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Abstract— Graph-coloring is an NP-hard problem which has 
a myriad of applications. Register allocation, which is a crucial 
phase of a good optimizing compiler, relies on graph coloring. 
Hence, an efficient graph-coloring algorithm is of paramount 
importance. In this work we try to ‘learn’ a good heuristic for 
coloring interference graphs that are used in the register 
allocation phase. We aim to handle moderate-sized interference 
graphs which have 100 nodes or less. For such graphs we can get 
the optimal allocation of colors to the nodes. Such optimal 
coloring is then used to train our Deep Learning (DL) network 
which is based on several layers of LSTM that output a color for 
each node of the graph. However, the trained network may 
allocate the same color to the nodes connected by an edge 
resulting in an invalid coloring of the interference graph. Since 
it is difficult to encode constraints in an LSTM to avoid invalid 
coloring, we augment our deep learning network with a color 
correction phase that runs after the colors have been allocated 
by the DL network. Thus, our algorithm is approximate or 
hybrid in nature consisting of a mix of a DL algorithm followed 
by a more traditional correction phase. The color correction 
phase handles the edges with invalid coloring by first trying to 
reuse a color allocated to other nodes that are not connected to 
the invalid nodes, failing which it adds a totally new color – 
thereby breaking the invalid allocation. Our experience with 
many graphs shows that around 10%-30% edges may get an 
invalid coloring. We have trained our DL network using several 
thousand random graphs of varying sparsity(density). On 
application of our approximate algorithm to various popular 
graphs found in literature we see that our algorithm does very 
well when compared to the optimal coloring of these graphs. We 
have also run our algorithm against LLVM’s popular greedy 
register allocator (GRA) for several SPEC CPU 2017 
benchmarks and notice that the approximate algorithm 
performs on par or better than GRA for most of these 
benchmarks.  

Keywords— Deep Learning, Graph Coloring, LLVM 
compiler, Long Short-Term Memory (LSTM), Register 
Allocation 

I. INTRODUCTION

For solving NP-hard problems like graph-coloring, 
numerous heuristics have been designed. Comprehensive 
reviews of such heuristics can be found in [13,24]. Two well-
known greedy algorithms DSATUR [5,7] and RLF [21] 
employ refined rules to dynamically determine the next vertex 
to color. These greedy heuristic algorithms are usually fast. 
Register allocation as a graph coloring problem was first 
introduced by Chaitin in [8]. Later, several other graph 
coloring register allocation algorithms have been introduced 
by Chow [9] and Briggs [3]. These heuristics achieve good 
performance over a wide range of interference graphs. 

    

However, there may be scope for improvement in terms of 
optimizing the number of registers used and reducing the cost 
of spilling registers to memory. While one can pursue 
designing smarter heuristics our goal is to learn a good 
heuristic using DL techniques that will be as close to the 
optimal assignment as possible and compare favorably, if not 
surpass, some of the heuristics used in modern register 
allocators like LLVM. 

In order to learn a good heuristic for graph coloring with 
interference graphs in mind, we need training data that 
includes solutions that outperform existing heuristics in the 
register allocators. We tackle this problem firstly by restricting 
the interference graph size to a maximum of 100 nodes. This 
is a reasonable number based on our experience of working 
with the LLVM register allocator. Secondly, we use an exact 
algorithm to solve the graph coloring problem for such graphs 
having less than 100 nodes. It has been found that such exact 
solvers work well for graphs having small to moderate size. In 
this work we have found that such a method takes a long time 
to color a graph having more than 75 nodes. However, since 
this coloring is done for DL training the additional time 
becomes acceptable. 

In this paper, we demonstrate our approach by introducing 
an approximate algorithm that consists of an approximate 
deep learning-based technique augmented with a color 
correction phase. We use a Recurrent Neural Network (RNN) 
[14], specifically an LSTM (Long short-term memory) [18], 
to model the graph coloring problem. Constraints like the 
nodes appearing at the ends of an edge should not have the 
same color, cannot be encoded well in an LSTM. As a result, 
despite a large training set, the LSTM may not learn such a 
constraint fully. To compensate for this, we have designed a 
traditional post-pass after LSTM, that corrects this anomaly 
by checking and correcting all such invalid edges.  

