
Deep Learning-based Approximate Graph-Coloring
Algorithm for Register Allocation

Dibyendu Das
AMD*

Bangalore, India
dibyendu.das0708@gmail.com

Shahid Asghar Ahmad
AMD

Bangalore, India
Asghar-ahmad.Shahid@amd.com

Venkataramanan Kumar
AMD

Bangalore, India
Venkataramanan.Kumar@amd.com

Abstract— Graph-coloring is an NP-hard problem which has
a myriad of applications. Register allocation, which is a crucial
phase of a good optimizing compiler, relies on graph coloring.
Hence, an efficient graph-coloring algorithm is of paramount
importance. In this work we try to ‘learn’ a good heuristic for
coloring interference graphs that are used in the register
allocation phase. We aim to handle moderate-sized interference
graphs which have 100 nodes or less. For such graphs we can get
the optimal allocation of colors to the nodes. Such optimal
coloring is then used to train our Deep Learning (DL) network
which is based on several layers of LSTM that output a color for
each node of the graph. However, the trained network may
allocate the same color to the nodes connected by an edge
resulting in an invalid coloring of the interference graph. Since
it is difficult to encode constraints in an LSTM to avoid invalid
coloring, we augment our deep learning network with a color
correction phase that runs after the colors have been allocated
by the DL network. Thus, our algorithm is approximate or
hybrid in nature consisting of a mix of a DL algorithm followed
by a more traditional correction phase. The color correction
phase handles the edges with invalid coloring by first trying to
reuse a color allocated to other nodes that are not connected to
the invalid nodes, failing which it adds a totally new color –
thereby breaking the invalid allocation. Our experience with
many graphs shows that around 10%-30% edges may get an
invalid coloring. We have trained our DL network using several
thousand random graphs of varying sparsity(density). On
application of our approximate algorithm to various popular
graphs found in literature we see that our algorithm does very
well when compared to the optimal coloring of these graphs. We
have also run our algorithm against LLVM’s popular greedy
register allocator (GRA) for several SPEC CPU 2017
benchmarks and notice that the approximate algorithm
performs on par or better than GRA for most of these
benchmarks.

Keywords— Deep Learning, Graph Coloring, LLVM
compiler, Long Short-Term Memory (LSTM), Register
Allocation

I. INTRODUCTION

For solving NP-hard problems like graph-coloring,
numerous heuristics have been designed. Comprehensive
reviews of such heuristics can be found in [13,24]. Two well-
known greedy algorithms DSATUR [5,7] and RLF [21]
employ refined rules to dynamically determine the next vertex
to color. These greedy heuristic algorithms are usually fast.
Register allocation as a graph coloring problem was first
introduced by Chaitin in [8]. Later, several other graph
coloring register allocation algorithms have been introduced
by Chow [9] and Briggs [3]. These heuristics achieve good
performance over a wide range of interference graphs.

However, there may be scope for improvement in terms of
optimizing the number of registers used and reducing the cost
of spilling registers to memory. While one can pursue
designing smarter heuristics our goal is to learn a good
heuristic using DL techniques that will be as close to the
optimal assignment as possible and compare favorably, if not
surpass, some of the heuristics used in modern register
allocators like LLVM.

In order to learn a good heuristic for graph coloring with
interference graphs in mind, we need training data that
includes solutions that outperform existing heuristics in the
register allocators. We tackle this problem firstly by restricting
the interference graph size to a maximum of 100 nodes. This
is a reasonable number based on our experience of working
with the LLVM register allocator. Secondly, we use an exact
algorithm to solve the graph coloring problem for such graphs
having less than 100 nodes. It has been found that such exact
solvers work well for graphs having small to moderate size. In
this work we have found that such a method takes a long time
to color a graph having more than 75 nodes. However, since
this coloring is done for DL training the additional time
becomes acceptable.

In this paper, we demonstrate our approach by introducing
an approximate algorithm that consists of an approximate
deep learning-based technique augmented with a color
correction phase. We use a Recurrent Neural Network (RNN)
[14], specifically an LSTM (Long short-term memory) [18],
to model the graph coloring problem. Constraints like the
nodes appearing at the ends of an edge should not have the
same color, cannot be encoded well in an LSTM. As a result,
despite a large training set, the LSTM may not learn such a
constraint fully. To compensate for this, we have designed a
traditional post-pass after LSTM, that corrects this anomaly
by checking and correcting all such invalid edges.

We train our LSTM using random graphs generated using
the very_nauty [4] package. For inference we use popular
graphs found in literature as well as interference graphs that
can be generated by LLVM-9.0 [23] as part of its register
allocation phase. Note that the random graphs generated and
the interference graphs of LLVM may have different
characteristics in terms of sparsity, node degrees, and other
graph parameters. However, our observation is that our
LSTM-based approach generalizes well from random graphs
to interference graphs.

