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Abstract—High Level Synthesis development flows rely on
user-defined directives to optimize the hardware implementation
of digital circuits. Nevertheless, the most beneficial directive
values are hard to predict, and exhaustive explorations are
infeasible even for moderately complex designs. Focusing on
the Loop Unrolling directive, we herein address this challenge
by proposing a novel Machine Learning methodology, able to
jointly forecast the optimal loop unrolling factors for all the
loops in a target application. We showcase that our method
results in a better prediction score (up to 63%) and a reduced
convergence time compared to other state-of-the-art approaches.
Our method achieves 90% of the speedup that can be obtained
(with a perfect a-priori knowledge of optimal loop unrolling
factors) when synthesizing the computational hotspots of each
considered benchmark as hardware accelerators.

Index Terms—Loop Unrolling; Machine Learning; High Level
Synthesis; Hardware/Software Co-design; Customizable Proces-
sors; ASIPs.

I. INTRODUCTION

High Level Synthesis (HLS) frameworks allow designers to

describe hardware circuits at a higher abstraction with respect

to traditional Register Transfer Level (RTL) methodologies.

HLS tools, such as LegUp [1], ROCCC [2] and Vivado HLS

[3] decouple the description of the intended hardware function-

ality (usually expressed in C or C++) and its implementation,

which is governed by a set of optimization directives.

HLS provides an effective implementation pathway for

heterogeneous systems combining processors and accelerators,

because parts of an application can be easily re-targeted

from software to hardware, often without any source code

modifications. On the other hand, the performance of the

generated hardware is challenging to control from a designer

perspective, due to two compounding factors. First, hardware

synthesis is a time-consuming process, limiting in practice the

amount of possible implementations that can be evaluated.

Second, the effect of assigning different values to directives is

difficult to foresee, due to low-level application characteristics.

To cope with these issues, simulation tools such as Aladdin

[4] have been developed so as to avoid a complete hardware

synthesis, while rapidly estimating the performance and cost

(area) of HLS-defined designs. The developers of Aladdin

report approximations of the area and latency of designs within

few percentage points with respect to full synthesis flows

(both in terms of area and latency) while requiring 500X less

computation time.

Nonetheless, even when employing estimation tools, an

exhaustive evaluation of all directives settings for each candi-

date accelerator in a heterogeneous system is still unfeasible

beyond simple cases. Addressing this challenge, we herein

propose a machine learning framework that is able to infer the

proper implementation of an HLS design based on its char-

acteristics, automatically derived from a source code analysis

pass, that we developed within the LLVM compiler framework

[5].
We focus on hardware loop unrolling, an HLS directive

that targets loops whose trip count can be statically de-

fined, a common case for applications targeting heterogeneous

systems. Loop unrolling instantiates multiple copies of the

logic implementing the functionality defined in a loop body,

tangibly impacting the performance of accelerators [6] [7].

This directive should nonetheless be applied judiciously, be-

cause it entails a high area cost for the duplicated logic; in

addition, its ensuing benefits can be hampered by loop-carried

dependencies and frequent memory accesses.
In this context, our framework is able to assign, given a tar-

get cost-performance trade-off, a loop unrolling factor for each

loop in an HLS-defined accelerator with high precision, while

waiving the need for a design space exploration. Following the

common practice in machine learning methodologies, we rely

on a training phase to establish the link between loop features

and target metrics (performance and area). After training,

hardware unrolling factors are then inferred for previously-

unseen loops, according to their Control-Data Flow Graph

characteristics (e.g.: the critical path) and their performed

operations (e.g.: the amount of loads and stores).
Our contribution is two-fold:

• We illustrate a novel methodology, based on Random

Forest machine learning classification [8], which is able

to accurately predict unrolling factors for loops in HLS

designs.

• We introduce an automated framework, integrated in the

LLVM compiler, that a) automatically extracts relevant

loop information from the analysis of the source code

Intermediate Representation, and b) leverages the derived

features to assign directive values for loop unrolling

factors.

Our method has higher predictive scores, and lower average

errors, with respect to state of the art alternatives [9], while

requiring less computational effort for training. Accelerators
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designed with our framework achieve comparable performance

with respect to the ones derived from exhaustive explorations.

The paper proceeds as follows: Section II illustrates related

efforts in the field. Sections III and IV describe the hardware

unrolling prediction framework and comparatively evaluate its

performance. Section V concludes the paper.