We train our LSTM using random graphs generated using 
the very_nauty [4] package. For inference we use popular 
graphs found in literature as well as interference graphs that 
can be generated by LLVM-9.0 [23] as part of its register 
allocation phase. Note that the random graphs generated and 
the interference graphs of LLVM may have different 
characteristics in terms of sparsity, node degrees, and other 
graph parameters. However, our observation is that our 
LSTM-based approach generalizes well from random graphs 
to interference graphs. 

A. Contributions
The main contributions of our paper are as follows:
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 We have designed a new LSTM-based approximate 
DL algorithm that can color graphs and the number of 
colors used compares favorably with optimal coloring 

 The approximate DL algorithm is paired with a color 
correction phase that corrects nodes which may have 
been colored in an invalid manner 

 We show, with popular graphs and interference graphs 
culled from the LLVM-generated SPEC CPU® 2017 
[29] benchmarks, that the efficacy of our approach is
high

The paper is organized as follows. In Section II we discuss 
how we model the graph-coloring problem using LSTM. We 
also discuss how to train such models and provide the 
algorithm for color correction. In Section III we look at some 
popular graphs as use-cases and compare optimal coloring of 
such graphs with our method. Section IV will deal with the 
interference graphs generated using LLVM and the 
performance of our algorithm on such graphs. We propose a 
possible architecture of how to incorporate a DL-based 
module in LLVM also. In Section V we will discuss related 
work. We conclude in Section VI and discuss possible future 
work. 

II. GRAPH COLORING USING LSTM
In this work we model the graph coloring problem using 

LSTM, which is a variant of Recurrent Neural Network 
(RNN).  A common LSTM unit is composed of a cell, an input 
gate (i), an output gate (o) and a forget gate (f) as shown in 
Figure 1 [10]. The cell remembers values over arbitrary time 
intervals and the three gates regulate the flow of information 
into and out of the cell where h is the hidden state and X is the 
input, at time step t. The final value of hn is the output of the 
LSTM. LSTM networks are well-suited for classifying, 
processing and making predictions based on a data sequence 
which appears as a sequence of time steps and were developed 
to deal with the exploding and vanishing gradient problems 
that can be encountered when training traditional RNNs. A 
useful way to visualize RNNs/LSTMs is to consider the 
update graph formed by ‘unfolding’ the network along the 
input sequence. The unfolded/unrolled LSTM with multiple 
cells is shown in Figure 2 [1]. 

Figure 1: An LSTM cell 

Figure 2: Unrolled/Unfolded LSTM/RNN 

A. LSTM-based Model for Graph Coloring
For graph coloring, since we handle modest-sized graphs

of 100 nodes or less, we use the entire adjacency matrix of a 
graph as input. The input sequence to the LSTM is the 
sequence of graph nodes – starting with node 0 and ending 
with node n-1 where n is the number of nodes of the graph. 
For each node, we use the adjacency vector of the node as 
shown in Figure 3, as input. Hence, at each time step t of the 
input sequence to the LSTM, the adjacency vector of Vt is 
provided, where Vt is the t-th node of the graph. The adjacency 
vector of Vt is nothing else but the entire row of the adjacency 
matrix corresponding to node Vt. The output of the LSTM-
based model are the colors of each node. Since there are n 
vertices the output sequence is also of size n. For better 
performance and prediction accuracy we use deep LSTMs 
with 3 layers, with hidden states of one layer passed on to the  
LSTM cells of the next layer as inputs. 

Figure 3: Deep Learning Model for Graph Coloring using 3-
layered LSTMs 

After the LSTM layers, we use a fully connected dense 
layer that takes the output of the final LSTM layer and 
produces a single value. This value is fed through a ReLU 
layer[14] to provide the final color value of a node. Since a 
graph of n nodes never requires more than n colors to correctly 
color all its vertices, we can use the numbers 1 ... n to represent 
the colors of the vertices at the output. The three layers are 
numbered Layer 0, Layer 1 and Layer 2 in Figure 3. In each 
layer we show the unrolled LSTM consisting of the full 
sequence size n with LSTM0 corresponding to input time step 
of 0 and LSTMn-1 corresponding to the input time step of n-1, 
which corresponds to the vertices V0 and Vn-1 of the graph. In 
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our model, each LSTM cell has 1024 hidden units. The 
number of layers (3) as well as the number of hidden units in 
each cell has been arrived at empirically. We have 
programmed the LSTM-based model using TensorFlow 2.0 
[15]. 