A. Contributions
The main contributions of our paper are as follows:

23

2020 IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical
Parallelism for Exascale Computing (HiPar)

978-0-7381-1042-4/20/$31.00 ©2020 IEEE
DOI 10.1109/LLVMHPCHiPar51896.2020.00008

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

 We have designed a new LSTM-based approximate
DL algorithm that can color graphs and the number of
colors used compares favorably with optimal coloring

 The approximate DL algorithm is paired with a color
correction phase that corrects nodes which may have
been colored in an invalid manner

 We show, with popular graphs and interference graphs
culled from the LLVM-generated SPEC CPU® 2017
[29] benchmarks, that the efficacy of our approach is
high

The paper is organized as follows. In Section II we discuss
how we model the graph-coloring problem using LSTM. We
also discuss how to train such models and provide the
algorithm for color correction. In Section III we look at some
popular graphs as use-cases and compare optimal coloring of
such graphs with our method. Section IV will deal with the
interference graphs generated using LLVM and the
performance of our algorithm on such graphs. We propose a
possible architecture of how to incorporate a DL-based
module in LLVM also. In Section V we will discuss related
work. We conclude in Section VI and discuss possible future
work.

II. GRAPH COLORING USING LSTM
In this work we model the graph coloring problem using

LSTM, which is a variant of Recurrent Neural Network
(RNN). A common LSTM unit is composed of a cell, an input
gate (i), an output gate (o) and a forget gate (f) as shown in
Figure 1 [10]. The cell remembers values over arbitrary time
intervals and the three gates regulate the flow of information
into and out of the cell where h is the hidden state and X is the
input, at time step t. The final value of hn is the output of the
LSTM. LSTM networks are well-suited for classifying,
processing and making predictions based on a data sequence
which appears as a sequence of time steps and were developed
to deal with the exploding and vanishing gradient problems
that can be encountered when training traditional RNNs. A
useful way to visualize RNNs/LSTMs is to consider the
update graph formed by ‘unfolding’ the network along the
input sequence. The unfolded/unrolled LSTM with multiple
cells is shown in Figure 2 [1].

Figure 1: An LSTM cell

Figure 2: Unrolled/Unfolded LSTM/RNN

A. LSTM-based Model for Graph Coloring
For graph coloring, since we handle modest-sized graphs

of 100 nodes or less, we use the entire adjacency matrix of a
graph as input. The input sequence to the LSTM is the
sequence of graph nodes – starting with node 0 and ending
with node n-1 where n is the number of nodes of the graph.
For each node, we use the adjacency vector of the node as
shown in Figure 3, as input. Hence, at each time step t of the
input sequence to the LSTM, the adjacency vector of Vt is
provided, where Vt is the t-th node of the graph. The adjacency
vector of Vt is nothing else but the entire row of the adjacency
matrix corresponding to node Vt. The output of the LSTM-
based model are the colors of each node. Since there are n
vertices the output sequence is also of size n. For better
performance and prediction accuracy we use deep LSTMs
with 3 layers, with hidden states of one layer passed on to the
LSTM cells of the next layer as inputs.

Figure 3: Deep Learning Model for Graph Coloring using 3-
layered LSTMs

After the LSTM layers, we use a fully connected dense
layer that takes the output of the final LSTM layer and
produces a single value. This value is fed through a ReLU
layer[14] to provide the final color value of a node. Since a
graph of n nodes never requires more than n colors to correctly
color all its vertices, we can use the numbers 1 ... n to represent
the colors of the vertices at the output. The three layers are
numbered Layer 0, Layer 1 and Layer 2 in Figure 3. In each
layer we show the unrolled LSTM consisting of the full
sequence size n with LSTM0 corresponding to input time step
of 0 and LSTMn-1 corresponding to the input time step of n-1,
which corresponds to the vertices V0 and Vn-1 of the graph. In

24

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

our model, each LSTM cell has 1024 hidden units. The
number of layers (3) as well as the number of hidden units in
each cell has been arrived at empirically. We have
programmed the LSTM-based model using TensorFlow 2.0
[15].

B. Training the Model
For training our model we use random graphs generated

via the very_nauty package [4]. Very_nauty is a C library of
graph algorithms, especially targeted at very fast generation of
random graphs, and exact clique number and chromatic
number computations. In practice, it is possible to use the
exact algorithms on graphs with up to a few hundred nodes.
However, we noticed that with this software, exact graph
coloring over 75 nodes becomes quite slow in practice though
we can get the exact color allocation in a reasonable time up
to 150 nodes or so. However, in this work we will restrict our
input graphs to 100 nodes or less as mentioned earlier.

