
Practical Structure Layout Optimization and Advice

Robert Hundt, Sandya Mannarswamy, Dhruva Chakrabarti

Java, Compilers, and Tools Laboratory
Hewlett-Packard Company

{rhundt, dhruva) @cup. hp.com, sandyam @ india. hp.com

Abstract

With the delta between processor clock frequency and
memory latency ever increasing and with the standard lo-
cality improving transfonnations maturing, compilers in-
creasingly seek to modify an application's data layout to
improve spatial and temporal locality and to reduce cache
miss and page fault penalties. In this paper we describe a
practical implementation of the data layout optimizations
Structure Splitting, Structure Peeling, Structure Field Re-
ordering and Dead Field Removal, both forprojle and non-
profile based compilations.

We demonstrate sign8cant performance gains, but jind
that automatic transformations fail for a relatively high
number of record types because of legality violations or
profitability constraints. Additionally, we Jind a class of
desirable transformations for which the framework cannot
provide satisfying results. To address this issue we comple-
ment the automatic transformations with an advisory tool.
We reuse the compiler analysis done for automatic trans-
formation and correlate its results with peformance data
collected during runtime for structure fields, such as data
cache misses and latencies. We then use the compiler as
a pefomtance analysis and reporting tool and provide in-
sight into how to layout structure types more eficiently.

1. Introduction

The delta between processor clock speed and memory
latency continues to grow. Compilers are challenged to
improve an application's cache locality and reuse. The
standard locality improving transformations, such as loop
transformations, are maturing and their applicability do-
main is limited to array and loop intensive scientific codes.
For codes with pointer based data structures and irregular,
pointer-chasing access patterns, these transfonnations don't
apply. Therefore, in order to improve cache locality and

cache reuse, compilers increasingly seek to modify an ap-
plication's data layout.

This paper focuses on structure layout and placement
on the heap. Many of the proposed methods dealing with
record types have characteristics which make them unsuit-
able for commercial compilers: Some aren't fully auto-
mated [21][4], some are profile based [8][18][2][12], and
some are program trace based [23][16]. The analysis and
compile time can be prohibitive, such as for the trace based
methods, or the usage patterns aren't adopted well by the
community, such as for the methods using profiles. Some
of the proposed methods assume type-safety [3][12], which
in the case of C/C++ is rare in practice.

We present a practical framework for structure layout
optimizations, such as structure splitting, structure peel-
ing, dead field removal and field reordering, which we have
implemented in the SYZYGY high level optimizer for the
HP-UX C/C++ and FORTRAN compilers [15] for Intel Ita-
nium @. The framework is practical as it is simple, effec-
tive in finding optimization opportunities, and causes little
compile time overhead (which is important for commercial
compilers) at the expense of analysis accuracy.

We find that the number of transformable types increases
drastically with an improved and more expensive analysis,
but because of profitability filters most of these types are
still not transformed. Additionally, there is a class of desir-
able transformations for hot and non-affine clusters of struc-
ture fields for which the framework cannot provide satisfy-
ing results.

To address these issues we develop a fast, compiler based
advisory tool, which combines static compiler analysis with
data collected at runtime. It generates as output anno-
tated structure definitions providing insights into potentially
more effective structure designs.

Our main contributions in this work are:

Development and evaluation of a non-profile based
heuristic that uses field affinity and hotness based on
inter-procedurally propagated estimated edge weights
for its layout decisions.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 O 2006 IEEE
C O ~ P U T E R

SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

Description and evaluation of a low-overhead, practi-
cal implementation in a commercial compiler which
trades analysis accuracy for compile-time performance
without losing any transformation opportunities (for
our set of benchmarks).

Development of a compiler-based performance advi-
sory tool which combines static analysis with runtime
measurements to guide in structure layout decisions.

This paper is organized as follows. In section 2 we
briefly present our compiler framework and describe the ac-
tual transformations in detail before discussing the legality
analysis. We explain the effects of a potentially more pre-
cise analysis. Then we outline the profitability analysis and
compare several techniques we experimented with.

In section 3 we describe the advisory tool and show how
we use the existing mechanism for feedback directed com-
pilation effectively to attribute data cache events to structure
fields. Then, by the means of example, we suggest possible
uses of the presented data. We discuss related work in sec-
tion 4 and conclude with a short summary in section 5.

In the following, the term type always refers to a record
type, unless stated otherwise. The abbreviation FE denotes
the front-end portion of the high-level optimizer and not the
compiler front-end performing language parsing.

2. Framework

The framework has been implemented in the SYZYGY
high level optimizer [15] for the HP-UX Itanium com-
pilers, which offer a command-line option -ipo to en-
able inter-procedural optimizations. With this option, ob-
ject files are emitted containing an intermediate represen-
tation of the input (IELF files). At link time, a dynami-
cally loaded linker plug-in identifies the presence of IELF
files and launches the inter-procedural optimizer, which per-
forms inter-procedural analysis (IPA) and transformations,
before writing the results back into IELF files in a tempo-
rary directory. It then creates a Makefile and invokes the
utility "make" to parallelize the back-end and code genera-
tion. All this happens transparently to the user.

Structure layout optimizations are inter-procedural by
nature. Cases where file- or procedure-local types can be
modified are covered by the inter-procedural infrastructure.
Types are identified which can be modified safely and at-
tributes are collected (such as whether a type has been dy-
namically allocated or whether there are local or global vari-
ables of that type). These attributes are consulted to de-
termine applicable transformations. Affinity and hotness
analyses are performed to determine the final transforma-
tions.

Following the SYZYGY design philosophy we seek to
push as much functionality as possible into the paralleliz-

able front-end (FE) and back-end (BE) and to minimize
work done in the monolithic inter-procedural analysis phase
(IPA).

The FE performs the bulk of the legality analysis and
collects summaries for the profitability analysis in IPA.

IPA aggregates the legality and affinity summaries,
performs legality and type escape analysis, profitabil-
ity analysis, and employs the heuristics. If types are to
be split it emits control information for the BE.

The actual transformations are performed in the BE

As we show in the next sections, these design decisions
result in low compile time overhead, but lead to conserva-
tive analysis results.