B. Training the Model 
For training our model we use random graphs generated 

via the very_nauty package [4]. Very_nauty is a C library of 
graph algorithms, especially targeted at very fast generation of 
random graphs, and exact clique number and chromatic 
number computations. In practice, it is possible to use the 
exact algorithms on graphs with up to a few hundred nodes. 
However, we noticed that with this software, exact graph 
coloring over 75 nodes becomes quite slow in practice though 
we can get the exact color allocation in a reasonable time up 
to 150 nodes or so. However, in this work we will restrict our 
input graphs to 100 nodes or less as mentioned earlier.  

We mainly use two functions from this package. First, a 
function called graph_gnp (graph_t g, double p) which uses 
the Erdös-Renyi model [19] to generate random graphs for n 
nodes with p being the probability of two nodes being 
connected by an edge. Second, we use 
graph_chromatic_number (graph_t g,clock_t timeout) to 
compute the exact chromatic number of the graph from which 
we can also extract the coloring allocation to the individual 
nodes of the random graph that has been generated. For 
training, we have generated close to 10000 random graphs 
consisting of one node to one hundred nodes. For each such 
graph we vary the parameter p of graph_gnp between 0.05 to 
0.95 implying very sparse to very dense graphs. For each such 
graph generated we use graph_chromatic_number function to 
find the optimal allocation of colors. It should be noted that 
we use only one optimal color allocation to guide the training. 
Once the colors are assigned optimally, we can permute those 
colors among the nodes to get other optimal color 
assignments. But we do not consider such instances as 
additional training samples. This is done to keep the training 
time manageable as we train on traditional CPU-based 
systems for this work.  

One of the major motivations of using a random-graph 
generator module and using the generated graphs to train for 
coloring is to generalize our model as much as possible. Since 
one of the major uses of our model is for register allocation, it 
is possible to use only graphs generated by register allocation 
modules in popular compilers like LLVM, gcc, icc etc. and 
train our model on such input graphs for better prediction 
accuracy. However, this may imply that we must train a model 
for each such compiler (as the graphs and their structures will 
differ from compiler to compiler) resulting in longer training 
schedules and creation of compiler-specific models. 

1) Input and Output formats for Training 
For training, the input to the model is a set of around 

10000 samples provided in a .csv file. In order to encode the 
full adjacency matrix, we encode the adjacency vector of each 
node sequentially. Since we restrict our training to graphs 
with a maximum number of 100 nodes, each adjacency vector 
can accommodate a maximum of 100 nodes with values 0 or 
1 depending on whether an edge is absent or present. Thus, 
this sequence consists of ones or zeros up to maximum value 
of 100-time steps. In order to encode the 100-element 
adjacency vector in a compact manner we use 2 LONG INT 
values. Since each LONG INT can encode up to 64 bits of 

zeros and ones, we use 2 LONG INTS to encode 100 nodes 
of the adjacency vector. We use zero padding, as necessary. 
In short, in each training sample, for encoding the adjacency 
matrix (maximum of 100x100 size), we use 100 adjacency 
vectors and each vector is encoded using 2 LONG INTs. 
Following the adjacency matrix’s encoded sequence, we list 
out the colors of each node using values 1 to n, once again 
zero-padding, as necessary. Thus, each sample of the training 
set consists of the following data: <Number of optimal colors 
used, Input: 200 LONG INTs (2 per each node of the 
adjacency matrix), Output: 100 colors (1 per node) >. The 
optimal coloring as provided in the output of the training 
sample is checked against the colors assigned by the model 
during each epoch and the error metric 
mean_absolute_percentage_error is used to compare the 
two. We train the model for 100 epochs which achieves a 
training error of about 5%. 
 

2) Inference and Color Correction 
During the inference phase, the trained model is used to 

predict the colors assigned to each vertex of a new sample. 
The input for inferencing is slightly different from the input 
for training as we do not require the output sequence of vertex 
colors to be provided. However, to keep matters simple we 
still retain the same input format as training but fill out the 
entire output sequence with ones. The input sequence is 
similar to that of training with 2 LONG INTs being used to 
code each adjacency vector.  