We mainly use two functions from this package. First, a
function called graph_gnp (graph_t g, double p) which uses
the Erdös-Renyi model [19] to generate random graphs for n
nodes with p being the probability of two nodes being
connected by an edge. Second, we use
graph_chromatic_number (graph_t g,clock_t timeout) to
compute the exact chromatic number of the graph from which
we can also extract the coloring allocation to the individual
nodes of the random graph that has been generated. For
training, we have generated close to 10000 random graphs
consisting of one node to one hundred nodes. For each such
graph we vary the parameter p of graph_gnp between 0.05 to
0.95 implying very sparse to very dense graphs. For each such
graph generated we use graph_chromatic_number function to
find the optimal allocation of colors. It should be noted that
we use only one optimal color allocation to guide the training.
Once the colors are assigned optimally, we can permute those
colors among the nodes to get other optimal color
assignments. But we do not consider such instances as
additional training samples. This is done to keep the training
time manageable as we train on traditional CPU-based
systems for this work.

One of the major motivations of using a random-graph
generator module and using the generated graphs to train for
coloring is to generalize our model as much as possible. Since
one of the major uses of our model is for register allocation, it
is possible to use only graphs generated by register allocation
modules in popular compilers like LLVM, gcc, icc etc. and
train our model on such input graphs for better prediction
accuracy. However, this may imply that we must train a model
for each such compiler (as the graphs and their structures will
differ from compiler to compiler) resulting in longer training
schedules and creation of compiler-specific models.

1) Input and Output formats for Training
For training, the input to the model is a set of around

10000 samples provided in a .csv file. In order to encode the
full adjacency matrix, we encode the adjacency vector of each
node sequentially. Since we restrict our training to graphs
with a maximum number of 100 nodes, each adjacency vector
can accommodate a maximum of 100 nodes with values 0 or
1 depending on whether an edge is absent or present. Thus,
this sequence consists of ones or zeros up to maximum value
of 100-time steps. In order to encode the 100-element
adjacency vector in a compact manner we use 2 LONG INT
values. Since each LONG INT can encode up to 64 bits of

zeros and ones, we use 2 LONG INTS to encode 100 nodes
of the adjacency vector. We use zero padding, as necessary.
In short, in each training sample, for encoding the adjacency
matrix (maximum of 100x100 size), we use 100 adjacency
vectors and each vector is encoded using 2 LONG INTs.
Following the adjacency matrix’s encoded sequence, we list
out the colors of each node using values 1 to n, once again
zero-padding, as necessary. Thus, each sample of the training
set consists of the following data: <Number of optimal colors
used, Input: 200 LONG INTs (2 per each node of the
adjacency matrix), Output: 100 colors (1 per node) >. The
optimal coloring as provided in the output of the training
sample is checked against the colors assigned by the model
during each epoch and the error metric
mean_absolute_percentage_error is used to compare the
two. We train the model for 100 epochs which achieves a
training error of about 5%.

2) Inference and Color Correction
During the inference phase, the trained model is used to

predict the colors assigned to each vertex of a new sample.
The input for inferencing is slightly different from the input
for training as we do not require the output sequence of vertex
colors to be provided. However, to keep matters simple we
still retain the same input format as training but fill out the
entire output sequence with ones. The input sequence is
similar to that of training with 2 LONG INTs being used to
code each adjacency vector.

Once the trained model predicts the colors of each node of
a new graph, we test for the validity of the prediction. This
implies checking each edge of the graph to see whether the
two end points of the edge have the same color. If no such
edge is found, the prediction is considered valid. Otherwise,
the prediction is deemed invalid and we need to apply color
correction to reach at a new color assignment for each such
invalid edge, so that the end points have different colors.

 Color correction is a post-pass that runs after the
inferencing phase is completed. Algorithm 1 listed later shows
how this phase works. We examine each invalid edge
e=<n1,n2>. For each such edge we first examine the node n1
and see whether the entire color palette allocated by the
inference phase is exhausted by the neighbors of n1. If not, we
can choose the first available color and use it to color n1. If
this mechanism fails for n1 we test for the other node n2. If
both fail, we need to create a new color which is then added to
the color palette and n1 is colored using the new color.

For inference. we generate a separate test set of about 7600
graphs using the random graph generator but using p values
which are slightly perturbed from those used in the training
set. This is to test the robustness of the trained model.

For the test set we use the percentage of invalid edges as a
metric and observe ~12% invalid edges over the entire test set
on an average. Also, for ~17% of the cases the LSTM model
predicts and allocates as well as the optimal coloring scheme.
Which means that color correction is not required for these
cases. For ~70% of cases our approximate allocator uses not
more than 3 extra colors when compared to the optimal
coloring. We also observe that for ~9% cases our coloring
requires 6 to 10 extra colors implying that for these cases our
algorithm may be performing below par.