2.1. Transformations

Structures can be modified in a variety of ways. In
the following paragraphs we describe the four methods we
have implemented and discuss some alternative implemen-
tations. The starting point for the descriptions is a dynami-
cally allocated array of structures as shown in Figure 1 (a).
Each structure has two interleaved hot and cold fields.

Structure Splitting - This transformation breaks a given
structure into two (or more) pieces and inserts link pointers
to allow addressing of all parts of a type via a pointer to it's
root part. The transformation can be graphically illustrated
as in Figure 1 (b).

Structure Peeling - For certain cases, types can be split
without having to insert link pointers. The term structure
peeling has been introduced by [8] for this special case of
splitting. Instead of link pointers, new variables or pointers
are created in either global or local scope to point to pieces
of a structure.

For example, the SPEC2000 floating point benchmark
179.art [20] has a dynamically allocated array of structures
containing only floating point fields (and a non-recursive
pointer). The result of the dynamic allocation is assigned to
a global pointer variable P; no other local or global pointers
or variables of that type exist. The transformation breaks the
type into multiple record types, each containing only one
field corresponding to a field in the original type. The single
dynamic allocation site is transformed into multiple alloca-
tions and multiple global pointer variables Pi are created
to store the results of the allocations. All original accesses
to a structure field via the global pointer P are transformed
into accesses via one of the newly created pointers Pi. This
transformation is graphically illustrated in Figure 1 (c).

Dead Field Removal - The transformations dead field re-
moval is wrapped into the two previous transformations. If a
type can be transformed and has at least one dead field, the

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 Q 2006 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

fieldl - cold

fieldo - hot

fieldl - cold H

fie& - hot
...

fieldl - cold

fieldl - cold

fields - cold

fieldl - cold

field3 - cold

. . .

I Ptr fieldo - hot

field2 - hot

link to cold
fie14 - hot

field2 - hot

field2 - hot

-
,

field3 - cold E'*I

link to cold

Figure 1. An array of record types (a), after splitting (b), and after peeling (c)

-

structure is split following the heuristics. Only live fields 2.2. Legality Analysis
are moved into the newly created hot section. The cold sec-
tion can be empty. During FE's legality and property analysis, several small

We distinguish between unused fields, for which it is suf-
ficient to modify their parent type, and dead fields, which
have stores to them, but who's value is never used. For dead
fields, both the parent type need to be modified and (dead)
store instructions need to be removed.

To identify dead fields for transformable types it is suffi-
cient to find fields with no reads from them, but with writes
to them. As we will explain later, the analysis can be kept
simple as we guarantee that for a transformable type no
aliases to individual fields exist.

Field Reordering - A similar mechanism as for dead field
removal is used for field reordering. Once a record type is
newly created, fields can be inserted in any desired order.

Alternative implementations are possible. For example,
if one can prove that there is only one dynamic allocation
of an array of structures, the type and the allocation site can
be split into multiple pieces and the cold parts can be ad-
dressed with an offset to a pointer to the root portion of that
type. If one can prove (or guarantee, for example, with help
of an assertion) that there will be a limit on the size of a
dynamically allocated array, in order to eliminate the need
for link pointers one can use a technique similar to instance
interleaving [21], but without the need for a special alloca-
tion library. Zhong et a1 [23], use a maximum fixed size for
arrays of record types as well and convert pointers to integer
indeces. Other implementation strategies are possible.

and efficient tests are performed in a single pass over our
compiler's intermediate representation (IR) to determine
whether it is safe to transform a type. A type is called in-
valid if it cannot be transformed. These are the main legality
tests:

CSTT A cast to a type has been found. This indicates type-
unsafe use of a type and such types are marked invalid.
Note that in C/C++, for dynamically allocated types, at
least one cast from a (void *) to the result type will
be found, as both malloc 0 and calloc () return
(void *) . The simple solution is to maintain a list

of the return values from such calls and to tolerate casts
made from these values. Since this analysis is done in
the FE, types that are allocated in wrapper functions
returning (void *) will be invalidated.

CSTF A cast from a record type has been found. Again,
this indicates type-unsafe uses and types are invali-
dated.

ATKN The address of a field is taken. This may indicate
address arithmetic on structure fields, which is incom-
patible with the modification of structure layouts. If
the address of a field is taken in the context of a func-
tion call, we do not invalidate the type under the as-
sumption that the called function will not try to access
other structure fields from the pointer passed as argu-
ment.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)
0-7695-2499-OtO6 $20.00 O 2006 IEEE

Q
C ~ ~ P U T E R

SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

LIBC Standard library functions are marked specially in
the header files of the HP-UX compiler tool chain. If
a type escapes to such a function, e.g. to fwr i t e () ,
the type is marked invalid, as it escapes to a function
outside the current compilation scope. This analysis is
done in the FE for efficiency reasons, as IPA will find
escaped types as well.

IND A type escapes to an indirect function call. Since in
the FE the targets of such calls are potentially unknown
the type is invalidated.

SMAL A type has been dynamically allocated and the
number of elements to be allocated is specified with
a constant smaller than a threshold A. For example, in
many or our benchmark programs we find allocation
sites allocating arrays of size 1 (single objects).

MSET Our IR has special provisions for memory stream-
ing operations corresponding to the C/C++ functions
memcpy () , memset () etc. Types used in such ex-
pressions are marked invalid because of implementa-
tion limitations.

NEST A type is nested in another type. We mark these
types as invalid also because of implementation limi-
tations.

In order to determine applicable transformation types,
we collect other attributes, such as whether a global or lo-
cal variable, pointer, or array of a given type were found,
whether a type has been dynamically allocated, free'd, or
re-allocated. We also collect tuples <type, function> for
record types escaping to (non-lib) functions for the escape
analysis later in the IPA.

During IPA we read and aggregate the legality results
from the FE and mark invalid types in the type-unified IPA
symbol table. The escape summaries are read and aggre-
gated as well. If a type escapes to a function outside the
current (IPA) scope, it is invalidated.

Note that for some of above legality filters workarounds
can be found which allow transforming a type. For exam-
ple, for LIBC the original type can be reconstructed and be
passed as a parameter. For MSET the IR can be converted
into procedure calls with a loop assigning link pointers. So
far, however, we haven't found performance opportunities
that would warrant implementing such support.