Once the trained model predicts the colors of each node of 
a new graph, we test for the validity of the prediction. This 
implies checking each edge of the graph to see whether the 
two end points of the edge have the same color. If no such 
edge is found, the prediction is considered valid. Otherwise, 
the prediction is deemed invalid and we need to apply color 
correction to reach at a new color assignment for each such 
invalid edge, so that the end points have different colors. 

 Color correction is a post-pass that runs after the 
inferencing phase is completed. Algorithm 1 listed later shows 
how this phase works. We examine each invalid edge 
e=<n1,n2>. For each such edge we first examine the node n1 
and see whether the entire color palette allocated by the 
inference phase is exhausted by the neighbors of n1. If not, we 
can choose the first available color and use it to color n1. If 
this mechanism fails for n1 we test for the other node n2. If 
both fail, we need to create a new color which is then added to 
the color palette and n1 is colored using the new color. 

For inference. we generate a separate test set of about 7600 
graphs using the random graph generator but using p values 
which are slightly perturbed from those used in the training 
set. This is to test the robustness of the trained model.  

For the test set we use the percentage of invalid edges as a 
metric and observe ~12% invalid edges over the entire test set 
on an average. Also, for ~17% of the cases the LSTM model 
predicts and allocates as well as the optimal coloring scheme. 
Which means that color correction is not required for these 
cases. For ~70% of cases our approximate allocator uses not 
more than 3 extra colors when compared to the optimal 
coloring. We also observe that for ~9% cases our coloring 
requires 6 to 10 extra colors implying that for these cases our 
algorithm may be performing below par. 
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Algorithm 1: Color Correction 

 
 
We demonstrate the working of the color correction 

algorithm using a popular graph from literature called the 
Forest-Fire graph [27]. This graph has 10 nodes, 18 edges and 
a chromatic number of 5. Our LSTM-based model colors 
aggressively with 4 colors resulting in 2 invalid edges as 
shown in Figure 4. These edges are <2,3> where both the 
vertices carry the color c3 and <1,5> where both the vertices 
carry the color c2. v5 can reuse the color c3 as none of its 
neighboring nodes use c3. v2 requires a new color c5 as both 
v2 and v3’s neighbors use all the colors. 

 
Figure 4: Forest-Fire Graph with 2 invalid edges (crossed) after inference 

III. PERFORMANCE ON SOME POPULAR GRAPHS 
In this section we will look at the performance of our 

model when applied to some popular graphs found in the 

literature. We saw in the Forest-Fire graph that after 
inferencing and color correction we were able to color the 
graph optimally with 5 colors which is also the chromatic 
number of the graph. 

First, we will look at the Karate graph shown in Figure 5 
[25]. This graph has 34 nodes and 78 edges, and its chromatic 
number is 5. 

 

Figure 5: Karate Graph 
 

For this graph after inferencing we find that the graph is 
colored using 4 colors and consists of 23 invalid edges out of 
79 edges which is ~30% of the edges. On applying color 
correction, we use only one extra color resulting in coloring 
the graph optimally using 5 colors. 

Second, we use the Chvatal graph [30] which consist of 12 
nodes and 24 edges. The chromatic number of the graph is 4. 

 

Figure 6: Chvatal Graph 
 

For this graph after inferencing we find that the graph is 
colored using 3 colors and consists of 7 invalid edges out of 
24 edges which is ~28% of the edges. On applying color 
correction, we use only one extra color resulting in coloring 
the graph optimally using 4 colors. 

Third, we use the Baidu graph [20] which has been 
demonstrated for a new Reinforcement Learning-based 
approach to graph coloring by Baidu engineers. This graph 
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consists of 60 nodes and 90 edges. The chromatic number of 
the graph is 3 but today’s best graph-coloring heuristics can, 
at best, color the graph using 4 colors. 

Figure 7: Baidu Graph 

For this graph after inferencing we find that the graph is 
colored using 3 colors with 35 out of 90 edges being invalid 
which is ~38%. We are unable to reach the optimal number 
of 3 colors. But we can match the coloring number of the best 
heuristics available today by being able to color with 4 colors. 

Fourth, we use a planar graph cited in the paper [16]. The 
graph has 31 nodes and 72 edges with a chromatic number of 
3. 

