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Abstract 

With the delta between processor clock frequency and 
memory latency ever increasing and with the standard lo- 
cality improving transfonnations maturing, compilers in- 
creasingly seek to modify an application's data layout to 
improve spatial and temporal locality and to reduce cache 
miss and page fault penalties. In this paper we describe a 
practical implementation of the data layout optimizations 
Structure Splitting, Structure Peeling, Structure Field Re- 
ordering and Dead Field Removal, both forprojle and non- 
profile based compilations. 

We demonstrate sign8cant performance gains, but jind 
that automatic transformations fail for a relatively high 
number of record types because of legality violations or 
profitability constraints. Additionally, we Jind a class of 
desirable transformations for which the framework cannot 
provide satisfying results. To address this issue we comple- 
ment the automatic transformations with an advisory tool. 
We reuse the compiler analysis done for automatic trans- 
formation and correlate its results with peformance data 
collected during runtime for structure fields, such as data 
cache misses and latencies. We then use the compiler as 
a pefomtance analysis and reporting tool and provide in- 
sight into how to layout structure types more eficiently. 

1. Introduction 

The delta between processor clock speed and memory 
latency continues to grow. Compilers are challenged to 
improve an application's cache locality and reuse. The 
standard locality improving transformations, such as loop 
transformations, are maturing and their applicability do- 
main is limited to array and loop intensive scientific codes. 
For codes with pointer based data structures and irregular, 
pointer-chasing access patterns, these transfonnations don't 
apply. Therefore, in order to improve cache locality and 

cache reuse, compilers increasingly seek to modify an ap- 
plication's data layout. 

This paper focuses on structure layout and placement 
on the heap. Many of the proposed methods dealing with 
record types have characteristics which make them unsuit- 
able for commercial compilers: Some aren't fully auto- 
mated [21][4], some are profile based [8][18][2][12], and 
some are program trace based [23][16]. The analysis and 
compile time can be prohibitive, such as for the trace based 
methods, or the usage patterns aren't adopted well by the 
community, such as for the methods using profiles. Some 
of the proposed methods assume type-safety [3][12], which 
in the case of C/C++ is rare in practice. 

We present a practical framework for structure layout 
optimizations, such as structure splitting, structure peel- 
ing, dead field removal and field reordering, which we have 
implemented in the SYZYGY high level optimizer for the 
HP-UX C/C++ and FORTRAN compilers [15] for Intel Ita- 
nium @. The framework is practical as it is simple, effec- 
tive in finding optimization opportunities, and causes little 
compile time overhead (which is important for commercial 
compilers) at the expense of analysis accuracy. 

We find that the number of transformable types increases 
drastically with an improved and more expensive analysis, 
but because of profitability filters most of these types are 
still not transformed. Additionally, there is a class of desir- 
able transformations for hot and non-affine clusters of struc- 
ture fields for which the framework cannot provide satisfy- 
ing results. 

To address these issues we develop a fast, compiler based 
advisory tool, which combines static compiler analysis with 
data collected at runtime. It generates as output anno- 
tated structure definitions providing insights into potentially 
more effective structure designs. 

Our main contributions in this work are: 

Development and evaluation of a non-profile based 
heuristic that uses field affinity and hotness based on 
inter-procedurally propagated estimated edge weights 
for its layout decisions. 
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Description and evaluation of a low-overhead, practi- 
cal implementation in a commercial compiler which 
trades analysis accuracy for compile-time performance 
without losing any transformation opportunities (for 
our set of benchmarks). 

Development of a compiler-based performance advi- 
sory tool which combines static analysis with runtime 
measurements to guide in structure layout decisions. 

This paper is organized as follows. In section 2 we 
briefly present our compiler framework and describe the ac- 
tual transformations in detail before discussing the legality 
analysis. We explain the effects of a potentially more pre- 
cise analysis. Then we outline the profitability analysis and 
compare several techniques we experimented with. 

In section 3 we describe the advisory tool and show how 
we use the existing mechanism for feedback directed com- 
pilation effectively to attribute data cache events to structure 
fields. Then, by the means of example, we suggest possible 
uses of the presented data. We discuss related work in sec- 
tion 4 and conclude with a short summary in section 5. 

In the following, the term type always refers to a record 
type, unless stated otherwise. The abbreviation FE denotes 
the front-end portion of the high-level optimizer and not the 
compiler front-end performing language parsing. 

2. Framework 

The framework has been implemented in the SYZYGY 
high level optimizer [15] for the HP-UX Itanium com- 
pilers, which offer a command-line option -ipo to en- 
able inter-procedural optimizations. With this option, ob- 
ject files are emitted containing an intermediate represen- 
tation of the input (IELF files). At link time, a dynami- 
cally loaded linker plug-in identifies the presence of IELF 
files and launches the inter-procedural optimizer, which per- 
forms inter-procedural analysis (IPA) and transformations, 
before writing the results back into IELF files in a tempo- 
rary directory. It then creates a Makefile and invokes the 
utility "make" to parallelize the back-end and code genera- 
tion. All this happens transparently to the user. 

Structure layout optimizations are inter-procedural by 
nature. Cases where file- or procedure-local types can be 
modified are covered by the inter-procedural infrastructure. 
Types are identified which can be modified safely and at- 
tributes are collected (such as whether a type has been dy- 
namically allocated or whether there are local or global vari- 
ables of that type). These attributes are consulted to de- 
termine applicable transformations. Affinity and hotness 
analyses are performed to determine the final transforma- 
tions. 

Following the SYZYGY design philosophy we seek to 
push as much functionality as possible into the paralleliz- 

able front-end (FE) and back-end (BE) and to minimize 
work done in the monolithic inter-procedural analysis phase 
(IPA). 

The FE performs the bulk of the legality analysis and 
collects summaries for the profitability analysis in IPA. 

