The modi-
fied equations are given below:

EstCost,(n) = (Tb?s] + T ~]) x
[CostPaths,(n)(p) x Freq(p)

EstBene f i t s (n) = (T[s] - T b]) x
Benef i tPaths , (n) (p)

p E F P

x F r e d p)

3 Other Applications
In this paper we demonstrated the use of path

profile information to combine predication with the
PDE optimization in order to aggressively optimize
frequently executed paths through a program. The
approach for cost-benefit analysis that we have pre-
sented is quite general and has also been applied to
other problems including partial redundancy elimina-
tion [lo], strength reduction [19], and load-store elim-
ination from loops [4, 91.

The example in Figure 11 illustrates the application
of our approach to partial redundancy elimination. In

the first flow graph shown in Figure l l a , t,he evalu-
ation of the expression II: + y in node 7 is partmially
redundant. Along paths that visit node 2 prior to
reaching node 7 (i.e., paths P I and P2) the expres-
sion is evaluated twice. A traditional PRE algorithm
will not be able to remove this redundancy because it
will not allow the expression evaluation in node 7 to
be hoisted above node 6.

x = ...
1 1; = ...\I

2 ..=x+y 3 x = . .

4 H
I 8

x = ...
1 - J

Figure 11: Path Profiles and Speculation for Partial
Redundancy Elimination.

Now consider the second flow graph in Figure I l b
in which the expression evaluation has been hoisted
above node 6 using speculation (that is, unconditional
execution of expression that is otherwise executed con-
ditionally) and placed at node 3. Speculation has en-
abled the removal of redundancy along paths P1 and
P2. This is referred to as the benefit of enabling spec-
ulation at conditional node 6. At the same time an ad-
ditional evaluation of z + y has been introduced along
the path P 5 which is referred to as the cost of enabling
speculation at node 6. If the profile information indi-
cates that the total number of times paths PI and
P2 are executed is expected to be greater than the
number of times path P5 is executed, then the benefit
derived from speculation at node 6 is greater than the
cost of allowing speculation. Thus, in this situation it
is beneficial to use the placement shown in Figure l l b .

In [lo] we describe in detail the combination of code
speculation with the PRE optimization [17, 161. Spec-
ulation is enabled at conditional nodes based upon
cost-benefit analysis. In [I I] we present predication
based PRE and speculation based PRE algorithms
that are resource sensitive. These algorithms compute
code placements where the functional unit required
for the execution of the placed algorithm is available.
Only the optimization opportunities for which such

112

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

placements exist are exploited.

References
[1] V.C. Sreedhar, G.R. Gao, and Y-F. Lee, “A New

Framework for Exhaustive and Incremental Data Flow
Analysis Using DJ Graphs,” A CM SIGPLA N Confer-
ence on Programming Language Design and Implemen-
tation, June 1996.

[2] T. Ball and J . Larus, “Efficient Path Profiling,” 29th
Annual IEEE/A CM International Symposium on Mi-
croarchitectttre, Paris, France, November 1996.

[3] R. Bodik and R. Gupta, “Partial Dead Code Elimina-
tion using Slicing Transformations,” A CM SIGPLA N
Conference on Programming Language Design and Im-
plementation, Las Vegas, Nevada, June 1997.

[4] R. Bodik and R. Gupta, “Array Dat,a-Flow Analysis
for Load-Store Optimizations in Superscalar Architec-
t,ures,” Inlernational Journal of Parallel Programming,
Vol. 24, No. 6, pages 481-512, 1996.

[5] D.M. Dhamdhere, “Practical Adaptation of Global
Optimization Algorithm of Morel and Renvoise,” A CM
Transactions on Programming Languages, 13(2):291-
294, 1991.

[6] J.Z. Fang, “Compiler Algorithms on If-Conversion,
Speculative Predicates Assignment and Predicated
Code Optimizat,ions,” Ninth Workshop on Languages
and Com,pilers f o r Parallel Computers, San Jose, Cal-
ifornia, August 1996.

[i] J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transactions
on Computers, 30(7), July 1981.