II. RELATED WORK

Previous works have explored the applicability of machine

learning to drive compiler optimizations. In software compil-

ers, it has been employed by Agakov et al. [10] to speed

up iterative compilation, by Monsifrot et al. [11] to produce

compiler heuristics and by Kulkarni et al. [7] to select the

order in which optimization passes should be performed.

Stephenson et al. [9] have applied supervised classification

algorithms, such as Nearest Neighbor (NN) classification and

Support Vector Machines (SVM), in order to accurately predict

unrolling factors. In all above-mentioned research works the

authors targeted software compilation; in Section IV, we

comparatively evaluate the performance of our framework with

the methodology proposed by Stephenson et al., showcasing

the benefit of our choice of loop features and classification

strategy in the HLS scenario.

Similarly to us, Liu et al. [12] used a Random Forest

classification model in the context of HLS, extending the

Iterative Refinement framework proposed in [13] [14] [15]

and [16]. They address a different problem with respect to us:

that of retrieving the set of Pareto-optimal implementations

of a given design by navigating its configuration space. A

similar stance, addressing system-level design, is illustrated by

Ozisikyilmaz et al. [17]. As opposed to these works, our aim

is to perform a predictive assignment of synthesis directives,

based on a training performed on a disjoint input set. This

problem was also investigated by Kurra et al. [6]. Contrary

to their methodology, we do not rely on a detailed estimation

delay model of the loop body datapath and control logic.

III. METHODOLOGY

In this section, we first define the employed objective func-

tion and the performance metrics we considered to evaluate

our framework performance. Then we introduce the LLVM

analysis pass that we developed in order to automatically

extract relevant loop features and the approach we followed

to retrieve the area and run-time performance of HLS designs.

Lastly, the supervised learning classifier method is detailed,

which, during the training phase, gathers the data from the

previous steps to produce a loop unrolling predictor, and,

during the test phases, assigns loop unrolling factors based

on loop features.

A. Objective Function

The design of an accelerator implementation involves a

trade-off between its performance (execution latency) and its

required resources (area). Depending on the implementation

constraints, the relative relevance of these objectives may vary.

We therefore consider a parametric Impact (I) function as

follows:

I(L,A) = α · (L1 − L)

L1
+ (1− α) · (A1 −A)

A1
, 0 ≤ α ≤ 1

Where L and A are the latency and area of the function

being synthesized as an accelerator when a Loop Unrolling

Factor value (LUF) is adopted for the target loop. L1 and A1

are instead the latency and area for the same accelerator with

LUF equal to one (i.e., when the target loop is fully rolled).

We can now define the optimal LUF as the one that maxi-

mizes the Impact function above. Note that, when LUF = 1,

then I(L,A) = 0, which corresponds to a baseline im-

plementation. I(L,A) may also be negative for sub-optimal

LUF choices (where unrolling might increase area without

decreasing latency), but will always be ≥ 0 for optimal

unrolling factors.

For the experimental evaluation described in Section IV,

we considered a set of seven commonly-used LUFs S :<
1, 2, 4, 8, 16, 32, 64 >. Our methodology is nonetheless not

limited to these values, and can be applied to any set of

candidate LUFs. If a loop trip count can not be exactly divided

by an element in S, loop peeling is automatically applied by

the employed HLS tool (described in Section III-C) to the

last loop iterations. Unfeasible LUF choices, when a loop trip

count is smaller that the desired unrolling factor, are skipped

both during the training and the test phases.

The relevance of latency and area can be expressed by

setting the α parameter. For the evaluation presented in Section

IV we explored three different configurations: a) Optimize

equally for latency and area (α = 0.5). In this configuration

we maintain a balance between decreasing the execution time

and keeping low the usage of hardware resources. b) Optimize

mostly for latency (α = 0.9). Minimizing latency is favored

by this approach, thus focusing on increasing the speedup

of an application, and finally c) Optimize mostly for area

(α = 0.1). This setting aims at decreasing the area budget

of the implementation, often at the cost of achieving a smaller

speedup.

To evaluate the classification performance of a trained

classifier, we adopted two different metrics. The Prediction
Score states the percentage of optimal (according to I(L,A) )

TABLE I
FEATURES EXTRACTED BY LLVM LU ANALYSIS PASS.

Features - X Vector
Critical Path
Loop Trip Count
Has Loop Carried Dependencies
# Load Instructions
# Store Instructions

TABLE II
FEATURE VECTORS SELECTED BY STEPHENSON ET AL. [9].