25

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Color Correction

We demonstrate the working of the color correction

algorithm using a popular graph from literature called the
Forest-Fire graph [27]. This graph has 10 nodes, 18 edges and
a chromatic number of 5. Our LSTM-based model colors
aggressively with 4 colors resulting in 2 invalid edges as
shown in Figure 4. These edges are <2,3> where both the
vertices carry the color c3 and <1,5> where both the vertices
carry the color c2. v5 can reuse the color c3 as none of its
neighboring nodes use c3. v2 requires a new color c5 as both
v2 and v3’s neighbors use all the colors.

Figure 4: Forest-Fire Graph with 2 invalid edges (crossed) after inference

III. PERFORMANCE ON SOME POPULAR GRAPHS
In this section we will look at the performance of our

model when applied to some popular graphs found in the

literature. We saw in the Forest-Fire graph that after
inferencing and color correction we were able to color the
graph optimally with 5 colors which is also the chromatic
number of the graph.

First, we will look at the Karate graph shown in Figure 5
[25]. This graph has 34 nodes and 78 edges, and its chromatic
number is 5.

Figure 5: Karate Graph

For this graph after inferencing we find that the graph is
colored using 4 colors and consists of 23 invalid edges out of
79 edges which is ~30% of the edges. On applying color
correction, we use only one extra color resulting in coloring
the graph optimally using 5 colors.

Second, we use the Chvatal graph [30] which consist of 12
nodes and 24 edges. The chromatic number of the graph is 4.

Figure 6: Chvatal Graph

For this graph after inferencing we find that the graph is
colored using 3 colors and consists of 7 invalid edges out of
24 edges which is ~28% of the edges. On applying color
correction, we use only one extra color resulting in coloring
the graph optimally using 4 colors.

Third, we use the Baidu graph [20] which has been
demonstrated for a new Reinforcement Learning-based
approach to graph coloring by Baidu engineers. This graph

26

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

consists of 60 nodes and 90 edges. The chromatic number of
the graph is 3 but today’s best graph-coloring heuristics can,
at best, color the graph using 4 colors.

Figure 7: Baidu Graph

For this graph after inferencing we find that the graph is
colored using 3 colors with 35 out of 90 edges being invalid
which is ~38%. We are unable to reach the optimal number
of 3 colors. But we can match the coloring number of the best
heuristics available today by being able to color with 4 colors.

Fourth, we use a planar graph cited in the paper [16]. The
graph has 31 nodes and 72 edges with a chromatic number of
3.

Figure 8: Planar Graph

Our inference model colors this graph with 4 colors after
which 19 edges out of 72 are found to be invalid which is
about 26%. Color correction adds an extra color resulting in
the graph being colored using 5 colors. Thus, we consume 2
extra colors compared to the optimal coloring.

Finally, we look at a bunch of graphs culled from the
COLOR02/03/04 workshop dataset [11] which lists many
graphs with their structures and chromatic numbers. This data
set is also used in [22]. We choose a few of these graphs
having less than 100 nodes.

Table I: COLOR dataset results

Table I lists the results for some of the COLOR graphs
having less than or equal to 100 nodes with the <n,e> column
providing the the number of nodes and edges in the graph
respectively. χ(G) is the chromatic number, and the two
following columns show the predicted colors before and after
color correction (referred to as CC). The last column provides
the number of invalid edges. From these results in Table I it
appears that for sparser graphs, ex: insertions2,3 and mugg100
our model produces results which matches the optimal
coloring number. For other graphs like queens8_12 which is
denser our approximate method requires 5 extra colors
compared to the optimal coloring. Other results are
somewhere in between.

IV. PERFORMANCE COMPARISON WITH LLVM’S GREEDY
REGISTER ALLOCATOR (GRA)

Graph coloring register allocators construct an
interference graph. Program values are represented by nodes
(also called virtual registers) in the interference graph and
edges between nodes imply that those values cannot share a
physical register as their live ranges/intervals overlap. It is the
allocator’s responsibility to map the unlimited virtual registers
into a finite number of machine registers.

LLVM’s register allocation (regalloc) pass is part of
Codegen. The general flow of the pass is as shown in Figure
9 which is adapted from [32].