IPA aggregates the legality and affinity summaries, 
performs legality and type escape analysis, profitabil- 
ity analysis, and employs the heuristics. If types are to 
be split it emits control information for the BE. 

The actual transformations are performed in the BE 

As we show in the next sections, these design decisions 
result in low compile time overhead, but lead to conserva- 
tive analysis results. 

2.1. Transformations 

Structures can be modified in a variety of ways. In 
the following paragraphs we describe the four methods we 
have implemented and discuss some alternative implemen- 
tations. The starting point for the descriptions is a dynami- 
cally allocated array of structures as shown in Figure 1 (a). 
Each structure has two interleaved hot and cold fields. 

Structure Splitting - This transformation breaks a given 
structure into two (or more) pieces and inserts link pointers 
to allow addressing of all parts of a type via a pointer to it's 
root part. The transformation can be graphically illustrated 
as in Figure 1 (b). 

Structure Peeling - For certain cases, types can be split 
without having to insert link pointers. The term structure 
peeling has been introduced by [8] for this special case of 
splitting. Instead of link pointers, new variables or pointers 
are created in either global or local scope to point to pieces 
of a structure. 

For example, the SPEC2000 floating point benchmark 
179.art [20] has a dynamically allocated array of structures 
containing only floating point fields (and a non-recursive 
pointer). The result of the dynamic allocation is assigned to 
a global pointer variable P; no other local or global pointers 
or variables of that type exist. The transformation breaks the 
type into multiple record types, each containing only one 
field corresponding to a field in the original type. The single 
dynamic allocation site is transformed into multiple alloca- 
tions and multiple global pointer variables Pi are created 
to store the results of the allocations. All original accesses 
to a structure field via the global pointer P are transformed 
into accesses via one of the newly created pointers Pi. This 
transformation is graphically illustrated in Figure 1 (c). 

Dead Field Removal - The transformations dead field re- 
moval is wrapped into the two previous transformations. If a 
type can be transformed and has at least one dead field, the 
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Figure 1. An array of record types (a), after splitting (b), and after peeling (c) 

- 

structure is split following the heuristics. Only live fields 2.2. Legality Analysis 
are moved into the newly created hot section. The cold sec- 
tion can be empty. During FE's legality and property analysis, several small 

We distinguish between unused fields, for which it is suf- 
ficient to modify their parent type, and dead fields, which 
have stores to them, but who's value is never used. For dead 
fields, both the parent type need to be modified and (dead) 
store instructions need to be removed. 

To identify dead fields for transformable types it is suffi- 
cient to find fields with no reads from them, but with writes 
to them. As we will explain later, the analysis can be kept 
simple as we guarantee that for a transformable type no 
aliases to individual fields exist. 

Field Reordering - A similar mechanism as for dead field 
removal is used for field reordering. Once a record type is 
newly created, fields can be inserted in any desired order. 

Alternative implementations are possible. For example, 
if one can prove that there is only one dynamic allocation 
of an array of structures, the type and the allocation site can 
be split into multiple pieces and the cold parts can be ad- 
dressed with an offset to a pointer to the root portion of that 
type. If one can prove (or guarantee, for example, with help 
of an assertion) that there will be a limit on the size of a 
dynamically allocated array, in order to eliminate the need 
for link pointers one can use a technique similar to instance 
interleaving [21], but without the need for a special alloca- 
tion library. Zhong et a1 [23], use a maximum fixed size for 
arrays of record types as well and convert pointers to integer 
indeces. Other implementation strategies are possible. 

and efficient tests are performed in a single pass over our 
compiler's intermediate representation (IR) to determine 
whether it is safe to transform a type. A type is called in- 
valid if it cannot be transformed. These are the main legality 
tests: 

CSTT A cast to a type has been found. This indicates type- 
unsafe use of a type and such types are marked invalid. 
Note that in C/C++, for dynamically allocated types, at 
least one cast from a (void * ) to the result type will 
be found, as both malloc 0 and calloc ( )  return 
(void * )  . The simple solution is to maintain a list 

of the return values from such calls and to tolerate casts 
made from these values. Since this analysis is done in 
the FE, types that are allocated in wrapper functions 
returning (void * ) will be invalidated. 

CSTF A cast from a record type has been found. Again, 
this indicates type-unsafe uses and types are invali- 
dated. 

ATKN The address of a field is taken. This may indicate 
address arithmetic on structure fields, which is incom- 
patible with the modification of structure layouts. If 
the address of a field is taken in the context of a func- 
tion call, we do not invalidate the type under the as- 
sumption that the called function will not try to access 
other structure fields from the pointer passed as argu- 
ment. 
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LIBC Standard library functions are marked specially in 
the header files of the HP-UX compiler tool chain. If 
a type escapes to such a function, e.g. to fwr i t e  ( ) , 
the type is marked invalid, as it escapes to a function 
outside the current compilation scope. This analysis is 
done in the FE for efficiency reasons, as IPA will find 
escaped types as well. 

IND A type escapes to an indirect function call. Since in 
the FE the targets of such calls are potentially unknown 
the type is invalidated. 

SMAL A type has been dynamically allocated and the 
number of elements to be allocated is specified with 
a constant smaller than a threshold A. For example, in 
many or our benchmark programs we find allocation 
sites allocating arrays of size 1 (single objects). 

MSET Our IR has special provisions for memory stream- 
ing operations corresponding to the C/C++ functions 
memcpy ( )  , memset ( )  etc. Types used in such ex- 
pressions are marked invalid because of implementa- 
tion limitations. 

NEST A type is nested in another type. We mark these 
types as invalid also because of implementation limi- 
tations. 