Features - X Vector 1 Features - X Vector 2
# Operands # Floating Point Operations
Range Size Loop Nest Level
Critical Path # Operands
# Operations # Branches
Loop Trip Count # Memory Operations
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Fig. 1. Overview of the Loop Unrolling Prediction methodology.

LUFs that were correctly identified on the out-of-sample test

set. The Average Error instead measures the average distance

between the indexes in S of the correct and the predicted LUF.

B. LLVM-based Loop Features extraction

Loop features are automatically identified in our framework

by an analysis pass (depicted as point 1 in Figure 1) that we

developed within the LLVM compiler toolchain [5]. Features

are retrieved starting from applications written in C or C++,

operating on their Intermediate Representation, provided by

the LLVM front-end passes. The -Oz compilation flag was

used during compilation from the source code to the Inter-

mediate Representation level, in order to avoid vectorization

of the loops, which hinders a correct inspection of the loop

features.

Our LLVM Loop Unrolling Prediction Analysis Pass iterates

over functions of the applications and identifies loops. On each

of them, it performs loop, scalar evolution and dependence

analysis to retrieve their features, summarized in Table I:

the critical path, the trip count, the presence of loop carried

dependencies and the required memory accesses (load and

stores).

Our choice of features is based on the factors that influence

the cost and the achievable speedup of hardware-unrolled

loops: a loop with a long critical path may be expensive

to duplicate, while loop carried dependencies and memory

accesses may force a serialization of execution irrespectively

of the degree of unrolling. These considerations lead us to

consider a markedly different feature list with respect to works

focusing on software targets, such as the one of Stephenson

et al. (Table II).

To gather the required feature values, we built upon existing

methods (e.g. the getTripCount method belonging to the

ScalarEvolution class reference), and implemented an LLVM

analysis pass, whose pseudo-code is presented in Algorithm

1. The output of the algorithm is, for each loop, a feature

vector X stating its characteristics, represented as point 2 in

Algorithm 1 LLVM Analysis Pass - Loop Unrolling Predic-

tion Analysis

Input: Application written in C, C++

Output: X (Feature Vector)

1: function RunOnFunction( )

2: for BB in Function do
3: if L=getLoopForBB() then
4: LoopUnrollingPredictionAnalysis(BB,L)

5:

6: function LoopUnrollingPredictionAnalysis(Basic Block

BB, Loop L)

7: LI=getLoopInfoAnalysis()

8: SE=getScalarEvolutionAnalysis()
9: DA=getDependenceAnalysis()

10: /* Gather Features for X Vector */
11: x1=getCriticalPath(BB)

12: x2=getTripCountForLoop(L)

13: x3=getLoopCarriedDependencies(BB)

14: x4=getNumberOfLoadInstructions(BB)

15: x5=getNumberOfStoreInstructions(BB)

Figure 1. Feature vectors are used during training to tune the

classifier (described in Section III-D), and during the test phase

to predict high-impact loop unrolling factors.

C. Area and Latency Estimation

To establish a link between LUFs and performance/cost of

implementations, area and latency values must be retrieved

both for the loops in the training set (in order to optimize the

classifier) and the ones in the test set (to measure its accuracy).

To compute them, we relied on Aladdin [4] (point 3 in

Figure 1), a pre-RTL power-performance simulator for hard-

ware accelerators. We simulated all functions contained in

the considered benchmarks, adopting, for the contained loops,

each feasible unrolling factor in the S set defined in Section

III-A. Latency is reported by Aladdin in clock cycles, while
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Algorithm 2 Random Forest Classification - Training and Test

Input: X and Y Vectors

Output: Trained Random Forest Classifier

1: for i in NumberOfTrainingSessions do
2: X train, X test, Y train, Y test=train test split(X,Y)
3: /* Training Phase */
4: M=RandomForestLearningModel
5: M.train(X train, Y train)
6: /* Evaluation Phase */
7: Pred=M.predict(X test)
8: Error=abs(Pred-Y test)
9: Score=M.score(X test-Y test)

area is expressed in μm2 in a 45nm technology. The result is

shown as point 4 in Figure 1.

We then computed the Impact (I) for the different α values,

to retrieve the optimal loop unrolling factor for every loop of

a function, which is the index of the LUF that maximizes I .

The result is three vectors {Y 1, Y 2, Y 3} (point 5 in Figure 1)

that contain the target values for the classification algorithm.

The Y 1 vector includes the optimal loop unrolling factor that

balances the hardware implementation of the accelerators in

terms of low latency and low area. Values in the Y 2 vector

favors low-latency implementations, applying more aggressive

loop unrolling, whereas Y 3 favors low-area ones.