Figure 9: LLVM Register Allocator Flow

27

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

The default register allocator in LLVM is called the
Greedy Register Allocator (GRA). GRA’s approach is based
on the live interval information of the program variables.
Initially, the spill weight calculation of available live intervals
is performed based on heuristics such as use density,
rematerializability etc. A priority queue is constructed and
populated with these live intervals based on the scope of the
program variables. Globals are given higher and locals given
lower priority. Higher priority intervals are picked from the
priority queue and assigned to available physical registers. In
case of no availability of physical registers and/or
interferences between live intervals various approaches such
as eviction, splitting and spilling of live intervals are
employed (collectively called selection heuristics) to find the
allocation or coloring. Eviction is the process of changing an
assigned interval to unassigned based on a lower spill cost.
Splitting is the process of dividing a chosen live interval into
smaller intervals in case of a failed eviction. Eviction and
splitting are performed while keeping the priority queue
updated with the victims of eviction and split live intervals. If
eviction and splitting fail, spilling of intervals are employed.
Split and spill may create new live ranges which are put back
in the priority queue though for simplicity that interaction is
not shown in Figure 9. More information about regalloc can
be found in [6].

GRA does not maintain an interference graph explicitly.
Hence, we create the interference graph at the end of the Live
Interval Analysis phase. Initially, all the intervals are added to
the interference graph as nodes and then the edges are added
iteratively while checking if two live intervals overlap. The
interference graph is then written out in the input format
required for inferencing as outlined in Section II-B-2 in a .csv
file. We collect the interference graphs for the functions of
certain SPEC CPU® 2017 [29] benchmarks. We ignore those
functions which have more than 100 nodes.

In order to compare the register allocation quality of our
approximate model with the final allocation done by the
complete register allocator of LLVM we also count the exact
number of unique registers used by each function of a SPEC®
benchmark after code generation. At the end of register
allocation phase, LLVM provides a mapping between virtual
and physical registers. For all the virtual registers, we scan this
map and extract the physical registers and count them
uniquely. For architectures like x86, registers AH, AX, EAX
and RAX share the same physical location, but they have
different sizes. LLVM represents these physical registers as
register units or sub registers, where each unit is an alias. We
also take care of this and do not count registers that alias with
each other as separate colors/registers.

A. Results from some SPEC CPU® 2017 benchmarks
In this study, we collect the interference graphs of a large

set of functions from the following SPEC CPU® 2017
benchmarks. The benchmarks are 505.mcf_r, 557.xz_r,
541.leela_r, 508.namd_r and 502.gcc_r. These benchmarks
have been compiled using the LLVM-9 compiler [23] at an
optimization level of -O3 and the interference graphs
collected. We use inferencing on these graphs and get the
color allocation and predictions – both before and after the
color correction phase. We also compare these values with the
number of registers used by these functions as allocated by
GRA. Note that at higher optimization levels the register
allocator works at the level of the entire function and not at the
level of each basic block.

1) 505.mcf_r
In Table II, we list some of the mcf functions having

interference graphs of 100 nodes or less and their coloring
numbers. Our approximate method outperforms GRA by a
small margin of ~2%. However, please note that our allocator
does not inspect the types of variables and register classes for
allocation (ex: whether a vector data-type does uses a scalar
register) and hence may be slightly more aggressive than
LLVM’s GRA. Our basic DL model is quite aggressive and
allocates ~35% fewer registers than GRA though for certain
functions ex: refreshPositions or write_objective_value it
matches the number of registers used by GRA. For
update_tree the DL model uses only 8 colors compared to
GRA’s 19 but after color correction the number comes back
up to 19 suggesting that for some graphs that are generated by
LLVM, our initial model does not do an adequate job.

Table II: 505.mcf_r results

2) 557.xz_r
In the following table, Table IV, we list some of the

functions of xz having interference graphs of 100 nodes or less
and their coloring numbers.

Table III: 557.xz_r results

Since we have tracked many more functions that can be

shown in the table, we list only a few but the last row shows
the overall total of all the functions we have tracked. For xz

28

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

our allocator is ~2.5% better than GRA, showing behavior like
the benchmark mcf in terms of uplift.

3) 508.namd_r
In the following table, Table III, we list some of the

functions of namd. Namd has quite a few functions having
more than 100 nodes – some of them running to over 500
nodes or so. For the current work, we ignore such cases and
remove them from our inference set. Also, namd is the only
benchmark (among the 5 we investigated) where GRA
performs ~5% better than our approximate DL-based allocator
for the functions we investigated.

 On further investigation we found that the improved
performance of GRA is mainly due to the methods named
:_ZN9ResultSet8readfileEP8_IO_FILE,_Z5equalPdS_S_S,
and_ZN5Patch8readfileEP8_IO_FILEP8Molecule. The
graph structures of these functions seem to have a few nodes
which have very high degrees that is almost equal to the size
of the graphs (40-60 nodes) while the rest have very low
degrees of 4-6. It is very likely that our model might not have
trained well for such skewed graphs.