There are other problematic constructs, for example, the
operators s izeof 0 and o f f se to f 0 . TheFE usually
converts them into numeric constants based on it's knowl-
edge of a type's layout. Code relying on these numbers can
become unsafe after changing a structure layout. As a so-
lution, the compiler front-end can avoid emitting indistin-
guishable integer constants for s i zeo f () constructs and

Benchmark I(Types (Legal 1 % Relax 1 % 1
3 (60.0 1 18l.mcf

179.art
milc
cactusADM
gobmk
povray
calculix
h264avc
moldyn
lucille
sphinx
ssearch
Average:

Table 1. Types and transformable types, with
and without CSTF, CSTT, ATKN

5 (1 1 20.0

instead emit attributed constants or introduce a new IR con-
struct to enable proper analysis.

Applying these simple and practical tests leads to very
conservative results compared to what our field-sensitive
points-to analysis (Points-To, for brevity) can derive. For
example, if the address of a field is taken, Points-To may
be able to derive that no other field can be accessed via
this exposed address and that this operation is therefore not
blocking transformations. If other fields can be accessed,
Points-To will collapse the Points-To set for all fields.

During IPA, testing for collapsed Points-To sets can be
used as a sharper legality test for ATKN, CSTT and CSTF.
However, this would make it necessary to push the whole
legality analysis into IPA.

We estimate an upper bound of the benefits of Points-To
by introducing an internal flag to tolerate the type invalidat-
ing criteria CSTF, CSTT, and ATKN, for which Points-To
can derive more accurate result.

Table 1 lists the benchmarks we are using in this paper.
Among the SPEC2000 benchmarks, we found profitable op-
portunities for structure layout optimizations in only two
benchmarks, 18 1 .mcf and 179.a1-t. We therefore add a num-
ber of open-source benchmarks representing a mix of float-
ing point and integer programs. The total number of record
types found is shown (column "Types") and the number of
types passing through the practical analysis (column "Le-
gal"). After relaxing the legality constraints, many more
types are transformable (column "Relax"). The percentage
of transformable types grows from 20.9% to 65.7%. How-
ever, the transformations are still being blocked by other le-
gality tests than CSTF, CSTT, and ATKN, and by the prof-
itability analysis. As a result, the number of transformed
types (which can be seen in Table 3 below) remains con-
stant.

3
20

116
59

275
4 1
42

4
97
64
10

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 o 2006 IEEE

Q
C ~ M P U T E R

SOCIETY

2
5

13
9

14
3
3
1

17
4
4

66.7
25.0
11.0
15.3
5.1

11.6
7.1

25.0
17.5
6.2

40.0
20.9

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

2.3. Profitability Analysis

The profitability analysis computes read and write
counts, as well as hotness for and af/inity between struc-
ture fields. We provide simple informal definitions for the
latter two terms:

Two fields are affine to each other when they are ac-
cessed close to each other in the IR, for example, in
the same statement or in the same loop.

Hotness is computed from the aggregated total esti-
mated accesses to a field. Fields that are accessed more
often than others are hotter.

Our granularity for "closeness" is the loop level. The FE
uses the loop optimizer's loop recognition, which is based
on [9], to build a loop structure graph. It iterates over each
loop's basic blocks and collects the field references for a
given type into a weighted affinity group (weights are dis-
cussed below). Affinity groups can contain 1 or more fields.
Field references found in remaining straight line code form
another, single affinity group with the weight of the routine
entry point.

Affinity groups containing identical fields are merged to-
gether via adding up the weights and stored as annotations
in the IELF files. In our compiler infrastructure, annotations
are nothing more than anonymous and indexable blocks of
binary data.

Read and write counts are collected statement by state-
ment using the basic blocks' incoming edge weights as
counts. The aggregated information is also stored in the
JELF file.

During IPA the annotations are read and aggregated, total
read and write counts are computed and an affinity graph is
constructed for every type. Nodes in the graph represent
fields and an edge between two nodes indicates that both
fields were found in at least one affinity group. The final
edge weight is the result of summation of the weights of
all affinities found in the IELF files. Hotness for fields is
simply computed by adding up the incoming edge weights
for a node in the affinity graph.

How weights are assigned to the affinity groups is what
differentiates the various weighting mechanisms we exper-
imented with. As an example we show in Table 2 below the
relative hotness values for the fields of type node-t from
the SPEC2000 integer benchmark 18 1 .mcf for various ex-
periments. Relative hotness is expressed in percent relative
to the hottest field of a type. In the table, each column con-
tains the relative field hotness in percent for a given exper-
iment. As a baseline we use the hotness values computed
from dynamic PBO (explained below). For all other meth-
ods we express the correlation to the baseline as a linear

correlation coefficient T:

It takes on values between +1 (perfectly correlated) and
-1 (complete negative correlation). A value close to 0 indi-
cates no correlation at all. The xi and y, are the field specific
percentages, and 2 , & the respective arithmetic mean val-
ues. The last two rows in the table show the correlation T to
the baseline (PBO) and the correlation T', which disregards
field p o t e n t i a 1. The following paragraphs describe the
various weighting mechanism in greater detail.

ProJiLe Based Optimization (PBO) - If profile in forma-
tion is available, the incoming edge counts for loop headers
are used as weights for the affinity group defined by the
loop. This method resulted in the best affinity estimates. In
general, the accuracy is determined by how good the train-
ing data sets predict the final executions of a program. It
is more robust against a small number of problems in the
training data sets than other parts of the compiler, such as
the loop optimizer. In this phase a single important hot loop
can be classified as cold because the training data set did not
execute the loop. Since data structures are usually accessed
in more than one loop, such problems are alleviated. PBO
is our default method for feedback directed compilations.

Perfect PBO (PPBO) - As a reference we provide the
values for "perfect P B O where the feedback file is created
using the reference data set. In the example, the correlation
to the training data set is almost perfect (T = 0.983).

Static PBO (SPBO) - If no profile information is avail-
able, edge frequencies in a routine are estimated with help
of probabilities for source constructs [22]. For example,
a loop back edge is assumed to execute about 8 times on
average and both branches of an if-then-else construct are
assigned a 50% probability. As in the PBO case, incoming
edge weights to loop headers are used as weights for the
affinity groups.

Since the static heuristics for edge weights are local
to procedures, they are not suitable for comparing inter-
procedural affinities. For example, if a function foo() calls
function bar() from an inner, deeply nested loop, the fields
in bar() should be considered to be hotter than the ones in
foo(), but with SPBO they are not. Correspondingly, the
correlation to the baseline is poor (r = 0.69).

