
Exploiting Superword Level Parallelism
with Multimedia Instruction Sets

Presented By: Alexandru Beloiu, Christian George, Farzad Siraj

Samuel Larsen, Saman Amarasinghe

Although modern computers have support for parallel and
multi-threaded programs programmers often write
sequential code.

2

Identifying a robust method to compile sequential code into
parallel code can increase performance.

X = 0
Y = 0
Z = 0

X = 5

Y = 6

Z = 7

print(X,Y, Z)

Sequential
Parallel

Sequential

Superword Level Parallelism (SLP) - A technique that
identifies and exploits parallelism at the level of
superwords, chunks of data that can be processed.

3

SLP vs Vector Parallelism

● Vector parallelism is a subset of superword level parallelism

● Results will show that almost 20% of optimizations on benchmarks come from
non-vectorizable code

● What is the difference between code that can be optimized through
vectorization/SLP?

4

Vectorizable Code Example

5

Non-Vectorizable Code Example

● Programmer optimizations
prevent vectorization

● Sequential-nature of code
presents opportunity for SLP

6

SLP Compiler Algorithm

1. Loop Unrolling
2. Alignment Analysis
3. Pre-Optimization
4. Identifying Adjacent Memory Accesses
5. Extending the PackSet
6. Combination
7. Scheduling

7

Loop Unrolling

● Transform vector parallelism into basic blocks with superblock level parallelism
● Unroll factor must be customized to the data sizes used within the loop

○ Ex: Loop containing 16 bit values should be unrolled 8 times for a 128-bit datapath

8

Alignment Analysis

● For architectures that do not support unaligned memory accesses, alignment
analysis can greatly improve performance.

● Subsequent algorithm makes assumption that no architectural support for
misaligned accesses.

9

Pre-optimization

● Important for creating opportunities for SLP gains
● Identifying adjacent memory references is much easier if address calculations

maintain their original form
● Ensure parallelism is not extracted from code that will be eliminated:

○ Constant propagation
○ Copy propagation
○ Dead code elimination
○ Common subexpression elimination
○ Loop invariant code motion
○ Redundant load/store elimination

10

Identifying Adjacent Memory References - I

● Core of the algorithm - statements containing adjacent memory references are the first
candidates for packing. Outputs a seed PackSet.

11

Identifying Adjacent Memory References - II

● Isomorphic Instructions - Instructions that contain the same operations in
the same order.

12

Identifying Adjacent Memory References - III

13

● For two statements to be packable, they must meet the following:
○ They are isomorphic

○ They are independent

○ The left statement is not already packed in a left position

○ The right statement is not already packed in a right position

○ Alignment information is consistent

○ Execution time of new parallel operation less than sequential version.

Unique sets

Hardware
-specific

Identifying Adjacent Memory References - IV

U = unpacked statements, P = packed statements

14

Extending the PackSet - I

● Once the PackSet has been seeded with initial Packs, more groups can be
added by finding new candidates that can either:

○ Produce needed source operands in packed form (use-def chain), or

○ Use existing packed data as source operands (def-use chain)

15

Extending the PackSet - II

16

def-use

Extending the PackSet - III

17

use-def

Combination

● Pairs are combined into larger groups
○ Pairs can be combined if Pair1.right == Pair2.left

■ Prevents instructions from being in multiple groups/packs.

18

Scheduling - I

● Dependence analysis before packing ensure that statements within a group can be
executed safely in parallel.

● However, two group might produce a dependence violation - Rare!

19

Scheduling - II

● Inter-group dependencies are ok unless there is a cycle.

● Schedule instructions with standard List Scheduling

● If a cycle is encountered, the group containing earliest unscheduled
instruction is split apart.

20

Scheduling - II

21

Results

● Approach - evaluated SLP compiler
techniques against vectorization on a Motorola
MPC7400 with AltiVec using SUIF compiler
infrastructure

● Benchmarks - scientific and multimedia
applications

● More opportunities for SLP packing in
scientific applications

22

Results

23

Results

24

Challenges

● Limited architectural support for SLP - at the time of this paper, double
precision was not supported by AltiVec

● Hardware coupling - packed instructions are executed on the AltiVec unit,
and unpacked instructions are executed on the superscalar unit; high cost for
inter-unit memory movement

● Unaligned memory support - architectures supporting efficient unaligned
load and store instructions might improve the performance of SLP analysis.

25

Group Commentary

● Structured Approach: The paper presents a well-organized exploration of
Superword Level Parallelism, and is easy to follow.

● Mainstream Integration: SLP is no longer novel; it has become somewhat
standard. LLVM vectorizers now integrate SLP optimizations.

● SLP vs. Traditional Vectorization: Traditional vectorization sometimes
outperform SLP in specific benchmarks. How can we combine approaches?

● Algorithmic Challenges: The proposed algorithm identifies isomorphic
statements but lacks optimality. Revisiting heuristics and adaptivity is
essential.

● Emerging Approaches: Reinforcement learning-based SLP and other novel
strategies address limitations and adapt to diverse workloads.

26

https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer
https://arxiv.org/pdf/1909.13639v4.pdf

Thank You! Questions?

27