Figure 8: Planar Graph 

Our inference model colors this graph with 4 colors after 
which 19 edges out of 72 are found to be invalid which is 
about 26%. Color correction adds an extra color resulting in 
the graph being colored using 5 colors. Thus, we consume 2 
extra colors compared to the optimal coloring. 

Finally, we look at a bunch of graphs culled from the 
COLOR02/03/04 workshop dataset [11] which lists many 
graphs with their structures and chromatic numbers. This data 
set is also used in [22]. We choose a few of these graphs 
having less than 100 nodes. 

Table I: COLOR dataset results 

Table I lists the results for some of the COLOR graphs 
having less than or equal to 100 nodes with the <n,e> column 
providing the the number of nodes and edges in the graph 
respectively. χ(G) is the chromatic number, and the two 
following columns show the predicted colors before and after 
color correction (referred to as CC). The last column provides 
the number of invalid edges. From these results in Table I it 
appears that for sparser graphs, ex: insertions2,3 and mugg100 
our model produces results which matches the optimal 
coloring number. For other graphs like queens8_12 which is 
denser our approximate method requires 5 extra colors 
compared to the optimal coloring. Other results are 
somewhere in between. 

IV. PERFORMANCE COMPARISON WITH LLVM’S GREEDY 
REGISTER ALLOCATOR (GRA)

Graph coloring register allocators construct an
interference graph. Program values are represented by nodes 
(also called virtual registers) in the interference graph and 
edges between nodes imply that those values cannot share a 
physical register as their live ranges/intervals overlap. It is the 
allocator’s responsibility to map the unlimited virtual registers 
into a finite number of machine registers. 

LLVM’s register allocation (regalloc) pass is part of 
Codegen. The general flow of the pass is as shown in Figure 
9 which is adapted from [32]. 

Figure 9: LLVM Register Allocator Flow 
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The default register allocator in LLVM is called the 
Greedy Register Allocator (GRA). GRA’s approach is based 
on the live interval information of the program variables. 
Initially, the spill weight calculation of available live intervals 
is performed based on heuristics such as use density, 
rematerializability etc. A priority queue is constructed and 
populated with these live intervals based on the scope of the 
program variables. Globals are given higher and locals given 
lower priority. Higher priority intervals are picked from the 
priority queue and assigned to available physical registers. In 
case of no availability of physical registers and/or 
interferences between live intervals various approaches such 
as eviction, splitting and spilling of live intervals are 
employed (collectively called selection heuristics) to find the 
allocation or coloring. Eviction is the process of changing an 
assigned interval to unassigned based on a lower spill cost. 
Splitting is the process of dividing a chosen live interval into 
smaller intervals in case of a failed eviction. Eviction and 
splitting are performed while keeping the priority queue 
updated with the victims of eviction and split live intervals. If 
eviction and splitting fail, spilling of intervals are employed. 
Split and spill may create new live ranges which are put back 
in the priority queue though for simplicity that interaction is 
not shown in Figure 9. More information about regalloc can 
be found in [6]. 

GRA does not maintain an interference graph explicitly. 
Hence, we create the interference graph at the end of the Live 
Interval Analysis phase. Initially, all the intervals are added to 
the interference graph as nodes and then the edges are added 
iteratively while checking if two live intervals overlap. The 
interference graph is then written out in the input format 
required for inferencing as outlined in Section II-B-2 in a .csv 
file. We collect the interference graphs for the functions of 
certain SPEC CPU® 2017 [29] benchmarks. We ignore those 
functions which have more than 100 nodes.  

In order to compare the register allocation quality of our 
approximate model with the final allocation done by the 
complete register allocator of LLVM we also count the exact 
number of unique registers used by each function of a SPEC® 
benchmark after code generation. At the end of register 
allocation phase, LLVM provides a mapping between virtual 
and physical registers. For all the virtual registers, we scan this 
map and extract the physical registers and count them 
uniquely.  For architectures like x86, registers AH, AX, EAX 
and RAX share the same physical location, but they have 
different sizes. LLVM represents these physical registers as 
register units or sub registers, where each unit is an alias. We 
also take care of this and do not count registers that alias with 
each other as separate colors/registers. 

