
Practical Structure Layout
Optimization and Advice

Group 21
Jaehyun Shim, William Wang, Christian Ronda, Yong Seung Lee

Problem statement

● Processor clock speed vs memory latency
● Need to improve an application's cache locality and reuse

○ Especially for pointer access patterns

Limitations of Previous Effort
● Previous Effort

○ Loop Transformation (Tiling)
○ Array Padding

● Challenges:
○ Limited to array and loop intensive scientific codes
○ Not applicable to pointer-chasing access patterns

Proposed Approach

● Optimizing structure layout
○ 4 techniques:

■ Structure splitting
■ Peeling
■ Dead field removal
■ Reordering

● Advisory tool
○ Overcoming profitability constraints and struggles to provide satisfactory results

■ Static analysis & runtime data collection -> field affinity and hotness
● Guiding structure layout decisions

Proposed Approach: Optimizing Structure Layout

Front End:
Legality & Profitability Analysis

Inter-procedural Analysis:
Aggregation & Analysis & Heuristics

Back End:
Code Transformation

IELF files

Step 1: Front End - Legality Analysis
Front End

IPA

Back End

Before we can do a struct transformation,
we have to do some checks first.

This is called Legality Analysis and is done
by the Front End,

where legality is determined by a series of
tests with a single pass over the IR.

Here are some flags that are checked.

If flag conditions are met, the struct is deemed
invalid for transformation.

To determine applicable transformation types, we
also collect attributes such as global vs local scope,
is it allocated or free, and escaping scopes.

Attributes and legality flags are then sent to the IPA
stage

Flag examples:

CSTT: (void *) function returns are not valid.

CSTF: A casted record type is invalid.

ATKN: Address field usage in code is not invalidated if it is
used as an argument, as we assume that the function will not
use it to jump somewhere else unintentionally.

NEST: Nest types are invalid.

SMAL: Small dynamically allocated types with a size under a
threshold are invalid, as it's not cost effective to optimize
them.

Legality Analysis Flags
Front End

IPA

Back End

 A few things happen here:

1. Point-To Analysis: Additional address
access tracking

2. Profitability Analysis

3. Profile Based Optimization

Because of restructuring, struct addressing can get misdirected if
function rely on moving from address to address.

Point-To Analysis aims to address and optimize this issue.

Track metrics such as read/write counts, access count, and affinity.

Because member variable accesses frequencies are relative to
other variable, an weighted affinity graph is created to track relative
accesses.

Step 2: Inter-procedural Analysis (IPA)
not the drink unfortunately

Front End

IPA

Back End

Confusing? Let’s break them down next slides

The IPA is responsible for collecting legality information and giving the backend instructions
on the most optimal restructuring methods to use.

A weighted affinity graph is created to check which parts
of our struct is worth restructuring.

We use three metrics

1. Hotness: The absolute summation of access of
the field - can be estimated.

2. Affinity: Fields are affine when they are accessed
close to each other.

3. Read/Write count

- Metrics are aggregated into an IELF file

Profitability Analysis
Front End

IPA

Back End

struct MyStruct {
 int a;
 long b;
 char c;
 float d;
} a

b

c

d

0.9

0.1

0

0.5

0.0 0.2 0.4

50/150/200

100/1/101

40/40/80

1/4/5

Based on the metrics collected from Profit
Analysis, the IPA declares an optimization mode
based on information available.

This are just example optimization modes >>

Regular Profile Based Optimization (PBO):
- If profile information is available, the incoming edge counts for

loop headers are used as weights. (Yields overall best
optimization)

Static PBO:
- If profile information is not available, edge frequencies are

estimated with probabilities based on back edge tracking.
- However, effectiveness is limited to local scopes.

Inter-Procedurally Scaled Static PBO:
- Execution counts are further propagated along call-graph

edges. The counts are scaled based on local vs global
execution count.

Cache Misses and Latency (DLAT):
- D-caches miss counts and latenties also provide profile

information due to high correlation to affinity.
- But weak for predicting hotness.

Profile Based Optimization
Front End

IPA

Back End

After deciding on an Optimization Mode:

‘Correlation r’ or relative hotness determines how much
weight should be placed on transforming a specific
affinity field group.

