Exploiting Superword Level Parallelism
with Multimedia Instruction Sets

Samuel Larsen, Saman Amarasinghe

Presented By: Alexandru Beloiu, Christian George, Farzad Siraj

Although modern computers have support for parallel and
multi-threaded programs programmers often write
sequential code.

Parallel
Sequential X=5 \ Sequential
X=0 /
Y=0 Y=6 print(X,Y, Z)
Z=0
\ — /

|dentifying a robust method to compile sequential code into
parallel code can increase performance.

Superword Level Parallelism (SLP) - A technique that
identifies and exploits parallelism at the level of
superwords, chunks of data that can be processed.

for (i=0; i<16; i+=4) {
localdiff0 = ref[i+0] - curr[i+0];
localdiffl = ref[i+1] - curr[i+1];

for (i=0; i<16; i++) { localdiff2 = ref[i+2] - curr[i+2];
localdiff = ref[i] - curr[i]; localdiff3 = ref[i+3] - curr[i+3];
diff += abs(localdiff) ;

diff += abs(localdiffO);
} diff += abs(localdiff1l);
diff += abs(localdiff2);
diff += abs(localdiff3);

SLP vs Vector Parallelism

e \ector parallelism is a subset of superword level parallelism

e Results will show that almost 20% of optimizations on benchmarks come from
non-vectorizable code

e What is the difference between code that can be optimized through
vectorization/SLP?

Vectorizable Code Example

for (i=0; i<16; i++) {
localdiff = ref[i] - curr[i];
diff += abs(localdiff);

}

(a) Original loop.

for (i=0; i<16; i++) {
Thil = ref[il = cuxrxr[il;
}

for (i=0; i<16; i++) {
diff += abs(T[i]);
}

(b) After scalar expansion and loop fission.

tion techniques.

Figure 2: A comparison between SLP and vector paralleliza-

for (i=0; i<16; i+=4) {
localdiff = ref[i+0] - curr[i+0];
diff += abs(localdiff);

localdiff = ref[i+1] - curr[i+1];
diff += abs(localdiff);

localdiff = ref[i+2] - curr[i+2];
diff += abs(localdiff);

localdiff = ref[i+3] - curr[i+3];

diff += abs(localdiff);
}

(c) Superword level parallelism exposed after unrolling.

for (i=0; i<16; i+=4) {
localdiffO = ref[i+0] - curr[i+0];

localdiffl = ref[i+1] - curr[i+1];
localdiff2 = ref[i+2] - curr[i+2];
localdiff3 = ref[i+3] - curr[i+3];

diff += abs(localdiff0);

diff += abs(localdiffl);

diff += abs(localdiff2);

diff += abs(localdiff3);
}

(d) Packable statements grouped together after renaming.

Non-Vectorizable Code Example

e Programmer optimizations do 1
prevent Vectorlzatlon dst[0] = (srci1[0] + src2[0]) >> 1
dst[1] = (srci[1] + src2[1]) >> 1;
. dst[2] = (srci[2] + src2[2]) >> 1;
¢ Sequentlal_nature of code dst[3] = (srci[3] + src2[3]) >> 1;
presents opportunity for SLP
dst += 4;
srcl += 4;
src2 += 4;

}
while (dst '= end);

Figure 3: An example of a hand-optimized matrix operation
that proves unvectorizable.

SLP Compiler Algorithm

Loop Unrolling

Alignment Analysis

Pre-Optimization

ldentifying Adjacent Memory Accesses
Extending the PackSet

Combination

Scheduling

NS ko=

Loop Unrolling

e Transform vector parallelism into basic blocks with superblock level parallelism

e Unroll factor must be customized to the data sizes used within the loop
o Ex: Loop containing 16 bit values should be unrolled 8 times for a 128-bit datapath

for (i=0; i<16; i++) {
localdiff = ref[i] - curr[i];
diff += abs(localdiff);

}

(a) Original loop.

for (i=0; i<16; i+=4) {
localdiff = ref[i+0] - curr[i+0];
diff += abs(localdiff);

localdiff = ref[i+1] - curr[i+1];
diff += abs(localdiff);

localdiff = ref[i+2] - curr[i+2];
diff += abs(localdiff);

localdiff = ref[i+3] - curr[i+3];

diff += abs(localdiff);
}

(¢) Superword level parallelism exposed after unrolling.