A. Results from some SPEC CPU® 2017 benchmarks 
In this study, we collect the interference graphs of a large 

set of functions from the following SPEC CPU® 2017 
benchmarks. The benchmarks are 505.mcf_r, 557.xz_r, 
541.leela_r, 508.namd_r and 502.gcc_r. These benchmarks 
have been compiled using the LLVM-9 compiler [23] at an 
optimization level of -O3 and the interference graphs 
collected. We use inferencing on these graphs and get the 
color allocation and predictions – both before and after the 
color correction phase. We also compare these values with the 
number of registers used by these functions as allocated by 
GRA. Note that at higher optimization levels the register 
allocator works at the level of the entire function and not at the 
level of each basic block. 

1) 505.mcf_r 
In Table II, we list some of the mcf functions having 

interference graphs of 100 nodes or less and their coloring 
numbers. Our approximate method outperforms GRA by a 
small margin of ~2%. However, please note that our allocator 
does not inspect the types of variables and register classes for 
allocation (ex: whether a vector data-type does uses a scalar 
register) and hence may be slightly more aggressive than 
LLVM’s GRA. Our basic DL model is quite aggressive and 
allocates ~35% fewer registers than GRA though for certain 
functions ex: refreshPositions or write_objective_value it 
matches the number of registers used by GRA. For 
update_tree the DL model uses only 8 colors compared to 
GRA’s 19 but after color correction the number comes back 
up to 19 suggesting that for some graphs that are generated by 
LLVM, our initial model does not do an adequate job.  

 
Table II: 505.mcf_r results 

 
2) 557.xz_r 
In the following table, Table IV, we list some of the 

functions of xz having interference graphs of 100 nodes or less 
and their coloring numbers.  

 
Table III: 557.xz_r results 

 
Since we have tracked many more functions that can be 

shown in the table, we list only a few but the last row shows 
the overall total of all the functions we have tracked. For xz 

28

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

our allocator is ~2.5% better than GRA, showing behavior like 
the benchmark mcf in terms of uplift. 

3) 508.namd_r 
In the following table, Table III, we list some of the 

functions of namd. Namd has quite a few functions having 
more than 100 nodes – some of them running to over 500 
nodes or so. For the current work, we ignore such cases and 
remove them from our inference set. Also, namd is the only 
benchmark (among the 5 we investigated) where GRA 
performs ~5% better than our approximate DL-based allocator 
for the functions we investigated. 

 On further investigation we found that the improved 
performance of GRA is mainly due to the methods named 
:_ZN9ResultSet8readfileEP8_IO_FILE,_Z5equalPdS_S_S, 
and_ZN5Patch8readfileEP8_IO_FILEP8Molecule.  The 
graph structures of these functions seem to have a few nodes 
which have very high degrees that is almost equal to the size 
of the graphs (40-60 nodes) while the rest have very low 
degrees of 4-6. It is very likely that our model might not have 
trained well for such skewed graphs. 

 
Table IV: 508.namd_r results 

 
4) 541.leela_r 
Among all the benchmarks we studied, leela demonstrates 

the best performance for our allocator when compared to 
GRA. We tracked around 80 functions of leela, hence we 
show only a short list of functions in Table V. For leela, our 
approximate algorithm improves on GRA by more than 7%. 
Also, there are a few functions like 
_ZN9UCTSearch13dump_analysisEv where our allocator 
uses much lesser registers (5 vs 11) compared to GRA. On 
inspecting the adjacency matrix of the interference graph of 
this function it appears that the graph has 44 nodes and 64 
edges resulting in an average degree close to 3. It is likely that 
the sparsity of the graph helps our algorithm produce better 
results than GRA. 

5) 502.gcc_r 
We took a sample of 50 functions of varying sizes from 

this benchmark which has thousands of functions. Without 
listing out a table, we observe that our approximate algorithm 
performs about 5% better than GRA. 

 

 
Table V: 541.leela_r results 

 
 

B. An architecture of a DL-based register allocator 
In this section we will look at how to fit in a DL-based 

allocator in the LLVM GRA flow. Such allocators are still 
very early in development and may not outperform GRA for 
all interference graphs. Hence, we propose a dual strategy 
whereby an interference graph is fed to the normal flow, as 
well as a parallel module that is a DL-based inference engine 
like our approximate algorithm. The overview of the new 
design is provided in Figure 10 which creates a parallel 
pipeline to the Register Assignment phase and calls our 
approximate allocator.  