Inter-Procedurally Scaled Static PBO (ISPBO) - Similar
to the method described in [22] we propagate the execution
counts along call-graph edges to compute inter-procedural
counts. The propagation happens top-down over the call-
graph with the assumption that the main procedure is called
once. The normalized execution count of a procedure is
obtained by a summation of the normalized counts of its

Proceedings of the International Symposium on Code Generation and Optimization (CGO'OG)
o-7695-2499-0106 $20.00 o 2006 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

Field

number
ident
pred
child
sibling
sibling-prev
depth
orientation
basic-arc
firstout
firstin
potential
flow
mark
time
Correlation r
Correlation r'

ISPBO

4.1
-

82.3
28.1
20.4
4.1

10.6
38.5
53.2
4.3
I .o

100.0
20.1
15.7
14.8

0.891
0.799

PBO
0.2

Table 2. Relative field hotness for a variety of experiments and their correlation to PBO

PPBO

0.0

incoming call-graph edges. The ratio of the normalized ex-
ecution count of a procedure and its local execution count is
used to scale every other static estimation within that proce-
dure, such as branch and call frequencies. Our propagation
algorithm properly handles recursion in the call-graph. The
scaling is performed with the following algorithm.

Let N l o c (f) be the local execution count of function f ,
and N, (f) it's global execution count. Let El,,(c) be the
local execution count of call-site c and Eg (c) it's global ex-
ecution count. Let finally Cloc(b) be the local execution
count of a basic block b and C,(b) it's global execution
count. For the main function m we set

1SPBO.NO

5.1
-

100.0
35.0
25.5

6.2
13.8
47.4
64.4
6.0
1.7

74.0
26.3
19.6
18.7

0.81 1
0.795

SPBO

5.3

Ng (m) = 1

DMISS
0.2
-

13.7
1.2
0.4
0.0
2.6

32.4
1.6
0.9
0.2

100.0
1.1
0.5

43.3
0.687
0.211

1SPBO.W

1.9
-

100.0
35.1
25.4
2.7
6.5

42.2
68.4

1.2
0.3

70.9
12.0
9.4
8.4

0.782
0.764

For a function f we compute over all call sites c

Once N g (f) is computed, the global counts of basic blocks
within the function f are scaled using the following equa-
tion:

Cg(b) = Cloc(b)Ng(f)lNloc(f)

DLAT

0.2
-

11.7
1.1
0.2
0.0
1.7

38.6
1.8
1.9
0.1

100.0
0.7
0.4

38.5
0.686
0.207

Our probabilities for loop back-edges aren't high enough
for certain benchmarks, resulting in histograms for field
hotness which a are too flat, making it difficult to prop-
erly distinguish between hot and cold fields. We therefore
scale up the inter-procedurally derived scaling factors S by
an exponent E, which is currently set to 1.5. Since S is
either bigger or smaller than 1.0 the scaling improves the
separability between hot and cold fields. For reference, the
non-scaled values are shown in column ISPBO.NO.

DMISS.NO

0.1
-

12.8
0.6
0.2
0.0
2.6

30.9
2.1
0.9
0.1

100.0
1 .O
0.4

41.3
0.686 -
0.207

ISPBO correlates well with the baseline (r = 0.89) and
is our default heuristic for compilations without profiles.

ZSPBO with Modified Weighrs (ISPBO. W) - The experi-
ment 1SPBO.W shows how the effect of scaling correlates
to the results obtained from increasing the back edge prob-
abilities. We changed the probability for floating point loop
back edges from 0.93 to 0.98 and that for other loops from
0.88 to 0.95 (this separation is an extension of [22]). We
cannot change these probabilities permanently because of
performance degradations in other benchmarks. The corre-
lation between 1SPBO.W and ISPBO is 0.94, indicating that
using an exponent E in ISPBO is a valid approximation of
higher back edge probabilities.

Cache Misses (DMISS, DLAT) - As we will show later,
we also collect field specific data cache (d-cache) miss
counts and latencies from the profile feedback files and at-
tribute them to individual fields. Table 2 shows that misses
and latencies are highly correlated to each other (0.96).
However, the correlation to the baseline is poor (0.69).

If field potential is ignored the correlation sinks to
only 0.21, indicating almost no correlation. The d-cache
values are poor predictors for field hotness; however, in the
future, they should be consulted to avoid splitting out of
d-cache intensive fields. The column DMISS.NO presents
the d-cache information gathered without instrumentation,
which has a very high correlation to DMISS (0.996, not
shown in the table). This means that the instrumentation
has nearly no effect on the sampled d-cache values.

These numbers and their relative correlations have been
confirmed by experiments with other benchmarks. How-
ever, in general, static heuristics, as well as heuristics based

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)
0-7695-2499-0106 $20.00 o 2006 IEEE

COMPUTER
SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

on profiles derived from non-representative training data
sets, can potentially mis-classify fields.

2.4. Heuristics

Based on affinity, hotness, and type characteristics, the
heuristics decide if and how to transform a type.

Dead structure fields are always removed as long as a
limited set of alignment guarantees is preserved. In particu-
lar, removing bit-fields can result in more expensive access
code sequences.

Structure peeling is always performed as well, subject
to alignment constraints. It is possible to construct test
cases for which this transformation results in a performance
degradation. For example, a tight modulo-scheduled loop
might need an additional cycle because of an additional
load that needs to be performed. However, for all prac-
tical benchmarks and applications, no negative effects are
expected.

Structure field reordering is currently only performed in
the context of structure splitting; fields are only reordered if
at least one field is eliminated or split out.

Structure splitting uses a threshold T,. Fields with rela-
tive hotness lower than T, are being split out. T, is currently
set to 3% for PBO and to 7.5% for ISPBO. T, and the scal-
ing factor E are subject to continuous tweaking. Since a
link pointer needs to be inserted, at least two structure fields
need to be split out for the transformation to be profitable.

Our observations for structure splitting are simple. We '

find that while the performance of hot loops improves sig-
nificantly, the cost for loops accessing cold fields via link
pointers grows disproportionately. Additional instructions
need to be executed, which can negatively influence other
optimizations, and the number of cache misses increases as
well.