In order to determine applicable transformation types, 
we collect other attributes, such as whether a global or lo- 
cal variable, pointer, or array of a given type were found, 
whether a type has been dynamically allocated, free'd, or 
re-allocated. We also collect tuples <type, function> for 
record types escaping to (non-lib) functions for the escape 
analysis later in the IPA. 

During IPA we read and aggregate the legality results 
from the FE and mark invalid types in the type-unified IPA 
symbol table. The escape summaries are read and aggre- 
gated as well. If a type escapes to a function outside the 
current (IPA) scope, it is invalidated. 

Note that for some of above legality filters workarounds 
can be found which allow transforming a type. For exam- 
ple, for LIBC the original type can be reconstructed and be 
passed as a parameter. For MSET the IR can be converted 
into procedure calls with a loop assigning link pointers. So 
far, however, we haven't found performance opportunities 
that would warrant implementing such support. 

There are other problematic constructs, for example, the 
operators s izeof  0 and o f f se to f  0 .  TheFE usually 
converts them into numeric constants based on it's knowl- 
edge of a type's layout. Code relying on these numbers can 
become unsafe after changing a structure layout. As a so- 
lution, the compiler front-end can avoid emitting indistin- 
guishable integer constants for s i zeo f ( ) constructs and 

Benchmark I( Types ( Legal 1 % Relax 1 % 1 
3 ( 60.0 1 18l.mcf 

179.art 
milc 
cactusADM 
gobmk 
povray 
calculix 
h264avc 
moldyn 
lucille 
sphinx 
ssearch 
Average: 

Table 1. Types and transformable types, with 
and without CSTF, CSTT, ATKN 

5 ( 1 1 20.0 

instead emit attributed constants or introduce a new IR con- 
struct to enable proper analysis. 

Applying these simple and practical tests leads to very 
conservative results compared to what our field-sensitive 
points-to analysis (Points-To, for brevity) can derive. For 
example, if the address of a field is taken, Points-To may 
be able to derive that no other field can be accessed via 
this exposed address and that this operation is therefore not 
blocking transformations. If other fields can be accessed, 
Points-To will collapse the Points-To set for all fields. 

During IPA, testing for collapsed Points-To sets can be 
used as a sharper legality test for ATKN, CSTT and CSTF. 
However, this would make it necessary to push the whole 
legality analysis into IPA. 

We estimate an upper bound of the benefits of Points-To 
by introducing an internal flag to tolerate the type invalidat- 
ing criteria CSTF, CSTT, and ATKN, for which Points-To 
can derive more accurate result. 

Table 1 lists the benchmarks we are using in this paper. 
Among the SPEC2000 benchmarks, we found profitable op- 
portunities for structure layout optimizations in only two 
benchmarks, 18 1 .mcf and 179.a1-t. We therefore add a num- 
ber of open-source benchmarks representing a mix of float- 
ing point and integer programs. The total number of record 
types found is shown (column "Types") and the number of 
types passing through the practical analysis (column "Le- 
gal"). After relaxing the legality constraints, many more 
types are transformable (column "Relax"). The percentage 
of transformable types grows from 20.9% to 65.7%. How- 
ever, the transformations are still being blocked by other le- 
gality tests than CSTF, CSTT, and ATKN, and by the prof- 
itability analysis. As a result, the number of transformed 
types (which can be seen in Table 3 below) remains con- 
stant. 

3 
20 

116 
59 

275 
4 1 
42 

4 
97 
64 
10 
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2.3. Profitability Analysis 

The profitability analysis computes read and write 
counts, as well as hotness for and af/inity between struc- 
ture fields. We provide simple informal definitions for the 
latter two terms: 

Two fields are affine to each other when they are ac- 
cessed close to each other in the IR, for example, in 
the same statement or in the same loop. 

Hotness is computed from the aggregated total esti- 
mated accesses to a field. Fields that are accessed more 
often than others are hotter. 

Our granularity for "closeness" is the loop level. The FE 
uses the loop optimizer's loop recognition, which is based 
on [9], to build a loop structure graph. It iterates over each 
loop's basic blocks and collects the field references for a 
given type into a weighted affinity group (weights are dis- 
cussed below). Affinity groups can contain 1 or more fields. 
Field references found in remaining straight line code form 
another, single affinity group with the weight of the routine 
entry point. 

Affinity groups containing identical fields are merged to- 
gether via adding up the weights and stored as annotations 
in the IELF files. In our compiler infrastructure, annotations 
are nothing more than anonymous and indexable blocks of 
binary data. 

Read and write counts are collected statement by state- 
ment using the basic blocks' incoming edge weights as 
counts. The aggregated information is also stored in the 
JELF file. 

During IPA the annotations are read and aggregated, total 
read and write counts are computed and an affinity graph is 
constructed for every type. Nodes in the graph represent 
fields and an edge between two nodes indicates that both 
fields were found in at least one affinity group. The final 
edge weight is the result of summation of the weights of 
all affinities found in the IELF files. Hotness for fields is 
simply computed by adding up the incoming edge weights 
for a node in the affinity graph. 

How weights are assigned to the affinity groups is what 
differentiates the various weighting mechanisms we exper- 
imented with. As an example we show in Table 2 below the 
relative hotness values for the fields of type node-t from 
the SPEC2000 integer benchmark 18 1 .mcf for various ex- 
periments. Relative hotness is expressed in percent relative 
to the hottest field of a type. In the table, each column con- 
tains the relative field hotness in percent for a given exper- 
iment. As a baseline we use the hotness values computed 
from dynamic PBO (explained below). For all other meth- 
ods we express the correlation to the baseline as a linear 

correlation coefficient T: 

It takes on values between +1 (perfectly correlated) and 
-1 (complete negative correlation). A value close to 0 indi- 
cates no correlation at all. The xi and y, are the field specific 
percentages, and 2 ,  & the respective arithmetic mean val- 
ues. The last two rows in the table show the correlation T to 
the baseline (PBO) and the correlation T', which disregards 
field p o t e n t  i a 1. The following paragraphs describe the 
various weighting mechanism in greater detail. 