[8] R. Gupta, “Generalized Dominators and Post-
Dominat.ors,” 19th Annual A Ch4 SIGPL.4 N-SIGACT
Symposium, of Principles of Programming Languages,
pages 246-257, Albuquerque, New Mexico, January
1992.

[9] R. Gupta, “Code Optimization as a Side Effect of
Instruct,ion Scheduling,” International Clonferen,ce on
High Performance Computing, Bangalore, India, De-
cember 1997.

[lo] R. Gupta, U. Berson, and J .Z . Fang, “Pat,h Profile
Guided Part,ial R,edundancy Eliminat,ion Using Spec-
ulat,ion,” Technical Report TR-97-13, Dept. of Com-
puter Science, University of Pitkburgh, 1997.

[ll] R. Gupt,a, D. Berson, and J.Z. Fang, “Resource-
Sensitive Profile-Directed Data Flow Analysis for Code
Optimization,” The 30th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Research Tri-
angle Park, North Carolina, December 1997.

[12] R. Gupta and M.L. Soffa, “Region Scheduling: An
Approach for Det,ectiug and Redist,rihut,ing Paral-
lelism,” f E E E Transactions on Softuiare Engineering,
16(4):421-431, April 1990.

1131 P. Hsu and E. Davidson, “Highly Concurrent Scalar
Processing,” 13th Annual International Symposium on
Computer Architecture, pages 386-395, 1986.

[14] W.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang,
N.J. Warter, R.A. Bringmann, R.G. Ouellette, R.E.
Hank, T. Kiyohara, G.E. Haab, J.G. Holm, and D.M.
Lavery, “The Superblock: An Effective Technique for
VLIW and Superscalar Compilation,” Journal of Su-
percomputing, Vol. A, pages 229-248, 1993.

[15] V. Kathail, M. Schlansker, and B.R. Rau, “HPL Play-
Doh Architecture Specification: Version 1.0,” Techni-
cal Report HPL-93-80, Computer Systems Laboratory,
HP Labs, Palo Alto, CA, February 1994.

[I61 E. Morel and C. Renvoise, “Global Optimization by
Suppression of Partial Redundancies,” Communica-
tions of the ACM, 22(2):96-103, 1979.

[I71 J. Knoop, 0. Ruthing, and B. Steffen, “Lazy Code
Motion,” AGM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 224-
234, 1992.

[18] J. Knoop, 0. Rut,hing, and B. Steffen, “The Power of
Assignment Motion,” ACM SIGPLA N Conference on
Programming Language Design and Implementation,
pages 233-245, 1995.

[IS] J . Knoop, 0. Ruthing, and B. Steffen, “Lazy
Strengt,h Reduction,” Journal of Programming Lan-
guages, 1(1):71-91, 1993.

[20] J . Knoop, 0. Ruthing, and B. St.effen, “Partial Dead
Code Eliminat,ion,” A CM SIGPLA N Conference on
Programming La.nguage Design and Implementation,
pages 147-158, 1994.

[21] S.A. Mahlke, W.Y. Chen, R.A. Bringmann, R.E.
Hank, W.W. Hwu, B. Rau, and M. Schlansker,
“Sentinel Scheduling for VLIW and Superscalar Pro-
cessors,” ACM Transactions on Computer Systems,
11(4):376-408, NOV. 1993.

[22] G. Ramalingam, “Data Flow Frequency Analysis,”
ACM SIGPLA N Conference on, Programming Lan-
gunge Design and Implementation, pages 267-277,
1996.

[23] M.S. Schlansker and V. Kat,hail, “Critical Path
Reduction for Scalar Processors,” 28th An,nual
IE EE/A CAl In tern at ional Symposium on Microarc hi-
tecture, Ann Arbor, Michigan, November 1995.

[24] B. St,effen, “Data Flow Analysis as Model Checking,”
Proceedings TA CS ‘91, Sendai, Japan, Springer-Verlag,
LNCS 526, pages 346-364, 1991.

113

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 06,2023 at 09:34:49 UTC from IEEE Xplore. Restrictions apply.