As an example, for 18l.mcf's type node-t, the field
t ime has a hotness of 14.8% in ISPBO, the field mark has
a hotness of 15.6% (we chose these two fields because the
resulting effects are significant). Splitting out field time
results in a performance degradation of 9%. Splitting out
the fields time and mark results in a performance degra-
dation of 35%. We conclude that the single most important
criteria for splitting is hotness - hot fields need to remain in
the hot section, regardless of affinity or other metrics, such
as access distance to other fields.

Only dynamically allocated objects are being trans-
formed. The threshold for the allocation number in legality
test SMAL is set to > 1, as we assume that splitting of sin-
gle objects will be not be profitable. For the same reason we
do not modify a type if it has only global or local variable
instances and no static or dynamic array.

Our PBO infrastructure collects stride information for
pointer-chasing loads and stores (and other information -

the mechanism is explained below). The stride distance is
usually a multiple of the size of the underlying type of an ar-
ray or dynamic data structure a particular loop iterates over.
Since type sizes change during structure splitting we were
updating the stride distances as well. Interestingly, this had
no or only slightly negative effects on runtime performance.
This can be explained by the intricacies of our prefetch al-
gorithm, which, unfortunately, are beyond the scope of this
paper.

For multi-threaded applications a different set of heuris-
tics can be applied. For example, there is a performance
penalty if two threads access (write) disjoint hot structure
fields on the same cache line due to costs associated with
cache coherency. These fields should be separated to dif-
ferent cache lines instead of being moved together. Addi-
tionally, the multi-threaded heuristics can be augmented by
analysis of whether fields are mostly read or written. While
we perform readwrite analysis, we do not currently con-
sult these values in our heuristics. This is subject of current
research.

2.5. Performance

The baseline for our performance analysis is a "SPEC
base" configuration without using profiles, highlighting the
quality of the non-profile based heuristics. The configura-
tion specifies a high level of optimization and corresponds
to the compiler options +03 -ipo +Onolimit
+Olibcalls tofltacc-relaxed +DSnative
+FPD. All results were obtained on an HP server rx2600
with a 1500 MHz Intel Itanium @ processor, 6 GB of
memory, and 6 MB of L2 cache. For comparison, and to
indicate the presence of potential second order effects of
the transformation, we show the results obtained with and
without profile for two benchmarks (181 .mcf and moldyn).

In Table 3 we show the benchmarks (column "Bench-
mark") and whether a profile was used during compilation
(column "PBO). We show the number of types (column
"T"), transformable types (column "Ttm), the number of
split out and dead fields (column "SKY'), and finally the
performance effects (column "Performance"). These range
from - 1.5% up to 78.2%. The three minor degradations for
the benchmarks cactusADM, calculix, and h264avc are in
the noise range. The benchmarks moldyn (21.8% - 30.9%),
181.mcf (16.7% - 17.3%) and 179.art (78.2%) gain signifi-
cantly from the transformations.

For moldyn, the presence of profile information leads to
improved behavior in other optimization phases, resulting
in an additional 9% relative performance gain. For 18 1 .mcf,
however, there appear to be no second order effects of the
transformations.

For all these benchmarks, the compile time overhead is
low. For the FE it is 2.5% on average, with an observed

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0JO6 $20.00 O 2006 IEEE
C ~ M P U T E R

SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

Benchmark I(PBO (T (Tt
18 1 .mcf 11 n o 1 5 1 1

S / D 1 Performance 1
6 1 0 1 17.3 % I

18 1 .mcf
179.a1-t
milc
cactusADM
gobmk
povray
calculix
h264avc
moldyn
moldyn
lucille
sphinx
ssearch

Table 3. Transformable/transformed types
and performance impact

maximum of 5%. The overhead for IPA is always below
4%. For the BE the overhead is 1 % on average, with an ob-
served maximum of 2.5%. Our implementation is currently
not optimized for speed and we believe that the overhead
can be further reduced.

yes
no
no
no
no
no
no
no
no

yes
no
no
no

3. Advisory Tool

The performance results indicate that successful trans-
formation can have significant positive impact on runtime
performance. The number of automatic transformations
is low because of legality violations and because of prof-
itability constraints (the insertion of link pointers for split
types has significant negative impacts on performance). The
analysis, however, does provide valuable information and
we offer an internal option to present the data to the user.
In this section we first elaborate on how we correlate com-
piler analysis and runtime measurements. Then we provide
an example and explain how to make use of the informa-
tion presented. Finally we illustrate why a certain class of
transformations cannot be performed automatically with the
existing framework.

5
3

20
116
59

275
41
42
4
4

97
64
10

3.1. Combining Static Analysis and Dy-
namic Measurements

1
2
5

13
9

14
3
3
1
1

17
4
4

For a standalone performance tool it is difficult to cor-
relate structure field accesses to individual loads and stores
in a binary executable. Typically, the compiler has to emit
additional annotations or tables into the binary to facilitate
the correlation between instructions and debug information.
It is difficult for the compiler itself to generate and maintain

such tables because a mapping must be maintained between
symbolic information in the high level optimizer and simple
load and load-offset instructions in the low level optimizer.

We therefore reuse the existing profile-based optimiza-
tion infrastructure (PBO) and use the compiler as a report-
ing tool. PBO is performed in two phases, a collection
phase and a use phase.

In the PBO collection phase the application is instru-
mented and run with training input sets to produce feedback
files, For the HP-UX Itanium tool chain, the instrumenta-
tion is compiler-based and performed at optimization level
+01. During the profile collection run of an application, the
instrumented binaries additionally invoke the performance
analysis tool, HP Caliper [l I], to gather sampling data from
the hardware performance monitoring unit (PMU), resulting
in a feedback file that contains both edge counts and sam-
pling results for data cache events. Note that other events
could potentially be sampled and stored in the profile as
well.

In the PBO use phase, the application's control flow
graph (CFG) is constructed and matched against the CFG
constructed from the data found in the feedback file. This
matching is supported by source line information and an ad-
ditional counting mechanism to distinguish between multi-
ple expressions in a statement. After the matching, most or
all arcs in the CFG have corresponding counts associated
with them, and all loads and stores in the IR with attributed
sampling events have this information available in the form
of annotations.