ProJiLe Based Optimization (PBO) - If profile in forma- 
tion is available, the incoming edge counts for loop headers 
are used as weights for the affinity group defined by the 
loop. This method resulted in the best affinity estimates. In 
general, the accuracy is determined by how good the train- 
ing data sets predict the final executions of a program. It 
is more robust against a small number of problems in the 
training data sets than other parts of the compiler, such as 
the loop optimizer. In this phase a single important hot loop 
can be classified as cold because the training data set did not 
execute the loop. Since data structures are usually accessed 
in more than one loop, such problems are alleviated. PBO 
is our default method for feedback directed compilations. 

Perfect PBO (PPBO) - As a reference we provide the 
values for "perfect P B O  where the feedback file is created 
using the reference data set. In the example, the correlation 
to the training data set is almost perfect (T = 0.983). 

Static PBO (SPBO) - If no profile information is avail- 
able, edge frequencies in a routine are estimated with help 
of probabilities for source constructs [22]. For example, 
a loop back edge is assumed to execute about 8 times on 
average and both branches of an if-then-else construct are 
assigned a 50% probability. As in the PBO case, incoming 
edge weights to loop headers are used as weights for the 
affinity groups. 

Since the static heuristics for edge weights are local 
to procedures, they are not suitable for comparing inter- 
procedural affinities. For example, if a function foo() calls 
function bar() from an inner, deeply nested loop, the fields 
in bar() should be considered to be hotter than the ones in 
foo(), but with SPBO they are not. Correspondingly, the 
correlation to the baseline is poor (r = 0.69). 

Inter-Procedurally Scaled Static PBO (ISPBO) - Similar 
to the method described in [22] we propagate the execution 
counts along call-graph edges to compute inter-procedural 
counts. The propagation happens top-down over the call- 
graph with the assumption that the main procedure is called 
once. The normalized execution count of a procedure is 
obtained by a summation of the normalized counts of its 
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Field 

number 
ident 
pred 
child 
sibling 
sibling-prev 
depth 
orientation 
basic-arc 
firstout 
firstin 
potential 
flow 
mark 
time 
Correlation r 
Correlation r' 

ISPBO 

4.1 
- 

82.3 
28.1 
20.4 
4.1 

10.6 
38.5 
53.2 
4.3 
I .o 

100.0 
20.1 
15.7 
14.8 

0.891 
0.799 

PBO 
0.2 

Table 2. Relative field hotness for a variety of experiments and their correlation to PBO 

PPBO 

0.0 

incoming call-graph edges. The ratio of the normalized ex- 
ecution count of a procedure and its local execution count is 
used to scale every other static estimation within that proce- 
dure, such as branch and call frequencies. Our propagation 
algorithm properly handles recursion in the call-graph. The 
scaling is performed with the following algorithm. 

Let N l o c ( f )  be the local execution count of function f ,  
and N, ( f )  it's global execution count. Let El,,(c) be the 
local execution count of call-site c and Eg (c)  it's global ex- 
ecution count. Let finally Cloc(b) be the local execution 
count of a basic block b  and C,(b) it's global execution 
count. For the main function m we set 

1SPBO.NO 

5.1 
- 

100.0 
35.0 
25.5 

6.2 
13.8 
47.4 
64.4 
6.0 
1.7 

74.0 
26.3 
19.6 
18.7 

0.81 1 
0.795 

SPBO 

5.3 

Ng (m) = 1 

DMISS 
0.2 
- 

13.7 
1.2 
0.4 
0.0 
2.6 

32.4 
1.6 
0.9 
0.2 

100.0 
1.1 
0.5 

43.3 
0.687 
0.211 

1SPBO.W 

1.9 
- 

100.0 
35.1 
25.4 
2.7 
6.5 

42.2 
68.4 

1.2 
0.3 

70.9 
12.0 
9.4 
8.4 

0.782 
0.764 

For a function f we compute over all call sites c  

Once N g ( f )  is computed, the global counts of basic blocks 
within the function f are scaled using the following equa- 
tion: 

Cg(b) = Cloc(b)Ng(f )lNloc(f) 

DLAT 

0.2 
- 

11.7 
1.1 
0.2 
0.0 
1.7 

38.6 
1.8 
1.9 
0.1 

100.0 
0.7 
0.4 

38.5 
0.686 
0.207 

Our probabilities for loop back-edges aren't high enough 
for certain benchmarks, resulting in histograms for field 
hotness which a are too flat, making it difficult to prop- 
erly distinguish between hot and cold fields. We therefore 
scale up the inter-procedurally derived scaling factors S by 
an exponent E, which is currently set to 1.5. Since S is 
either bigger or smaller than 1.0 the scaling improves the 
separability between hot and cold fields. For reference, the 
non-scaled values are shown in column ISPBO.NO. 

DMISS.NO 

0.1 
- 

12.8 
0.6 
0.2 
0.0 
2.6 

30.9 
2.1 
0.9 
0.1 

100.0 
1 .O 
0.4 

41.3 
0.686 - 
0.207 

ISPBO correlates well with the baseline (r = 0.89) and 
is our default heuristic for compilations without profiles. 

ZSPBO with Modified Weighrs (ISPBO. W )  - The experi- 
ment 1SPBO.W shows how the effect of scaling correlates 
to the results obtained from increasing the back edge prob- 
abilities. We changed the probability for floating point loop 
back edges from 0.93 to 0.98 and that for other loops from 
0.88 to 0.95 (this separation is an extension of [22]). We 
cannot change these probabilities permanently because of 
performance degradations in other benchmarks. The corre- 
lation between 1SPBO.W and ISPBO is 0.94, indicating that 
using an exponent E in ISPBO is a valid approximation of 
higher back edge probabilities. 