Alignment Analysis

e For architectures that do not support unaligned memory accesses, alignment
analysis can greatly improve performance.
e Subsequent algorithm makes assumption that no architectural support for

misaligned accesses.

memory boundary 16-bit

[_L'l

| |
L .)

64-bit misaligned load

Pre-optimization

Important for creating opportunities for SLP gains
e Identifying adjacent memory references is much easier if address calculations
maintain their original form

e Ensure parallelism is not extracted from code that will be eliminated:
Constant propagation

Copy propagation

Dead code elimination

Common subexpression elimination

Loop invariant code motion

Redundant load/store elimination

0O O O O O O

10

|dentifying Adjacent Memory References - |

Core of the algorithm - statements containing adjacent memory references are the first
candidates for packing. Outputs a seed PackSet.

Definition 3.1 A Pack is an n-tuple, (si,...,Sn), where
S1, ..., 8y are independent isomorphic statements in a basic
block.

Definition 3.2 A PackSet is a set of Packs.

In this phase of the algorithm, only groups of two state-
ments are constructed. We refer to these as pairs with a left
and right element.

Definition 3.3 A Pair is a Pack of size two, where the
first statement is considered the left element, and the sec-
ond statement is considered the right element.

11

|dentifying Adjacent Memory References - |l

e Isomorphic Instructions - Instructions that contain the same operations in
the same order.

a=Db+ c * z[i+0]
d=e + £ * z[i+l]
r=s+t * z[i+2]
w=ZXx+y * z[i+3]

z[1i+0]

i+1

- *s1mMp *s1Mp :E;+2}
z[i+3]

Figure 1: Isomorphic statements that can be packed and
executed in parallel.

Mot Q

|dentifying Adjacent Memory References - ||

e Fortwo statements to be packable, they must meet the following:

O

(@)

(@)

They are isomorphic
They are independent
The left statement is not already packed in a left position
} Unique sets

The right statement is not already packed in a right position

Hardware

-specific

Alignment information is consistent
Execution time of new parallel operation less than sequential version. }

13

|dentifying Adjacent Memory References - IV

E (1) b = a[i+0] E E (2) e¢=5 : E (1) b = a[i+0]

1 (2) e=5 : ' (3) d=b+c | | (4) e =a[itl]

1 (3) d=b+c ! .

(5) £ =6 | (4) e = a[i+l1]

' (4) e = a[i+l] | * ' (6) . - E + (7) h = a[i+2]

| (5) £ =6 ! T e
5(6) = e +f | 5(8)3-7

| | ' (9) k=h+3 !

| (7) h = a[i+2] |

5(3) J 7 E

U = unpacked statements, P = packed statements

14

Extending the PackSet - |

e Once the PackSet has been seeded with initial Packs, more groups can be
added by finding new candidates that can either:

o Produce needed source operands in packed form (use-def chain), or

o Use existing packed data as source operands (def-use chain)

15

Extending the PackSet - |

llllllllllllllllllllllllllllll

o ~ ~ N O W W M
+ + + +

o A A + + + +
o o o o a o 0 <

- o~

b e s =
Q
(

...................... ;

(4] W o R

- - +

n .Q o - i

(c)

16

|
! |
. o - o U W o !
o+ o+ + + :
_.l-l R B | ++ ++]
T d ——
% o c @ .Q o 0 < n © ~
' |
P“ non non non non nn nn
1
A e 0 < T o o X 0O W Y ™
|
e - e _——— e))"
- <~ ™M © o o N N n o |
|

||

(c)

Extending the PackSet - Il
(6)
(9)

(d)

17

Combination

e Pairs are combined into larger groups

o Pairs can be combined if Pair1.right == Pair2.left
m Prevents instructions from being in multiple groups/packs.

| (1) b = a[i+0] !
L (4) e = api+1) |

| (4) e = a[i+l] |
' (7) h = a[i+2] |

1 (3) d=b+c

' (6) g=e+f | '(3) d=b+c
;(6)g=e+fe 5(6) g=e+t

1 (9) k=h+73

(2) e=5 (2) ¢=5
(5) £=6 (5) £ =6
(5) £ (8) j =17
(8) T E e S e S

18

Scheduling - |

Dependence analysis before packing ensure that statements within a group can be
executed safely in parallel.
However, two group might produce a dependence violation - Rare!