As noted earlier, the instrumentation code itself has al-
most no effect on the sampling accuracy of the d-cache
events. However, the collection (and conceptually the at-
tribution) of profile information happens at +01. This dif-
fers from an alternative approach which seeks to profile and
sample a fully optimized binary. Both approaches have ad-
vantages and disadvantages. For example, the latter ap-
proach might deliver more accurate sampling results, but
it is harder to attribute samples back to instructions because
of the general problem of debugging optimized code. A full
discussion of the differences is beyond the scope of this pa-
per.

3.2. Reporting

With help of an option, IPA prints the annotated type
layouts for all structure types, sorted by the hotness of the
type, in a format similar to the one shown in Figure 2. For
each type, it's name, total number of fields, and total size is
shown. The type hotness is computed by adding up the hot-
ness of the individual fields and comparing this sum against
other types. Relative and absolute hotness are printed. Var-
ious attributes and legality violations are listed as abbrevi-
ations. For example, LPTR indicates that a local pointer

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-OfO6 $20.00 O 2006 IEEE
Q

COMPUTER
SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

variable of this type has been found.
It follows the list of fields and their attributes in field dec-

laration order. For each field, it's relative hotness is shown
in percent and as an absolute weight. To make the display
more intuitive, we added a graphical bar. We distinguish be-
tween read and write references to a field and indicate their
relation with a bar. If there are more reads than writes an up-
percase "R" is used and a lowercase "w", else a lowercase
"r" and an uppercase " W . In the example, field number
has many more reads than writes, the bar therefore only con-
tains uppercase "R" characters.

The d-cache miss count and average latency in cycles
attributed to the field are shown next. The counts refer to
the first level of cache for a given operation - L2 for floating
point values and L1 for everything else on Itanium.

Finally, the affinities to other fields are shown, if present.
Both fields and affinities are presented in declaration order.
Only uni-directional edges are printed to make the output
more compact.

Sometimes a graphical representation is helpful. For this
purpose we also output control files for the VCG graph vi-
sualization tool [I91 and use colors and line-thickness to
indicate higher relative weights and affinities.

3.3. Combining D-Cache Misses, Hotness,
and Affinity

More information can be derived from this output. As-
suming a type T which has spatially close group of fields
G, (which may contain only 1 field), and a second, spa-
tially distant group Gy , we differentiate these cases.

G, and G, have high hotness, but low affinity to each
other. This indicates that G, and G, are rarely used
together in the same loops or probably used in sepa-
rate program phases. The type should be split and G,
and G, should be separated. Since the cost of link-
pointers is prohibitive, the groups should be split con-
ceptually at the source level. This may make algorith-
mic changes necessary in the program and is subject
to more research. This important scenario cannot be
handled well by the current, hotness based framework.

G, and G, have high hotness and high affinities to
each other. This indicates that G, and Gy are used of-
ten together in loops or program phases. They should
be grouped together, in particular if G, and G, have
a high d-cache component. The cache effects of ac-
cesses to G, might get hidden by the latencies for the
accesses to G, .

G, has low hotness. Splitting out G, is an option (and
probably can be performed by the automatic transfor-
mations). But, once again, since link pointers may be

prohibitive, it is better to split out G, conceptually at
the source level.

G, is hot and has a high d-cache component. This
may indicate that there are badly scheduled loops
in a program or that a given composite data struc-
ture is too complicated (and breaks the compiler's
analysis). When set in relation to other groups with
lower d-cache components, this can give the com-
piler/scheduler hints about loads that need to be sched-
uled earlier.

For multi-threaded applications, different conclusions
can be found. For example, fields should additionally
be grouped by read and write counts to minimize inter-
processor cache coherency costs. Also, instead of rely-
ing on hotness, affinity may be used for field grouping
to mirror thread specific references to fields.

Using the regular compiler as a reporting tool usually
incurs unpractical overhead, as redundant compilations are
performed. We believe this is not a general usability prob-
lem, as users will likely obtain the advisory output during
their regular full builds. However, if a dedicated analysis
tool is required, one can reconfigure the compiler to avoid
unnecessary compilations and to only perform tasks needed
for the analysis.

3.4. Experiences

This tool is currently being used by ourselves for hunting
for opportunities in our set of benchmarks, including the
upcoming SPEC2006 benchmark suite. Unfortunately, at
time of this writing, this suite hasn't been finalized and we
cannot disclose details. The tool is also used on the HP-
UX kernel, about which we are only permitted to talk in
general terms. The following paragraphs are therefore quite
generic.

One of the C++ benchmarks in SPEC2006 has a hot
structure S with a size larger than an L2 cache line (128
byte on Itanium). Looking at the affinity graphs derived
from PBO clearly identified 4 hot fields in S which were
not grouped together in the class definition. The affin-
ity graph derived via ISPBO pointed out the exact same 4
fields. Grouping those fields together resulted in a perfor-
mance improvement of 2.5%.

Another C benchmark in this suite is strongly dominated
by three loops over an array of record types containing
only two fields, a floating point field and an 8-byte inte-
ger field. Consequentially, this data structure is by far the
hottest record type in the affinity graphs. Peeling of this
type resulted in a performance improvement of almost 40%.
After splitting, the three loops are iterating over an array
of integers, performing only a few fast integer operations.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 O 2006 IEEE

&PhPUTER Q
SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

Type : node
F i e l d s : 1 5 , 60 b y t e s
Ho tnes s : 100.0% r e l , 52 .6% a b s
Transform: S p l i t t i n g
S t a t u s : *OK* / LPTR NSTP
...
F i e l d [O] o f f : 0 : 0 I ---------- I "number"

h o t : 0 . 2 % we igh t : 5 .367e+05
r e a d : 9.375e+05, w r i t e : 2 .072e+03
m i s s : 2, 0.1%, l a t : 9 . 5 [c y c]

a f f : 100 .0% --> number
a££ : 1 . 3 % --> f i r s t o u t
a f f : 15 .9% --> f l o w

F i e l d [l] o f f : 4:O I--- - - - - - - - / " i d e n t " *unused*
F i e l d [2] o f f : 8:O I#######-- - I "p red"

h o t : 73 .6% we igh t : 2.352e+08
r e a d : 1.805e+08, w r i t e : 1 .679e+05 IRRRRRRRRI
m i s s : 317, 1 2 . 8 % , l a t : 7 .8 [cyc]

a f f : 41 .0% --> p r e d
a f f : 0 . 3% --> c h i l d
a f f : 100 .0% --> s i b l i n g
a f f : 7 .2% --> d e p t h

r . . . I

Figure 2. The advisory tool's output

The benchmark therefore hit a memory bandwidth barrier.
When combined with a higher unroll factor for the three
hot loops, or by using Itanium specific cache locality hints
(completer .ntl) on loads, the splitting led to an overall per-
formance gain of over 80%. This is another good example
of potential second order effects of the transformations.