Cache Misses (DMISS, DLAT) - As we will show later, 
we also collect field specific data cache (d-cache) miss 
counts and latencies from the profile feedback files and at- 
tribute them to individual fields. Table 2 shows that misses 
and latencies are highly correlated to each other (0.96). 
However, the correlation to the baseline is poor (0.69). 

If field potential is ignored the correlation sinks to 
only 0.21, indicating almost no correlation. The d-cache 
values are poor predictors for field hotness; however, in the 
future, they should be consulted to avoid splitting out of 
d-cache intensive fields. The column DMISS.NO presents 
the d-cache information gathered without instrumentation, 
which has a very high correlation to DMISS (0.996, not 
shown in the table). This means that the instrumentation 
has nearly no effect on the sampled d-cache values. 

These numbers and their relative correlations have been 
confirmed by experiments with other benchmarks. How- 
ever, in general, static heuristics, as well as heuristics based 
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on profiles derived from non-representative training data 
sets, can potentially mis-classify fields. 

2.4. Heuristics 

Based on affinity, hotness, and type characteristics, the 
heuristics decide if and how to transform a type. 

Dead structure fields are always removed as long as a 
limited set of alignment guarantees is preserved. In particu- 
lar, removing bit-fields can result in more expensive access 
code sequences. 

Structure peeling is always performed as well, subject 
to alignment constraints. It is possible to construct test 
cases for which this transformation results in a performance 
degradation. For example, a tight modulo-scheduled loop 
might need an additional cycle because of an additional 
load that needs to be performed. However, for all prac- 
tical benchmarks and applications, no negative effects are 
expected. 

Structure field reordering is currently only performed in 
the context of structure splitting; fields are only reordered if 
at least one field is eliminated or split out. 

Structure splitting uses a threshold T,. Fields with rela- 
tive hotness lower than T, are being split out. T, is currently 
set to 3% for PBO and to 7.5% for ISPBO. T, and the scal- 
ing factor E are subject to continuous tweaking. Since a 
link pointer needs to be inserted, at least two structure fields 
need to be split out for the transformation to be profitable. 

Our observations for structure splitting are simple. We ' 

find that while the performance of hot loops improves sig- 
nificantly, the cost for loops accessing cold fields via link 
pointers grows disproportionately. Additional instructions 
need to be executed, which can negatively influence other 
optimizations, and the number of cache misses increases as 
well. 

As an example, for 18l.mcf's type node-t, the field 
t ime has a hotness of 14.8% in ISPBO, the field mark has 
a hotness of 15.6% (we chose these two fields because the 
resulting effects are significant). Splitting out field time 
results in a performance degradation of 9%. Splitting out 
the fields time and mark results in a performance degra- 
dation of 35%. We conclude that the single most important 
criteria for splitting is hotness - hot fields need to remain in 
the hot section, regardless of affinity or other metrics, such 
as access distance to other fields. 

Only dynamically allocated objects are being trans- 
formed. The threshold for the allocation number in legality 
test SMAL is set to > 1, as we assume that splitting of sin- 
gle objects will be not be profitable. For the same reason we 
do not modify a type if it has only global or local variable 
instances and no static or dynamic array. 

Our PBO infrastructure collects stride information for 
pointer-chasing loads and stores (and other information - 

the mechanism is explained below). The stride distance is 
usually a multiple of the size of the underlying type of an ar- 
ray or dynamic data structure a particular loop iterates over. 
Since type sizes change during structure splitting we were 
updating the stride distances as well. Interestingly, this had 
no or only slightly negative effects on runtime performance. 
This can be explained by the intricacies of our prefetch al- 
gorithm, which, unfortunately, are beyond the scope of this 
paper. 

For multi-threaded applications a different set of heuris- 
tics can be applied. For example, there is a performance 
penalty if two threads access (write) disjoint hot structure 
fields on the same cache line due to costs associated with 
cache coherency. These fields should be separated to dif- 
ferent cache lines instead of being moved together. Addi- 
tionally, the multi-threaded heuristics can be augmented by 
analysis of whether fields are mostly read or written. While 
we perform readwrite analysis, we do not currently con- 
sult these values in our heuristics. This is subject of current 
research. 

2.5. Performance 

The baseline for our performance analysis is a "SPEC 
base" configuration without using profiles, highlighting the 
quality of the non-profile based heuristics. The configura- 
tion specifies a high level of optimization and corresponds 
to the compiler options +03 -ipo +Onolimit 
+Olibcalls tofltacc-relaxed +DSnative 
+FPD. All results were obtained on an HP server rx2600 
with a 1500 MHz Intel Itanium @ processor, 6 GB of 
memory, and 6 MB of L2 cache. For comparison, and to 
indicate the presence of potential second order effects of 
the transformation, we show the results obtained with and 
without profile for two benchmarks (181 .mcf and moldyn). 

In Table 3 we show the benchmarks (column "Bench- 
mark") and whether a profile was used during compilation 
(column "PBO). We show the number of types (column 
"T"), transformable types (column "Ttm), the number of 
split out and dead fields (column "SKY'), and finally the 
performance effects (column "Performance"). These range 
from - 1.5% up to 78.2%. The three minor degradations for 
the benchmarks cactusADM, calculix, and h264avc are in 
the noise range. The benchmarks moldyn (21.8% - 30.9%), 
181.mcf (16.7% - 17.3%) and 179.art (78.2%) gain signifi- 
cantly from the transformations. 

For moldyn, the presence of profile information leads to 
improved behavior in other optimization phases, resulting 
in an additional 9% relative performance gain. For 18 1 .mcf, 
however, there appear to be no second order effects of the 
transformations. 