Additional heuristics are added as well:

- Dead structure fields are always removed as long as most of the struct
alignment is preserved.

- Peeling is always performed as long as it mostly preserves struct
alignment.

- Field reordering is only performed in context of splitting, with at least
one field eliminated or split out.

- Splitting uses a different threshold for each type of IPA optimization.

Transformation Heuristics
Front End

IPA

Back End

The IPA hands the heuristic
weights and decide which fields
are hot or cold.

The Backend then uses
transformation methods to
change the struct organization
using this information.

With the heuristics previously mentioned,

4 Transformation Methods are considered

■ Structure splitting
■ Peeling
■ Dead field removal
■ Reordering

Step 3: Backend - Struct Transformations
Front End

IPA

Back End

● Struct Splitting
○ Break a given Struct into two (or more) pieces
○ Insert link pointers from the root to the splitted

■ Tree like structure

● Struct Peeling
○ Splitting without having to insert link pointers
○ Much more distinct groupings in memory.
○ New Variables instead of link pointers are created

Struct Grouping Transformations

Front End

IPA

Back End

● Dead Field Removal
○ Similar to Dead Code removal
○ Dead Fields: Stores, but never read

■ Split/Peel structs
■ Remove Inst

○ Only Live Fields are moved into a
new hot section

● Field Reordering
○ Insert fields in any desired order into newly

transformed type

Optimization Transformations
Front End

IPA

Back End

● Problem: Due to legality violations & profitability constraints -> Low transformations
●

Problem of struct optimization

- Providing statistics & useful information regarding struct fields.
- Correlating structure field accesses to individual loads and stores in a binary executable is

HARD.
- Mapping symbolic information in the high level optimizer <> simple load and load-offset instructions in

the low level optimizer.
- 2 step

- PBO collection phase: collect data such as edge count and data cache events
- PBO use phase: create CFG and maps profiled data.

Advisory Tool

Result report
Size, relative/absolute hotness, attributes &
legality violation (Local Pointer)

Each field: offset / name/ Hotness / Read,
Write counts / Cache miss rate and avg
latency / Affinities to other fields

Spatially CLOSE group of fields A & Spatially DISTANT group of fields B

Result analysis

Case Analysis

A & B hot, low aff Separate A & B

A & B hot, high aff Group A & B

A cold Split out A

Multi-threaded application: Grouping based on Read & Write counts

→ minimize inter-processor cache coherency costs

1. PBO clearly identified hot fields in struct which were not grouped together in the class
definition.

=> Grouping results in 2.5% performance increase

2. Array of instance (float, int) & lots of loop

=> Peeling improved 40% + additional loop optimizations & splitting improved 80%

3. Affinity information used by the HP-UX kernel group to improve their structure definitions

=> Multi-threaded kernel benefits from read/write counts

Usage experience

● Two groups of related work

● Extensive work in many different areas for dynamically compiled languages (e.g. Java)

● Other aspects of data layout optimization

Related Work

● dfChilimbi and Larus: Generational garbage collection to reorganize data structures

○ Objects with high temporal affinity are placed near each other → increases likelihood to reside in the
same cache block

● Kistler and Franz: Use online path profiling data to reorder structure fields for typesafe
languages such as Java

○ Improve performance for their set of benchmarks by up to 24%

Dynamically Compiled Languages

● Calder et al:
○ Compiler-directed approach for variable placement using profile data.

○ Targets global data, constants, stack variables, and heap objects.

● Zhong et al:
○ Use the concept of reference affinity for precise data transformation decisions.

○ Split structures into multiple parts for optimization, achieving impressive performance results.

Other Aspects of Data Layout Optimization

● Future Framework Enhancements:
○ Gradual Extension
○ Improved Legality Tests
○ Field Reordering

● Group comments
○ Lack of benchmarks, but great adaptation of optimizations techniques on insightful advisory report.

○ Not just focusing on a single optimization technique but utilized all of them together.

○ Rich analyses and modularization of different analyses enriched authors’ endeavors.

○ A lot emphasis on optimization schemes for a variety of access scopes.

Conclusion + Group Commentary