D. Random Forest Classification

Supervised learning tasks, and in particular classification

problems, require an appropriate selection both of the features

and of the employed model. The rationale behind our choice

of features is presented in Subsection III-B. Herein, we discuss

the adopted classification strategy (point 6 in Figure 1) and the

process we employed to validate it.

We used Random Forest as our supervised learning model,

which has been shown by Liu et al. [12] to outperform

alternatives such as Multilayer Neural Networks and Support

Vector Machines classification in the context of HLS design

space exploration. Random Forest algorithms follow a decision

tree methodology, combining many weak classifiers to derive

a strong one, allowing the generation of low-complexity and

robust classifiers.

The algorithm employed, as presented in Algorithm 2, fol-

lows an approach similar to a k-fold cross validation strategy.

The whole data set (X and Y vectors, see points 2 and 5 in

Figure 1) is divided randomly between a training set and a

test set, where the training set is equal to 80% of the whole

data set and the remaining 20% is the test set. Then, the

Random Forest model is used for the training process on the

training set and out-of-sample predictions are carried out for

each element of the test set. After all predictions on the test

set have been computed, the prediction score and the average

error (as defined in Section III-A) are computed for the current

training session.

The process is repeated on different random partitions

between training and test data, for 1000 times. As a last

step, the mean value of the prediction score and average

Fig. 2. Distribution of Loop Unrolling Factor Prediction Errors over 18.000
out-of-sample predictions.

error over all iterations is computed, measuring the overall

predictive performance of our approach. To aggregate the

results obtained from different cross-validation rounds, we

defined the predicted LUFs for each loop as the average across

all performed out-of-sample predictions, rounded to the nearest

value (index of the S set). The aggregated predictions were

stored in a new Y vector, with one element per loop in the

data set.

IV. EXPERIMENTAL RESULTS

In order to comparatively evaluate our proposed method-

ology, combining Random Forest classification and LLVM-

based loop features extraction, we investigated its performance

on benchmarks of different complexity. Small and medium-

sized ones are adpcm, an audio encoding kernel, stencil,

an implementation of an iterative algorithm that updates array

elements according to a given pattern, and sha, a secure

hash encryption method used in the information security

domain. jpeg and mpeg2 are instead larger benchmarks,

which perform image and video compression, respectively.

Applications were drawn from the CHStone [18] and the

Scalable Heterogeneous Computing (SHOC) benchmark suites

[19]. In total, they comprise 87 different loops.

We implemented Random Forest classification using the

Scikit-learn suite [20], that includes state-of-the-art implemen-

tations of Machine Learning models in python. Scikit-learn

was also employed to re-implement the two methods proposed

by Stephenson et al. [9], that we consider as baselines.

Giving an initial proof of concept for our strategy, Figure

2 reports the difference between the indexes of the predicted

optimal (according to impact value) loop unrolling factors and

the ones retrieved with an exhaustive exploration, considering

18.000 out-of-sample predictions on all the benchmark loops.

Results are highly concentrated on zero, indicating a high rate

of correct predictions.

In the following, we further investigate the performance

of our frameworks from multiple viewpoints: the benefits of

our choice for the classifier and the features are discussed in

Section IV-A. Then, a comparison is drawn with an alternative

implementation relying on Iterative Refinement, proposed,

among other, by Palermo et al. [14] as an effective strategy

when applied to HLS explorations. We conclude the Section

by discussing the run-time of our methodology.
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Fig. 3. Comparison of the Prediction Score (top) and Average Error (bottom)
across Random Forest, Nearest Neighbor, Support Vector Machines models
and the respective feature selection: our X vector, Stephenson et al. X1 and
X2 vectors [9].

A. Classification Models and Features

To evaluate our choice of features (X vector in Table I)

and training model Random Forest (RF), we compare our

approach against two state-of-the-art methodologies proposed

by Stephenson et al. [9]. With respect to our work, the

latter present different classification strategies: Support Vector

Machines (SVM) and Nearest Neighbor (NN) and a different

choice of investigated loop features, reported in Table II. The

latter include the number of operands, the live range size, the

number of floating point operations and the loop nest level.

Figure 3 shows, for a choice of α = 0.5, the prediction score

and the average error of the nine strategies resulting from the

adoption of different feature vectors and classification strate-

gies (ours and the ones of Stephenson et al.). Experimental

results highlight that our framework (X feature vector and RF

classification) outperform other choices, reaching a prediction

score above 60% and an average error of less than 1.4. Similar

results were obtained for impact functions favoring area or

latency (Y 2 and Y 3 vectors).