For all these benchmarks, the compile time overhead is 
low. For the FE it is 2.5% on average, with an observed 
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Benchmark I( PBO ( T ( Tt 
18 1 .mcf 11 n o 1  5 1  1 

S / D  1 Performance 1 
6 1 0  1 17.3 % I 

18 1 .mcf 
179.a1-t 
milc 
cactusADM 
gobmk 
povray 
calculix 
h264avc 
moldyn 
moldyn 
lucille 
sphinx 
ssearch 

Table 3. Transformable/transformed types 
and performance impact 

maximum of 5%. The overhead for IPA is always below 
4%. For the BE the overhead is 1 % on average, with an ob- 
served maximum of 2.5%. Our implementation is currently 
not optimized for speed and we believe that the overhead 
can be further reduced. 

yes 
no 
no 
no 
no 
no 
no 
no 
no 

yes 
no 
no 
no 

3. Advisory Tool 

The performance results indicate that successful trans- 
formation can have significant positive impact on runtime 
performance. The number of automatic transformations 
is low because of legality violations and because of prof- 
itability constraints (the insertion of link pointers for split 
types has significant negative impacts on performance). The 
analysis, however, does provide valuable information and 
we offer an internal option to present the data to the user. 
In this section we first elaborate on how we correlate com- 
piler analysis and runtime measurements. Then we provide 
an example and explain how to make use of the informa- 
tion presented. Finally we illustrate why a certain class of 
transformations cannot be performed automatically with the 
existing framework. 

5 
3 

20 
116 
59 

275 
41 
42 
4 
4 

97 
64 
10 

3.1. Combining Static Analysis and Dy- 
namic Measurements 

1 
2 
5 

13 
9 

14 
3 
3 
1 
1 

17 
4 
4 

For a standalone performance tool it is difficult to cor- 
relate structure field accesses to individual loads and stores 
in a binary executable. Typically, the compiler has to emit 
additional annotations or tables into the binary to facilitate 
the correlation between instructions and debug information. 
It is difficult for the compiler itself to generate and maintain 

such tables because a mapping must be maintained between 
symbolic information in the high level optimizer and simple 
load and load-offset instructions in the low level optimizer. 

We therefore reuse the existing profile-based optimiza- 
tion infrastructure (PBO) and use the compiler as a report- 
ing tool. PBO is performed in two phases, a collection 
phase and a use phase. 

In the PBO collection phase the application is instru- 
mented and run with training input sets to produce feedback 
files, For the HP-UX Itanium tool chain, the instrumenta- 
tion is compiler-based and performed at optimization level 
+01. During the profile collection run of an application, the 
instrumented binaries additionally invoke the performance 
analysis tool, HP Caliper [ l  I], to gather sampling data from 
the hardware performance monitoring unit (PMU), resulting 
in a feedback file that contains both edge counts and sam- 
pling results for data cache events. Note that other events 
could potentially be sampled and stored in the profile as 
well. 

In the PBO use phase, the application's control flow 
graph (CFG) is constructed and matched against the CFG 
constructed from the data found in the feedback file. This 
matching is supported by source line information and an ad- 
ditional counting mechanism to distinguish between multi- 
ple expressions in a statement. After the matching, most or 
all arcs in the CFG have corresponding counts associated 
with them, and all loads and stores in the IR with attributed 
sampling events have this information available in the form 
of annotations. 

As noted earlier, the instrumentation code itself has al- 
most no effect on the sampling accuracy of the d-cache 
events. However, the collection (and conceptually the at- 
tribution) of profile information happens at +01. This dif- 
fers from an alternative approach which seeks to profile and 
sample a fully optimized binary. Both approaches have ad- 
vantages and disadvantages. For example, the latter ap- 
proach might deliver more accurate sampling results, but 
it is harder to attribute samples back to instructions because 
of the general problem of debugging optimized code. A full 
discussion of the differences is beyond the scope of this pa- 
per. 

3.2. Reporting 

With help of an option, IPA prints the annotated type 
layouts for all structure types, sorted by the hotness of the 
type, in a format similar to the one shown in Figure 2. For 
each type, it's name, total number of fields, and total size is 
shown. The type hotness is computed by adding up the hot- 
ness of the individual fields and comparing this sum against 
other types. Relative and absolute hotness are printed. Var- 
ious attributes and legality violations are listed as abbrevi- 
ations. For example, LPTR indicates that a local pointer 
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variable of this type has been found. 
It follows the list of fields and their attributes in field dec- 

laration order. For each field, it's relative hotness is shown 
in percent and as an absolute weight. To make the display 
more intuitive, we added a graphical bar. We distinguish be- 
tween read and write references to a field and indicate their 
relation with a bar. If there are more reads than writes an up- 
percase "R" is used and a lowercase "w", else a lowercase 
"r" and an uppercase " W .  In the example, field number 
has many more reads than writes, the bar therefore only con- 
tains uppercase "R" characters. 

The d-cache miss count and average latency in cycles 
attributed to the field are shown next. The counts refer to 
the first level of cache for a given operation - L2 for floating 
point values and L1 for everything else on Itanium. 

Finally, the affinities to other fields are shown, if present. 
Both fields and affinities are presented in declaration order. 
Only uni-directional edges are printed to make the output 
more compact. 

Sometimes a graphical representation is helpful. For this 
purpose we also output control files for the VCG graph vi- 
sualization tool [I91 and use colors and line-thickness to 
indicate higher relative weights and affinities. 

3.3. Combining D-Cache Misses, Hotness, 
and Affinity 

More information can be derived from this output. As- 
suming a type T which has spatially close group of fields 
G, (which may contain only 1 field), and a second, spa- 
tially distant group Gy  , we differentiate these cases. 