Table IV: 508.namd_r results

4) 541.leela_r
Among all the benchmarks we studied, leela demonstrates

the best performance for our allocator when compared to
GRA. We tracked around 80 functions of leela, hence we
show only a short list of functions in Table V. For leela, our
approximate algorithm improves on GRA by more than 7%.
Also, there are a few functions like
_ZN9UCTSearch13dump_analysisEv where our allocator
uses much lesser registers (5 vs 11) compared to GRA. On
inspecting the adjacency matrix of the interference graph of
this function it appears that the graph has 44 nodes and 64
edges resulting in an average degree close to 3. It is likely that
the sparsity of the graph helps our algorithm produce better
results than GRA.

5) 502.gcc_r
We took a sample of 50 functions of varying sizes from

this benchmark which has thousands of functions. Without
listing out a table, we observe that our approximate algorithm
performs about 5% better than GRA.

Table V: 541.leela_r results

B. An architecture of a DL-based register allocator
In this section we will look at how to fit in a DL-based

allocator in the LLVM GRA flow. Such allocators are still
very early in development and may not outperform GRA for
all interference graphs. Hence, we propose a dual strategy
whereby an interference graph is fed to the normal flow, as
well as a parallel module that is a DL-based inference engine
like our approximate algorithm. The overview of the new
design is provided in Figure 10 which creates a parallel
pipeline to the Register Assignment phase and calls our
approximate allocator.

Figure 10: LLVM Register Allocator Flow with DL allocator

Later the better allocation of the two is chosen. If the number
of colors exceed the number of available registers, then
eviction, split and spill are applied as required for the DL-
based allocator too. If the allocation of GRA is found to be
better than the DL-based one, the inference graph as well as
the exact allocation is stored in a training database that can be

29

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

used to augment an offline training of the LSTM-based model.
Note that, GRA’s Register Assignment and the following
phases are iterative in nature whereby the top priority live-
range is chosen, register assignment tried and the follow-up
steps carried out. But our DL-based allocator produces all the
colors in one go. To handle this difference, we propose to use
the priority queue of live ranges, pick in order and assign the
same register to all the live ranges to which the DL-based
algorithm has assigned the same color. Which means, though
we pick one live range to assign, we may assign the same
register to multiple live ranges. These live ranges are removed
from the queue. If we have additional live ranges remaining
after all the registers are utilized, we pass on the remaining
live ranges to the eviction, split and spill phase and would need
to invoke the tradition register assignment. These interactions
are shown in Figure 10.

Since we base our training on random graphs it is very
likely that the training samples may not encompass all kinds
of interference graphs that can be generated by compilers.
Hence, storing details of graphs for which our allocator does
worse compared to GRA, acts as a continuous learning
mechanism. It should be noted that the DL-based engine is a
python-based module that needs to consume the input
interference graph in a .csv format. In addition, the output of
this engine should be consumed by the later phases. At present
this design is just a prototype and has not been implemented
in the Codegen phase of LLVM.

C. Some observations on our model
While training our LSTM-based model we mentioned the

use of random graphs created by the very_nauty package – the
graphs being based on the Erdös-Renyi (ER) [19] model.
During inferencing we observe that for graphs generated by
LLVM the LSTM-based model (before color correction)
predicts 30%-40% lesser colors on an average when compared
to GRA. And in some individual cases the difference is higher.
We do not observe such behavior for the popular graphs
mentioned in Section III. One of the reasons is that the GRA
is not an optimal algorithm and our model is trained on
optimal allocation. However, this alone probably does not
explain the full gap. On a closer look at some of the
interference graphs generated by LLVM where we observe
significant differences between the GRA and our allocator, we
found that many of these graphs have skewed structures rather
than regular ones. This means that few nodes of the graph have
high degrees and connectivity while the rest have low or
moderate degrees and connectivity. This implies that these
graphs may lie in the class of scale-free networks [31] where
the degree distribution of the nodes follow the power law

Figure 11: Ensemble Model

rather than a uniform distribution which is a characteristic of
the ER model. The interference graphs from LLVM appear to
be a mixed bag of regular and scale-free graphs and hence we
may need to devise an ensemble model [14] where we train on
regular graphs as well as scale-free graphs but using different
LSTMs as shown in Figure 11. During inference, we can feed
the data through both the models and pick the one which
provides more optimal allocation.