To further test our method, we evaluated the performance

on the cross product of the three models and the three feature

vectors, which further emphasize that X and the Random

Forest systematically outperform, in terms of average error

as well as prediction score, other alternatives, presenting

a positive marginal contribution to the global improvement

achieved by our methodology.
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Fig. 4. Comparison of the Prediction Score (top) and Average Error (bottom)
between our algorithm and Iterative Refinement [13] [14] [15] [16] across
all three Y vectors (Y1: balances latency and area, Y2: favors speedup by
minimizing latency and Y3: favors a low HW area usage).

B. Comparison with Iterative Refinement

In the second round of experiments, we compared our

method against an Iterative Refinement approach, used in [13]

[14] [15] [16]. Iterative Refinement uses part of the training

data set to obtain a first version of the classifier, whose

performance is then improved by using a second, disjoint set

of input and outputs.

For this evaluation, we considered the three different set-

tings of Y target vectors {Y 1, Y 2, Y 3}, as described in Section

III-A. The employed data, the features (X vector) and the

training model (Random Forest) were the same both for our

algorithm and the one using Iterative Refinement. For Iterative

Refinement, we allocate 75% of the training set for the initial

training phase, and the remaining 25% for the refinement

phase.

The prediction score, as seen in Figure 4, ranges from

53% to 63% across the three Y vectors. Nevertheless, our

methodology consistently outperforms the Iterative Refine-

ment approach, while achieving the highest prediction score

(63%) for the setting that favors low area resources (Y 3).

A similar observation can be made for the average error

values, where our approach keeps a lower average error for

all predictions, across all vectors, with the one related to the

Y 3 vector being the lowest (1.32).

Figure 5 reports the speedup, area and impact metrics of

HLS designs optimized with our predictive method, comparing
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Fig. 5. Comparison of the Speedup, Area and Impact achieved for every function by our Algorithm and by an Iterative Refinement approach [13] [14]
[15] [16], compared to the optimal solutions derived from exhaustive explorations. Speedup and Area numbers are normalized with respect to fully rolled
configurations.

them to an Iterative Refinement approach and to results ob-

tained from an exhaustive exploration. The graphs correspond

to an impact function with α = 0.9 (similar results were

obtained for other α values). Two considerations can be drawn

from the reported data: first, in most cases our methodology

closely tracks the user-defined trade-off between area and la-

tency. In this respect, jpeg-huff and stencil-stencil
are outliers, since their loop structure is quite complex, making

their optimization challenging to automate. Second, the impact

achieved by our approach is equal or higher (by 66% in

the case of mpeg2) than the impact attained by Iterative

Refinement. On average, our methodology obtains 86% of

the speedup achieved by the optimal factor retrieved with a

costly exhaustive exploration (90% for α = 0.5 and 92% for

α = 0.1).

C. Convergence Time Comparison

Besides retrieving high-quality LUF predictions, our frame-

work also requires a lower computational effort with respect to

other methods. In this regard, experimental evidence is shown
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Fig. 6. Top: time required to converge for state-of-the-art Machine Learning
models with our X feature vector and Stephenson et al. X1 and X2 vectors [9].
Bottom: convergence time of our algorithm and Iterative Refinement across
all three Y vectors.

in Figure 6, reporting the time required for training and testing,

comparing different classification strategies, feature vectors

and impact functions.

As expected, the choice of employed features, as well as the

relative relevance of area and latency, does not tangibly impact

the computing time. On the other hand, the type of employed

classifier has a noticeable effect, with Random Forest being

slower to converge than NN and SVM. Nonetheless, only 14

seconds were required by our approach. The difference be-

tween the Iterative Refinement approach and our methodology,

though, is even more significant, as the the former requires

almost four times more than our methodology to converge.

It is worthwhile to mention that all these approaches require

orders of magnitude less convergence time with respect to ex-

haustive explorations, whose runtime may range from minutes

(for estimation tools like Aladdin [4]) to hours (for synthesis

frameworks such as Vivado HLS [3]).

V. CONCLUSIONS

We have presented a novel methodology based on LLVM

analysis and Random Forest classification that performs loop

unrolling factor predictions for HLS designs. Our approach

achieves better prediction score and less average error in

comparison to state-of-the-art Machine Learning methods.

Experimental evidence showcases that, by carrying out accu-

rate predictions of loop unrolling factors, high performance

accelerator implementations can be realized, while avoiding

highly time-consuming exhaustive explorations.
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