 

 
Figure 10: LLVM Register Allocator Flow with DL allocator 

 
Later the better allocation of the two is chosen. If the number 
of colors exceed the number of available registers, then 
eviction, split and spill are applied as required for the DL-
based allocator too. If the allocation of GRA is found to be 
better than the DL-based one, the inference graph as well as 
the exact allocation is stored in a training database that can be 
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used to augment an offline training of the LSTM-based model. 
Note that, GRA’s Register Assignment and the following 
phases are iterative in nature whereby the top priority live-
range is chosen, register assignment tried and the follow-up 
steps carried out. But our DL-based allocator produces all the 
colors in one go. To handle this difference, we propose to use 
the priority queue of live ranges, pick in order and assign the 
same register to all the live ranges to which the DL-based 
algorithm has assigned the same color. Which means, though 
we pick one live range to assign, we may assign the same 
register to multiple live ranges. These live ranges are removed 
from the queue. If we have additional live ranges remaining 
after all the registers are utilized, we pass on the remaining 
live ranges to the eviction, split and spill phase and would need 
to invoke the tradition register assignment. These interactions 
are shown in Figure 10.  

Since we base our training on random graphs it is very 
likely that the training samples may not encompass all kinds 
of interference graphs that can be generated by compilers. 
Hence, storing details of graphs for which our allocator does 
worse compared to GRA, acts as a continuous learning 
mechanism. It should be noted that the DL-based engine is a 
python-based module that needs to consume the input 
interference graph in a .csv format. In addition, the output of 
this engine should be consumed by the later phases. At present 
this design is just a prototype and has not been implemented 
in the Codegen phase of LLVM. 
 

C. Some observations on our model 
While training our LSTM-based model we mentioned the 

use of random graphs created by the very_nauty package – the 
graphs being based on the Erdös-Renyi (ER) [19] model. 
During inferencing we observe that for graphs generated by 
LLVM the LSTM-based model (before color correction) 
predicts 30%-40% lesser colors on an average when compared 
to GRA. And in some individual cases the difference is higher. 
We do not observe such behavior for the popular graphs 
mentioned in Section III. One of the reasons is that the GRA 
is not an optimal algorithm and our model is trained on 
optimal allocation. However, this alone probably does not 
explain the full gap. On a closer look at some of the 
interference graphs generated by LLVM where we observe 
significant differences between the GRA and our allocator, we 
found that many of these graphs have skewed structures rather 
than regular ones. This means that few nodes of the graph have 
high degrees and connectivity while the rest have low or 
moderate degrees and connectivity. This implies that these 
graphs may lie in the class of scale-free networks [31] where 
the degree distribution of the nodes follow the power law  

Figure 11: Ensemble Model
 

rather than a uniform distribution which is a characteristic of 
the ER model. The interference graphs from LLVM appear to  
be a mixed bag of regular and scale-free graphs and hence we 
may need to devise an ensemble model [14] where we train on 
regular graphs as well as scale-free graphs but using different 
LSTMs as shown in Figure 11. During inference, we can feed 
the data through both the models and pick the one which 
provides more optimal allocation. 

V. RELATED WORK 
There have been two recent works which deal with graph 

coloring using deep learning. The first is one from Baidu [20]. 
In this work the goal is to use deep reinforcement learning to 
color large graphs, as optimal coloring on such graphs is not 
possible with modern machines. Their work is inspired by 
AlphaGoZero [28] on HPC systems and use it to learn new 
graph coloring heuristics that improve the state-of-the-art 
accuracy by up to 10%. They can color graphs up to thousands 
of nodes. However, the training hardware required to build 
such a coloring network is extremely complex and requires 
hundreds of GPUs. In addition, the algorithm itself has many 
steps and not amenable to easy understanding. In contrast, we 
concentrate on graphs created during register allocation which 
generally does not exceed a few hundred nodes. Our algorithm 
is much simpler to understand and implement and can be 
trained on CPUs without requiring a complex setup. The 
second work we refer to is by Lemos et al. [22] that uses Graph 
Neural Networks (GNNs) [26,33]. Usually, graph neural 
network models assign multidimensional representations, or 
embeddings, to vertices and edges. These embeddings are then 
refined according to some adjacency information throughout 
a given number of message-passing iterations. The adjacency 
information controls which are the valid incoming messages 
for a given vertex (or edge), these filtered messages undergo 
an aggregating function and finally a Recurrent Neural 
Network (RNN) receives the aggregated messages and 
computes the embedding update for the given vertex. Lemos 
et al. compares their model against several popular approaches 
like Tabucol [17] and greedy heuristics. However, their 
algorithm does not find a correct assignment of colors as they 
frequently color the graphs with colors lower than the 
chromatic number of a graph. Hence their algorithm cannot be 
used in scenarios like register allocation.  
 

