
Machine Learning Approach for Loop 
Unrolling Factor Prediction in High Level 

Synthesis
Authors: Georgios Zacharopoulos, Andrea Barbon, Giovanni Ansaloni and Laura Pozzi

Mehar Singh, Anisha Aggarwal, Parth Raut
(Group #10)



High Level Synthesis (HLS)

● HLS frameworks allow hardware circuits to be described at higher 
abstraction for customizable hardware

○ Languages like C or C++
● Differs from Register Transfer Level (RTL) methods which describe circuits 

in terms of registers, logical operations, and data movements
○ Languages like Verilog

● HLS allows engineers to deal with hardware design without having to know 
low-level details

○ Focus on functionality
○ Optimizing from code to hardware descriptions is done automatically



High Level Synthesis (HLS)

C/C++ Source 
Code

Optimizable 
Code HLS Tool

RTL (hardware 
implementation)

Directives and Constraints

Evaluate & Set 
Directives



Hardware Loop Unrolling

● HLS is often used to customize 
hardware to optimize loops for 
hardware accelerators.

● Loop unrolling impacts the 
performance of hardware 
accelerators due to:

○ High area cost for duplicated logic
■ Area cost is the size of the 

chip occupied by the 
accelerator

○ Loop-carried dependencies & 
frequent memory access

■ Causes accelerators to act 
more sequentially

Paper’s Contributions

1. Trained a Random Forest (RF) classifier 
to predict unrolling factors for loops in HLS 
designs

2. Developed an automated framework in 
LLVM to extract features (for both training 
and inference) as input to the classifier



Method



Method



Steps 1 & 2: Feature Selection for RF Classifier

1. Length of critical path
2. Loop trip count
3. The presence of loop carried dependencies
4. The # of load instructions
5. The # of store instructions

different features 
compared to original MIT 

paper



Steps 1 & 2: LLVM Feature Extraction Pass

extracts all 5 
features for each 

loop



Method



Steps 3 & 4: Approximating L & A with Aladdin

● Input: C/C++ programs to simulate
● Output: latency (L) and area (A) values for 7 loop unroll factors (LUFs)

○ LUFs: 1, 2, 4, 8, 16, 32, 64

Aladdin requires 500X less 
computational resources, fairly 

accurate predictions



Method



Step 4 & 5: Impact Function

● Tradeoff between performance (latency) & required resources (area)

● L & A = latency & area of function synthesized as accelerator for chosen LUF
● L1 & A1 = latency & area of function synthesized as accelerator when LUF is 1
● α = relevance of latency & area
● The impact score is used to generate the ground truth for the RF model 

during training
○ The LUF that produces the highest impact score is considered the ground truth



Step 4 & 5: Impact Function

● Apply the impact function for 3 α values
○ α = 0.5: Optimize L & A equally
○ α = 0.9: Optimize L over A
○ α = 0.1: Optimize A over L

Multi-class LUF classification 
for each alpha value



Method



Step 6: Random Forest (RF) Classification
Evaluation Metrics

● Prediction score: 
percentage of optimal 
LUFs correctly 
identified on test set

● Average error: 
average distance 
between correct & 
predicted LUFs



Results: Model & Feature Selection

● Compared feature selection against 
Stephenson et. al. (original MIT 
paper)

● α = 0.5
● Used 3 different models: RF, 

Nearest Neighbor (NN), and 
Support Vector Machine (SVM)

● Paper presents superior feature 
selection and choice of model



Results: Training Method

● Compared against an Iterative 
Refinement (IR) approach
○ IR first trains the model on a dataset, 

and then trains it again on a disjoint 
dataset

● Y1: α = 0.5
● Y2: α = 0.9
● Y3: α = 0.1
● Paper algorithm outperforms Iterative 

Refinement



Results: Impact Score

● Compared against an Iterative Refinement (IR) approach
● Improvement or comparable impact against IR in all cases
● Poor performance on jpeg-huff and stencil-stencil, tests with complex loop 

structure



Group Commentary

● Positives:
○ Tested 3 α values to consider the latency/area tradeoff
○ Considered some loop dependencies (MIT considered none)
○ Using Aladdin over full synthesis for computational efficiency

● Limitations:
○ Model may be too simplistic to understand complex looping structures

■ Evidenced by poor performance on jpeg-huff & stencil-stencil
○ Their 80-20% train/test split is random across all 1000 iterations
○ Feature extraction may be too simplistic

■ “Has Loop Carried Dependencies” feature - does not consider dependency distance
○ Regression to predict impact scores may be more suitable than classification

■ The LUF that maximizes predicted impact score should be selected
■ In classification, if ground truth LUF = 6, a predicted LUF of 1 and 5 would be considered 

equally wrong



Thank you!

Q&A