G, and G, have high hotness, but low affinity to each 
other. This indicates that G, and G, are rarely used 
together in the same loops or probably used in sepa- 
rate program phases. The type should be split and G, 
and G, should be separated. Since the cost of link- 
pointers is prohibitive, the groups should be split con- 
ceptually at the source level. This may make algorith- 
mic changes necessary in the program and is subject 
to more research. This important scenario cannot be 
handled well by the current, hotness based framework. 

G, and G, have high hotness and high affinities to 
each other. This indicates that G, and Gy are used of- 
ten together in loops or program phases. They should 
be grouped together, in particular if G, and G, have 
a high d-cache component. The cache effects of ac- 
cesses to G, might get hidden by the latencies for the 
accesses to G, . 

G, has low hotness. Splitting out G, is an option (and 
probably can be performed by the automatic transfor- 
mations). But, once again, since link pointers may be 

prohibitive, it is better to split out G, conceptually at 
the source level. 

G, is hot and has a high d-cache component. This 
may indicate that there are badly scheduled loops 
in a program or that a given composite data struc- 
ture is too complicated (and breaks the compiler's 
analysis). When set in relation to other groups with 
lower d-cache components, this can give the com- 
piler/scheduler hints about loads that need to be sched- 
uled earlier. 

For multi-threaded applications, different conclusions 
can be found. For example, fields should additionally 
be grouped by read and write counts to minimize inter- 
processor cache coherency costs. Also, instead of rely- 
ing on hotness, affinity may be used for field grouping 
to mirror thread specific references to fields. 

Using the regular compiler as a reporting tool usually 
incurs unpractical overhead, as redundant compilations are 
performed. We believe this is not a general usability prob- 
lem, as users will likely obtain the advisory output during 
their regular full builds. However, if a dedicated analysis 
tool is required, one can reconfigure the compiler to avoid 
unnecessary compilations and to only perform tasks needed 
for the analysis. 

3.4. Experiences 

This tool is currently being used by ourselves for hunting 
for opportunities in our set of benchmarks, including the 
upcoming SPEC2006 benchmark suite. Unfortunately, at 
time of this writing, this suite hasn't been finalized and we 
cannot disclose details. The tool is also used on the HP- 
UX kernel, about which we are only permitted to talk in 
general terms. The following paragraphs are therefore quite 
generic. 

One of the C++ benchmarks in SPEC2006 has a hot 
structure S with a size larger than an L2 cache line (128 
byte on Itanium). Looking at the affinity graphs derived 
from PBO clearly identified 4 hot fields in S which were 
not grouped together in the class definition. The affin- 
ity graph derived via ISPBO pointed out the exact same 4 
fields. Grouping those fields together resulted in a perfor- 
mance improvement of 2.5%. 

Another C benchmark in this suite is strongly dominated 
by three loops over an array of record types containing 
only two fields, a floating point field and an 8-byte inte- 
ger field. Consequentially, this data structure is by far the 
hottest record type in the affinity graphs. Peeling of this 
type resulted in a performance improvement of almost 40%. 
After splitting, the three loops are iterating over an array 
of integers, performing only a few fast integer operations. 
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Type : node 
F i e l d s  : 1 5 ,  60 b y t e s  
Ho tnes s  : 100.0% r e l ,  52 .6% a b s  
Transform:  S p l i t t i n g  
S t a t u s  : *OK* / LPTR NSTP 
..................................................................... 
F i e l d [ O ]  o f f :  0  : 0  I ---------- I "number" 

h o t :  0 . 2 %  we igh t :  5 .367e+05 
r e a d  : 9.375e+05,  w r i t e :  2 .072e+03 
m i s s  : 2, 0.1%, l a t :  9 . 5  [ c y c ]  

a f f :  100 .0% --> number 
a££ :  1 . 3 %  --> f i r s t o u t  
a f f :  15 .9% --> f l o w  

F i e l d [ l ]  o f f :  4:O I--- - - - - - - - /  " i d e n t "  *unused* 
F i e l d [ 2 ]  o f f :  8:O I#######-- - I  "p red"  

h o t :  73 .6% we igh t :  2.352e+08 
r e a d  : 1.805e+08,  w r i t e :  1 .679e+05 IRRRRRRRRI 
m i s s  : 317, 1 2 . 8 % ,  l a t :  7 .8  [cyc] 

a f f :  41 .0% --> p r e d  
a f f :  0 . 3% --> c h i l d  
a f f :  100 .0% --> s i b l i n g  
a f f :  7 .2% --> d e p t h  

r .  . . I  

Figure 2. The advisory tool's output 

The benchmark therefore hit a memory bandwidth barrier. 
When combined with a higher unroll factor for the three 
hot loops, or by using Itanium specific cache locality hints 
(completer .ntl) on loads, the splitting led to an overall per- 
formance gain of over 80%. This is another good example 
of potential second order effects of the transformations. 

Currently the affinity information is used by the HP-UX 
kernel group to improve their structure definitions; some 
promising candidates have been identified. Since the kernel 
is a highly multi-threaded application, the analysis benefits 
heavily from the presence of the readwrite counts. Based 
on the experiences, we plan to analyze large database sys- 
tems and other key applications. 

4. Related Work 

We group related work into three areas, each consisting 
of a huge body of work. We only pick a few important 
representatives for each group. 

First there is the work in locality improving transforma- 
tions for scientific, array-based programs. These transfor- 
mations are often referred to as loop nest transformations 
(for example [I 31, or the survey in [I]). These transfonna- 
tions do not apply to pointer intensive codes with complex 
data structures and control flow. 

Secondly, for dynamically compiled languages such as 
Java, extensive work is being performed in many areas. 