. X = a[i+0] + k1
X = a[:.L-I-O] + k1 y = a{i+1} + k2
y = a[i+l] + k2 z = a[i+2] + s
q =Db[i+t0] +y —»
r = b[i+1] + k3
s = b[i+2] + k4

q = b[i+0] + ¥y
a[(i+2] + s r = b[i+l] + k3
s = b[i+2] + k4

Figure 6: Example of a dependence between groups of
packed statements.

19

Scheduling - I

e Inter-group dependencies are ok unless there is a cycle.
e Schedule instructions with standard List Scheduling

e If a cycle is encountered, the group containing earliest unscheduled
instruction is split apart.

20

Scheduling - I

(2) ¢ =5
(5) £ =6
(8) -

b a[i+0]
' | e| = [a[i+l]
X 1 h a[i+2]
: c 5
: £f| =16
2K 7
| d b c
gl =|e [+ |£
N h j

(£f)

21

Results

Approach - evaluated SLP compiler
techniques against vectorization on a Motorola
MPC7400 with AltiVec using SUIF compiler
infrastructure

Benchmarks - scientific and multimedia
applications

More opportunities for SLP packing in
scientific applications

O Vector Parallelism B Superword Level Parallelism

100%

% of dynamic instructions eliminated

Figure 9: Percentage of dynamic instructions eliminated
with SLP parallelization and with vector parallelization on
a 256-bit datapath.

‘ O Vector Component B Non-vector Component ‘

S
g
X

90%
80% -
70% -
60% -
50% -
40% -
30% -
20% +--
10% -

% contribution to dynamic instructions eliminated

S
X

Figure 10: Contribution of vectorizable and non-vectorizable
code sequences in total SLP savings for the SPEC95fp
benchmark suite.

22

Results

[EI Vector Parallelism B Superword Level Parallelism

% of dynamic instructions eliminated

O Vector Component B Non-vector Component

% contribution to dynamic instructions eliminated

Figure 9: Percentage of dynamic instructions eliminated || Figure 10: Contribution of vectorizable and non-vectorizable

with SLP parallelization and with vector parallelization on
a 256-bit datapath.

code sequences in total SLP savings for the SPEC95fp
benchmark suite.

23

Results

Benchmark | Speedup
swim 1.24
tomcatv 1.67
FIR 1.26
ITIR 1.41
VMM 1.70
MMM 1.79
YUV 6.70

570%

...
g
X

75% A

50% +
N I I
0% _]

Tomcatv VMM MMM

% improvement of the execution time

Figure 11: Percentage improvement of execution time on an
MPC7400 processor using SLP compilation.

24

Challenges

Limited architectural support for SLP - at the time of this paper, double
precision was not supported by AltiVec

Hardware coupling - packed instructions are executed on the AltiVec unit,
and unpacked instructions are executed on the superscalar unit; high cost for
inter-unit memory movement

Unaligned memory support - architectures supporting efficient unaligned
load and store instructions might improve the performance of SLP analysis.

25

Group Commentary

Structured Approach: The paper presents a well-organized exploration of
Superword Level Parallelism, and is easy to follow.

Mainstream Integration: SLP is no longer novel; it has become somewhat
standard. LLVM vectorizers now integrate SLP optimizations.

SLP vs. Traditional Vectorization: Traditional vectorization sometimes
outperform SLP in specific benchmarks. How can we combine approaches?

Algorithmic Challenges: The proposed algorithm identifies isomorphic
statements but lacks optimality. Revisiting heuristics and adaptivity is
essential.

Emerging Approaches: Reinforcement learning-based SLP and other novel
strategies address limitations and adapt to diverse workloads.

26

https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer
https://arxiv.org/pdf/1909.13639v4.pdf

Thank You! Questions?

27