V. RELATED WORK
There have been two recent works which deal with graph

coloring using deep learning. The first is one from Baidu [20].
In this work the goal is to use deep reinforcement learning to
color large graphs, as optimal coloring on such graphs is not
possible with modern machines. Their work is inspired by
AlphaGoZero [28] on HPC systems and use it to learn new
graph coloring heuristics that improve the state-of-the-art
accuracy by up to 10%. They can color graphs up to thousands
of nodes. However, the training hardware required to build
such a coloring network is extremely complex and requires
hundreds of GPUs. In addition, the algorithm itself has many
steps and not amenable to easy understanding. In contrast, we
concentrate on graphs created during register allocation which
generally does not exceed a few hundred nodes. Our algorithm
is much simpler to understand and implement and can be
trained on CPUs without requiring a complex setup. The
second work we refer to is by Lemos et al. [22] that uses Graph
Neural Networks (GNNs) [26,33]. Usually, graph neural
network models assign multidimensional representations, or
embeddings, to vertices and edges. These embeddings are then
refined according to some adjacency information throughout
a given number of message-passing iterations. The adjacency
information controls which are the valid incoming messages
for a given vertex (or edge), these filtered messages undergo
an aggregating function and finally a Recurrent Neural
Network (RNN) receives the aggregated messages and
computes the embedding update for the given vertex. Lemos
et al. compares their model against several popular approaches
like Tabucol [17] and greedy heuristics. However, their
algorithm does not find a correct assignment of colors as they
frequently color the graphs with colors lower than the
chromatic number of a graph. Hence their algorithm cannot be
used in scenarios like register allocation.

VI. CONCLUSION AND FUTURE WORK
In this paper we have shown how to apply a deep learning

framework to color graphs with special emphasis on solving
the register allocation problem. Our algorithm is approximate
in nature, as it consists of a post-pass color correction phase
that follows an LSTM-based deep learning model. We show
the performance of this algorithm on several popular graphs
and on interference graphs generated by LLVM for several
SPEC CPU® 2017 benchmarks and demonstrate that our
algorithm compares favorably with either an optimal
allocation or state-of-the-art heuristics that have been tuned
for quite some time.

To utilize deep learning-based graph coloring register
allocation in production compilers we still need to carry out
further experiments and studies. One of them is to investigate
on how the interference graphs differ from random graphs and
how to incorporate such graphs into the training cycle. It is

30

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

also important to check interference graphs from other
compilers like gcc (GNU C/C++ compiler) or icc (Intel C/C++
compiler). As mentioned in Section IV (C), our training has
focused on using random-graphs generated by the Erdös-
Renyi model, but in practice, we did observe LLVM GRA
generating interference graphs that are not represented well in
the training data-set.Though training via random graphs fares
favorably when used for interference graphs, we may still
need to build ensemble models as described in Sec IV-c to
make the models more effective.

Our model takes adjacency vectors of the nodes as inputs.
The sequence in which these nodes are fed to the input LSTM
is solely dependent on the numbering of the nodes. This can
probably be enhanced by first carrying out a breadth-first-
search (BFS), depth-first-search (DFS) or topological sort on
the graph and feeding such a prioritized sequence to the LSTM
– instead of one based on node numbering. In addition, we can
also experiment with bi-directional LSTMs to capture
relationships between nodes and edges which may not be
captured by unidirectional LSTM alone.

In the current work we have handled interference graphs
of size 100 nodes or less. We will need to extend our LSTM-
based model for larger graphs though based on our study of
the SPEC benchmarks we did not see graphs bigger than few
hundreds of nodes. In general LSTMs may not work well for
very long sequences though there have been positive results
using pre-training for sequences up to several thousand nodes
[12]. Also, modern attention-based LSTMs can probably
handle longer sequences better [2]. In addition to the issue of
handling long sequences for LSTMs for bigger interference
graphs, we need to find optimal coloring algorithms for such
graphs for supervised training. As mentioned earlier, optimal
coloring for large graphs is infeasible today. Hence, we may
need to fall back on good heuristics for such graphs and train
on these. An alternative to additional training or handling long
LSTM sequences, is to partition a larger graph into graphs of
size 100 nodes or less. We can color these subgraphs using our
approximate mechanism. Then, color correction can be
applied to the inter-subgraph edges as applicable.

Our work focuses on modeling the graph-
coloring/register-allocation problem using LSTMs. As
mentioned earlier there have been efforts to model similar
problems using both reinforcement-based learning as well as
Graph Neural Networks. It may be good idea to compare all
these techniques based on their prediction accuracy vs ease of
training and compute resources required.

Our work is one of the first in the area of approximate
machine-learning especially applied to the area of graph-
coloring/register-allocation. It is novel from the viewpoint of
applying a correction post-pass to an approximate algorithm
in the area of deep-learning. Such algorithms can be used in
the future to solve problems in DL where constraints need to
be encoded but are difficult to program in the setup –
especially when using LSTMs/MLPs. etc as models.

To conclude, this work is one of the first steps to replace
hand-designed heuristics for register allocation via graph-
coloring using a machine learning model. As we learn and
understand more, both about the applicable models and about
the nature of interference graphs, we think that we may need
to depend less and less on the color correction step and create
a more powerful deep learning-based algorithm that can be
used in future production compilers.