VI.  CONCLUSION AND FUTURE WORK 
In this paper we have shown how to apply a deep learning 

framework to color graphs with special emphasis on solving 
the register allocation problem. Our algorithm is approximate 
in nature, as it consists of a post-pass color correction phase 
that follows an LSTM-based deep learning model. We show 
the performance of this algorithm on several popular graphs 
and on interference graphs generated by LLVM for several 
SPEC CPU® 2017 benchmarks and demonstrate that our 
algorithm compares favorably with either an optimal 
allocation or state-of-the-art heuristics that have been tuned 
for quite some time. 

To utilize deep learning-based graph coloring register 
allocation in production compilers we still need to carry out 
further experiments and studies. One of them is to investigate 
on how the interference graphs differ from random graphs and 
how to incorporate such graphs into the training cycle. It is 
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also important to check interference graphs from other 
compilers like gcc (GNU C/C++ compiler) or icc (Intel C/C++ 
compiler). As mentioned in Section IV (C), our training has 
focused on using random-graphs generated by the Erdös-
Renyi model, but in practice, we did observe LLVM GRA 
generating interference graphs that are not represented well in 
the training data-set.Though training via random graphs fares 
favorably when used for interference graphs, we may still 
need to build ensemble models as described in Sec IV-c to 
make the models more effective.  

Our model takes adjacency vectors of the nodes as inputs. 
The sequence in which these nodes are fed to the input LSTM 
is solely dependent on the numbering of the nodes. This can 
probably be enhanced by first carrying out a breadth-first-
search (BFS), depth-first-search (DFS) or topological sort on 
the graph and feeding such a prioritized sequence to the LSTM 
– instead of one based on node numbering. In addition, we can 
also experiment with bi-directional LSTMs to capture 
relationships between nodes and edges which may not be 
captured by unidirectional LSTM alone. 

In the current work we have handled interference graphs 
of size 100 nodes or less. We will need to extend our LSTM-
based model for larger graphs though based on our study of 
the SPEC benchmarks we did not see graphs bigger than few 
hundreds of nodes. In general LSTMs may not work well for 
very long sequences though there have been positive results 
using pre-training for sequences up to several thousand nodes 
[12]. Also, modern attention-based LSTMs can probably 
handle longer sequences better [2]. In addition to the issue of 
handling long sequences for LSTMs for bigger interference 
graphs, we need to find optimal coloring algorithms for such 
graphs for supervised training. As mentioned earlier, optimal 
coloring for large graphs is infeasible today. Hence, we may 
need to fall back on good heuristics for such graphs and train 
on these. An alternative to additional training or handling long 
LSTM sequences, is to partition a larger graph into graphs of 
size 100 nodes or less. We can color these subgraphs using our 
approximate mechanism. Then, color correction can be 
applied to the inter-subgraph edges as applicable.  

Our work focuses on modeling the graph-
coloring/register-allocation problem using LSTMs. As 
mentioned earlier there have been efforts to model similar 
problems using both reinforcement-based learning as well as 
Graph Neural Networks. It may be good idea to compare all 
these techniques based on their prediction accuracy vs ease of 
training and compute resources required.  

Our work is one of the first in the area of approximate 
machine-learning especially applied to the area of graph-
coloring/register-allocation. It is novel from the viewpoint of 
applying a correction post-pass to an approximate algorithm 
in the area of deep-learning. Such algorithms can be used in 
the future to solve problems in DL where constraints need to 
be encoded but are difficult to program in the setup – 
especially when using LSTMs/MLPs. etc as models.  

To conclude, this work is one of the first steps to replace 
hand-designed heuristics for register allocation via graph-
coloring using a machine learning model. As we learn and 
understand more, both about the applicable models and about 
the nature of interference graphs, we think that we may need 
to depend less and less on the color correction step and create 
a more powerful deep learning-based algorithm that can be 
used in future production compilers. 
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