Currently the affinity information is used by the HP-UX
kernel group to improve their structure definitions; some
promising candidates have been identified. Since the kernel
is a highly multi-threaded application, the analysis benefits
heavily from the presence of the readwrite counts. Based
on the experiences, we plan to analyze large database sys-
tems and other key applications.

4. Related Work

We group related work into three areas, each consisting
of a huge body of work. We only pick a few important
representatives for each group.

First there is the work in locality improving transforma-
tions for scientific, array-based programs. These transfor-
mations are often referred to as loop nest transformations
(for example [I 31, or the survey in [I]). These transfonna-
tions do not apply to pointer intensive codes with complex
data structures and control flow.

Secondly, for dynamically compiled languages such as
Java, extensive work is being performed in many areas.

There are studies on the effects of garbage collectors and
memory allocators on data cache performance 1171, [7],
[lo]. Chilimbi and Larus [S] use generational garbage col-
lection to reorganize data structures so that objects with
high temporal affinity are placed near each other, increasing
the likelihood for them to reside in the same cache block.
This work is different from ours as it seeks to re-arrange
whole objects in memory to improve locality. We believe
that there is some value of this approach even for static lan-
guages, as has been shown by Lattner [14], and we plan on
augmenting our infrastructure with a similar mechanism.

Kistler and Franz [12] describe a technique that uses on-
line path profiling data to reorder structure fields for type-
safe languages, such as Java. The resulting layouts are
aware of cache line fill buffer forwarding, a hardware fea-
ture supported by the PowerPC. They improve performance
for their set of benchmarks by up to 24%.

Chilimbi et a1 [3] describes structure splitting and field
reordering for lava. They report a reduction in cache miss
rates of 10-27% and improved performance of 6-18% in
five Java programs. They also describe the tool bbcache
which has similarities with our advisor. The tool provides
field reordering advice for C programs. Applying the advice
they report improvements in the performance of Microsoft
SQL server of about 2-3%; 5 types could be modified.

Finally there is a third group of work which deals with
other aspects of data layout optimization.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 O 2006 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

Calder et a1 [2] apply a compiler directed approach using
profile data to place global data, constants, stack variables
and heap objects. Profile information guides compile time
variable placement algorithms in finding a variable place-
ment solution that decreases predicted inter-variable con-
flicts and increases predicted increased cache utilization.
Their technique works on the placement of entire objects
and not on the placement of fields within an object. Our
compiler has a similar phase, which we call global variable
layout (GVL). We plan to merge GVL with the presented
framework in the future.

Chilimbi et a1 [4] describe a semi automatic tool called
ccmo rph that reorganizes the layout of homogeneous trees
at runtime to improve locality. It relies on programmer an-
notations to identify the root of a tree and to indicate that
the reorganization is safe. They also describe ccrnalloc
which is a malloc replacement that accepts hints to allocate
one object near another. These hints only provide local in-
formation for an object pair and not any global information
about entire data structures. This work targets a different
problem domain and relies on user input. However, we be-
lieve there is value in user provided input and plan to inves-
tigate this area further.

Truong et al [21] propose a field reorganization tech-
nique called instance interleaving which is partially auto-
mated. They show that instance interleaving can have a
large positive performance impact, but has limited applica-
bility. Instance interleaving requires a special allocation li-
brary, i a l loc, and type safe C/C++ programs. This trans-
formation can be integrated into our current framework and
thus be made fully automatic. So far, however, we haven't
found opportunities for this extension in our set of bench-
marks.

Rubin, Bodik and Chilimbi [I81 developed a parame-
terized framework for data-layout optimization of general-
purpose applications. They find an optimal layout is not
only NP-hard, but also poorly approximable. Their frame-
work finds a good layout by searching the space of possi-
ble layouts, with the help of profile feedback. The search
process iteratively prototypes candidate data layouts, evalu-
ating them by "simulating" the program on a representative
trace of memory accesses.

Zhong et a1 [23] use the elegant concept of reference
afinity to arrive at precise data transformation decisions,
split structures in multiple parts, and achieve impressive
performance results. However, their approach is based on
program traces and therefore not applicable for commer-
cial compilers. They use a maximum size for allocated ar-
rays, which allows conversion of pointers to integer indices.
This transformation does not incur the demonstrated penal-
ties of link pointers. Consequentially, these effects are not
modelled. We believe that there is value in the presented
affinity concept even for non-profile based compilations and

are trying to estimate similar metrics based on static, inter-
procedural analysis.

Rabbah and Palem [16] split structures by allocating ob-
jects in chunks and by remapping field locations into these
block of memory. This corresponds, conceptually, to our
structure peeling transformation, except that no external
pointers to the remapped sub-arrays are needed. Instead,
field locations are computed with address arithmetic based
on the address of a first field. To ensure correctness, they use
points-to analysis and, when needed, compiler-generated
check code. Their approach is based on program traces.
We performed manual experiments with similar transfor-
mations on a small set of benchmarks, but weren't able
to achieve meaningful performance improvements over our
existing transformations.

Finally, Hagog [8] describes an implementation of struc-
ture splitting based on profiles in GCC [6], which is, as
such, close to our work. They report only partial imple-
mentation results and do not provide an advisory tool. In
contrast to our experiences, they do split single global vari-
ables of a record type and suggest multi-level splitting using
link pointers.

5. Conclusions and Future Work

We presented our framework for structure layout opti-
mizations, the design constraints, and trade-offs we had
to make because we are implementing a commercial com-
piler. After explaining our transformations, we developed
and evaluated a set of simple legality tests, demonstrating
that even with a more sophisticated analysis no more op-
timization opportunities were exposed in our set of bench-
marks. Then we developed and evaluated several choices
for out profitability analysis, introducing a correlation coef-
ficient to measure their quality.