REFERENCES

[1] A. Thomas. 2019. Coding the Deep Learning
Revolution.https://adventuresinmachinelearning.com/coding-deep-
learning-ebook/

[2] D. Bahadanau, K. Cho and Y. Bengio. 2015. Neural Machine
Translation by jointly learning to align and translate. ICLR. 2015.

[3] P. Briggs, K. Cooper and L. Torczon. 1994. Improvements to graph
coloring register allocation. ACM Transactions on Programming
Languages and Systems (TOPLAS). 16(3), 428–455.

[4] K. Briggs. The Very_Nauty Graph Library version 1.1,
http://keithbriggs.info/very_nauty.html.

[5] D. Brelaz. 1972. Chromatic scheduling and the chromatic number
problem. Management Science. 19(4), 456–463.

[6] M. Braun. 2018. Register Allocation: More than Coloring. 2018 LLVM
Developers’ Meeting.

[7] R. Brown. 1979. New methods to color the vertices of a graph.
Communications of the ACM. 22(4), 251–256.

[8] G. J. Chaitin, 1982. Register allocation and Spilling via Graph
Coloring. Proceedings of the 1982 SIGPLAN Symposium on Compiler
construction - SIGPLAN '82. 98–101.

[9] F. Chow and J. L. Hennessey. 1990. The priority-based coloring
approach to register allocation. ACM Transactions on Programming
Languages and Systems (TOPLAS). 12(4), 501–536.

[10] Colah’s blog. 2015. Understanding LSTM Networks,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[11] COLOR02. Graph Coloring and its Generalizations.
https://mat.tepper.cmu.edu/COLOR02/.

[12] A. M. Dai and Q. V. Le. 2015. Semi-supervised Sequence Learning.
Computing. NIPS. 2015.

[13] P. Galinier and A. Hertz. 2006. A survey on local search methods for
graph coloring. Computers and Operations Research. 33, 2547–2562.

[14] I. Goodfellow, Y. Bengio and A. Courville. 2016 Deep Learning. MIT
Press.

[15] Google Inc. 2019. Tensorflow 2.0,
https://www.tensorflow.org/tutorials.

[16] A. D. N. J. De Grey, 2018. The Chromatic number of the plane is at
least 5. https://arxiv.org/abs/1804.02385.

[17] A. Hertz and D. de Werra. 1987. Using tabu search techniques for
graph coloring. Computing. 39(4). 345–351.

[18] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory.
Neural Computation. 9(8), 1735–1780.

[19] J. Hopcroft. 2006. Erdös-Renyi Model.
http://www.cs.cornell.edu/courses/cs485/2006sp/lecture%20notes/lect
ure1.pdf.

[20] J. Huang, M. Patwary and G. Diamos. 2019. Coloring Big Graphs with
AlphaGoZero. https://arxiv.org/abs/1902.10162.

[21] F. T. Leighton. 1979. A graph coloring algorithm for large scheduling
problems. Journal of Research of the National Bureau of Standards.
84(6), 489–503.

[22] H. Lemos, M. Pratesy, P. Avelarz and L. Lamb. 2019. Graph Coloring
meets Deep Learning: Effective Graph Neural Network Models for
Combinatorial Problems. https://arxiv.org/abs/1903.04598.

[23] LLVM. The LLVM Compiler Infrastructure Project, https://llvm.org/.
[24] E. Malaguti and P. Toth. 2010. A survey on vertex coloring problems.

Intl. Trans. in Op. Res. 17(17), 1–34.
[25] Network Repository. Zachary Karate Club Network,

http://networkrepository.com/soc-karate.php.
[26] F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini.

2009. The graph neural network model. IEEE Tran. Neural Networks.
20(1), 61–80.

[27] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura and D. L. Dill.
2019. Learning a SAT solver from single-bit supervision. International
Conference on Learning Representations (ICLR), 2019.

[28] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F.
Hui, L. Sifre, G. van den Driessche, T. Graepel and D. Hassabis. 2017.
Mastering the game of Go without human knowledge. Nature. 550,
354–359.

31

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

[29] SPEC. Standard Performance Evaluation Corporation,
https://www.spec.org/cpu2017/.

[30] Wikipedia. Chvatal Graph,
https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph.

[31] Wikipedia. Scale-free Networks. https://en.wikipedia.org/wiki/Scale-
free_network.

[32] M. Yatsina. 2018. LLVM Greedy Register Allocator – Improving
Region Split Decisions. European LLVM Developers Meeting. April
2018. Bristol, UK.

[33] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li and M.
Sun. 2019. Graph Neural Networks: A Review of Methods and
Applications. https://arxiv.org/abs/1812.08434.

32

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 25,2023 at 18:48:12 UTC from IEEE Xplore. Restrictions apply.

