
HW2- Frequent Path LICM
Aditya Vasudevan

Sep 22, 2023



Loop Invariant Code Motion (LICM)

These values do not change 
within the body of the loop.



Loop Invariant Code Motion (LICM)

● Move operations whose source 
operands do not change within the 
loop to the loop preheader.
○ Execute them only 1x per 

invocation of the loop.

● LICM is already implemented in 
LLVM
○ /lib/Transforms/Scalar/LICM.cpp



Frequent Path LICM
● There is a store-load dependency.
● The load cannot be hoisted up because it 

is not invariant in the loop.

● But according to the profile data, it 
nearly never changes.



Steps
1. Identify the loops. Then for each loop:
2. Identify the frequent path (≥ 80%). 
3. Identify loads that are invariant on the frequent path.
4. Perform LICM on those loads.
5. [Bonus] Perform LICM on other instructions.
6. Add fix-up code to ensure that the execution is correct.



Identify the Frequent Path
● Start at the loop header, keep choosing the 

branch that is taken at least 80% of the time, or 
until the loop is closed.

● The cumulative probabilities may drop lower.
● Everything not on the frequent path is considered 

to be on the infrequent path.

Performance: You can use a different threshold.



Identify the invariant loads
Now that we consider only the frequent path, the load 
has become invariant.

For correctness, you only need to consider the loads.



Move the Load
● We can now move the load up to the pre-header.
● This is the key optimization step as the load is now 

executed only once.

● However it is important to note that the program in 
its current state will not be correct.



Fixing Up
● Now that we have moved the load, we need to add 

code so that the program execution is correct.
● Just copying the load instruction to the infrequent 

path will ensure that it works correctly. 



[BONUS] Move more instructions
Since we moved the load, the 
following instruction has also 
become invariant in the loop.

So we can move it up to the 
pre-header as well, adding to 
our gains.

And we need to add the fix 
up code too.



FPLICM
Before After



What you have been given
1. A run script
2. A viz script
3. Benchmarks

a. 6 correctness (Mandatory)
i. Simple cases exploring different scenarios that your code should be able to handle.

b. 4 performance (Optional)
i. Cases with high trip counts and more opportunities for hoisting.

4. Basic template to write code in.



Some LLVM Resources
● Disclaimer: These are only recommendations, you do not have to use these.

Always a useful resource: https://llvm.org/docs/ProgrammersManual.html

https://llvm.org/docs/ProgrammersManual.html


Manipulating Basic Blocks
SplitBlock()

● Splits the BB at the specified instruction.

SplitEdge()

● Insert a BB on the edge connecting two specified BBs



Instructions and Variables
● Most Instructions have a constructor (look at the documentation)

○ It allows you to specify operands
○ It also allows you to specify where you want to insert this instruction.

● Many instructions also have a clone() function
● Functions that are useful across all Instructions are in llvm/IR/Instructions.h

○ These include functions that can be used to insert/move instructions

● Use AllocaInst to allocate memory space on the stack.



An important note on SSA
LLVM is in SSA form. You will learnt about this today.

This means that when you clone an instruction, the LHS will be different.

● You need to ensure that the correct values are used in the correct places.
● One solution is to store the value onto the stack (in the pre-header) and retrieve it 

before any use.
● A better solution is to use PHI nodes to merge the values of the copy and the 

moved instruction.



Final Notes
● Read the spec and the Piazza post carefully and thoroughly.
● Start early.
● Make sure you do not break the program.
● Start with the given script and template.
● If you finish early, attempt the bonus part.
● Check Piazza frequently, someone may have encountered the same issues as you.
● For performance, your code needs to be correct, not just fast.