We find that many record types cannot be transformed
automatically for a variety of reasons and introduce an ad-
visory tool, which combines static compiler analysis with
dynamic runtime measurements. The generated reports pro-
vide valuable insights into more effective structure layouts,
as indicated in a few (very brief) case studies.

We plan to gradually extend our framework and handle
more and more cases. In particular, many of the simple le-
gality tests described in section 2.2 should be handled by an
improved implementation. Field reordering appears to be
underutilized at the moment and we plan to further enhance
the heuristics for it. We also plan to augment our support for
CU, for which we presently only have rudimentary support
and will implement some form of automatic pool allocation
to further improve locality. We are working with the HP-
UX kernel team and based on their feedback we will further
improve the reporting capabilities. Finally we are consider-
ing re-packaging the analysis phase into a standalone tool.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)

0-7695-2499-0106 $20.00 o 2006 lEEE
Q

COMPUTER
SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

6. Acknowledgements

This work is the result of a strong team effort at HP. We
would like to thank our team members in the SYZYGY
high-level optimizer for their never ending willingness to
help and Shin-Ming Liu for encouraging this work. We par-
ticularly like to thank Joe Mario for his relentless pointing
out of the many flaws in the early versions of the advisor and
for making the results available to a broader audience. We
would also like to extend our thanks to the anonymous re-
viewers; their feedback helped greatly to improve the qual-
ity of this paper.

References

[I] D. F. Bacon, J.-H. Chow, D. ching R. Ju, K. Muthukumar,
and V. Sarkar. A compiler framework for restructuring data
declarations to enhance cache and tlb effectiveness. In CAS-
CON '94: Proceedings of the 1994 conference of the Cen-
tre for Advanced Studies on Collaborative research, page 3.
IBM Press, 1994.

[2] B. Calder, C. Krintz, S. John, and T. Austin. Cache-
conscious data placement. In ASPLOS-VIII: Proceedings of
the eighth international conference on Architectural support
for programming languages and operating systems, pages
139-149, New York, NY, USA, 1998. ACM Press.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-
conscious structure definition. In PLDI '99: Proceedings of
the ACM SIGPLAN 1999 conference on Programming lan-
guage design and implementation, pages 13-24, New York,
NY, USA, 1999. ACM Press.

[4] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In PLDI '99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language de-
sign and implementation, pages 1-12, New York, NY, USA,
1999. ACM Press.

[5] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
ISMM '98: Proceedings of the 1st international sympo-
sium on Memory management, pages 3748 , New York, NY,
USA, 1998. ACM Press.

[6] Gcc. The GNU compiler collection. http://gcc.gnu.org.
[7] D. Grunwald, B. Zorn, and R. Henderson. Improving the

cache locality of memory allocation. In PLDI '93: Proceed-
ings of the ACM SIGPLAN 1993 conference on Program-
ming language design and implementation, pages 177-186,
New York, NY, USA, 1993. ACM Press.

[8] M. Hagog and C. Tice. Cache aware data layout reorgani-
zation optimization in gcc. In GCC Summit Proceedings,
2005.

[9] P. Havlak. Nesting of reducible and irreducible loops. ACM
Trans. Program. Lang. Syst., 19(4):557-567, 1997.

[lo] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advan-
tage: Improving program locality. In OOPSLA '04: Pro-
ceedings of the 19th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and ap-
plications, pages 69-80, New York, NY, USA, 2004. ACM
Press.

[I I] R. Hundt. HP Caliper: A framework for performance analy-
sis tools. In Concurrency, IEEE, pages 64-7 1, Washington,
DC, USA, 2000. IEEE Computer Society.

1121 T. Kistler and M. Franz. Automated data-member layout
of heap objects to improve memory-hierarchy performance.
In ACM Transactions on Pmgramming Languages and Sys-
tems, v.22 n.3, pages 490-505,2000.

[13] M. S. Lam and M. E. Wolf. A data locality optimizing algo-
rithm. SIGPLAN Not, 39(4):442-459,2004.

[14] C. Lattner and V. Adve. Automatic pool allocation: im-
proving performance by controlling data structure layout in
the heap. In PLDI '05: Proceedings of the 2005 ACM SIC-
PUNconference on Programming language design and im-
plementation, pages 129-142, New York, NY, USA, 2005.
ACM Press.

[15] S. Moon, X. D. Li, R. Hundt, D. R. Chakrabarti, L. A.
Lozano, U. Srinivasan, and S.-M. Liu. Syzygy - a frame-
work for scalable cross-module IPO. In CGO '04: Proceed-
ings of the international symposium on Code generation and
optimization, page 65, Washington, DC, USA, 2004. IEEE
Computer Society.

[16] R. M. Rabbah and K. V. Palem. Data remapping for design
space optimization of embedded memory systems. Trans.
on Embedded Computing Sys., 2(2): 186-218,2003.

[17] M. B. Reinhold. Cache performance of garbage-collected
programs. In PLDl '94: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and im-
plementation, pages 206-217, New York, NY, USA, 1994.
ACM Press.

[18] S. Rubin, R. Bodik, and T. Chilimbi. An efficient profile-
analysis framework for data-layout optimizations. In POPL
'02: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages
140-153, New York, NY, USA, 2002. ACM Press.

[19] G. Sander. Graph layout through the VCG tool. In Lecture
Notes in Computer Science 894, pages 194-205. Springer
Verlag, 1995.

[20] SPEC. Standard performance evaluation corporation.
http://www.spec.org.

[21] D. N. Tmong, F. Bodin, and A. Seznec. Improving cache
behavior of dynamically allocated data structures. In PACT
'98: Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, page
322, Washington, DC, USA, 1998. IEEE Computer Society.

[22] Y. Wu and J. R. Larus. Static branch frequency and program
profile analysis. In MICRO 27: Proceedings of the 27th an-
nual international symposium on Microarchitecture, pages
1-1 1 , New York, NY, USA, 1994. ACM Press.

[23] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array re-
grouping and structure splitting using whole-program refer-
ence affinity. In PLDI '04: Proceedings of the 2004 ACM
SIGPLAN conference on Programming language design and
implementation, 2004.

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06)
0-7695-2499-0106 $20.00 O 2006 IEEE SOCIETY

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore. Restrictions apply.