There are studies on the effects of garbage collectors and 
memory allocators on data cache performance 1171, [7], 
[lo]. Chilimbi and Larus [S] use generational garbage col- 
lection to reorganize data structures so that objects with 
high temporal affinity are placed near each other, increasing 
the likelihood for them to reside in the same cache block. 
This work is different from ours as it seeks to re-arrange 
whole objects in memory to improve locality. We believe 
that there is some value of this approach even for static lan- 
guages, as has been shown by Lattner [14], and we plan on 
augmenting our infrastructure with a similar mechanism. 

Kistler and Franz [12] describe a technique that uses on- 
line path profiling data to reorder structure fields for type- 
safe languages, such as Java. The resulting layouts are 
aware of cache line fill buffer forwarding, a hardware fea- 
ture supported by the PowerPC. They improve performance 
for their set of benchmarks by up to 24%. 

Chilimbi et a1 [3] describes structure splitting and field 
reordering for lava. They report a reduction in cache miss 
rates of 10-27% and improved performance of 6-18% in 
five Java programs. They also describe the tool bbcache 
which has similarities with our advisor. The tool provides 
field reordering advice for C programs. Applying the advice 
they report improvements in the performance of Microsoft 
SQL server of about 2-3%; 5 types could be modified. 

Finally there is a third group of work which deals with 
other aspects of data layout optimization. 

Proceedings of the International Symposium on Code Generation and Optimization (CG0'06) 

0-7695-2499-0106 $20.00 O 2006 IEEE 

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 04,2023 at 01:02:42 UTC from IEEE Xplore.  Restrictions apply. 



Calder et a1 [2] apply a compiler directed approach using 
profile data to place global data, constants, stack variables 
and heap objects. Profile information guides compile time 
variable placement algorithms in finding a variable place- 
ment solution that decreases predicted inter-variable con- 
flicts and increases predicted increased cache utilization. 
Their technique works on the placement of entire objects 
and not on the placement of fields within an object. Our 
compiler has a similar phase, which we call global variable 
layout (GVL). We plan to merge GVL with the presented 
framework in the future. 

Chilimbi et a1 [4] describe a semi automatic tool called 
ccmo rph that reorganizes the layout of homogeneous trees 
at runtime to improve locality. It relies on programmer an- 
notations to identify the root of a tree and to indicate that 
the reorganization is safe. They also describe ccrnalloc 
which is a malloc replacement that accepts hints to allocate 
one object near another. These hints only provide local in- 
formation for an object pair and not any global information 
about entire data structures. This work targets a different 
problem domain and relies on user input. However, we be- 
lieve there is value in user provided input and plan to inves- 
tigate this area further. 

Truong et al [21] propose a field reorganization tech- 
nique called instance interleaving which is partially auto- 
mated. They show that instance interleaving can have a 
large positive performance impact, but has limited applica- 
bility. Instance interleaving requires a special allocation li- 
brary, i a l  loc, and type safe C/C++ programs. This trans- 
formation can be integrated into our current framework and 
thus be made fully automatic. So far, however, we haven't 
found opportunities for this extension in our set of bench- 
marks. 

Rubin, Bodik and Chilimbi [I81 developed a parame- 
terized framework for data-layout optimization of general- 
purpose applications. They find an optimal layout is not 
only NP-hard, but also poorly approximable. Their frame- 
work finds a good layout by searching the space of possi- 
ble layouts, with the help of profile feedback. The search 
process iteratively prototypes candidate data layouts, evalu- 
ating them by "simulating" the program on a representative 
trace of memory accesses. 

Zhong et a1 [23] use the elegant concept of reference 
afinity to arrive at precise data transformation decisions, 
split structures in multiple parts, and achieve impressive 
performance results. However, their approach is based on 
program traces and therefore not applicable for commer- 
cial compilers. They use a maximum size for allocated ar- 
rays, which allows conversion of pointers to integer indices. 
This transformation does not incur the demonstrated penal- 
ties of link pointers. Consequentially, these effects are not 
modelled. We believe that there is value in the presented 
affinity concept even for non-profile based compilations and 

are trying to estimate similar metrics based on static, inter- 
procedural analysis. 

Rabbah and Palem [16] split structures by allocating ob- 
jects in chunks and by remapping field locations into these 
block of memory. This corresponds, conceptually, to our 
structure peeling transformation, except that no external 
pointers to the remapped sub-arrays are needed. Instead, 
field locations are computed with address arithmetic based 
on the address of a first field. To ensure correctness, they use 
points-to analysis and, when needed, compiler-generated 
check code. Their approach is based on program traces. 
We performed manual experiments with similar transfor- 
mations on a small set of benchmarks, but weren't able 
to achieve meaningful performance improvements over our 
existing transformations. 

Finally, Hagog [8] describes an implementation of struc- 
ture splitting based on profiles in GCC [6], which is, as 
such, close to our work. They report only partial imple- 
mentation results and do not provide an advisory tool. In 
contrast to our experiences, they do split single global vari- 
ables of a record type and suggest multi-level splitting using 
link pointers. 

5. Conclusions and Future Work 

We presented our framework for structure layout opti- 
mizations, the design constraints, and trade-offs we had 
to make because we are implementing a commercial com- 
piler. After explaining our transformations, we developed 
and evaluated a set of simple legality tests, demonstrating 
that even with a more sophisticated analysis no more op- 
timization opportunities were exposed in our set of bench- 
marks. Then we developed and evaluated several choices 
for out profitability analysis, introducing a correlation coef- 
ficient to measure their quality. 

We find that many record types cannot be transformed 
automatically for a variety of reasons and introduce an ad- 
visory tool, which combines static compiler analysis with 
dynamic runtime measurements. The generated reports pro- 
vide valuable insights into more effective structure layouts, 
as indicated in a few (very brief) case studies. 

We plan to gradually extend our framework and handle 
more and more cases. In particular, many of the simple le- 
gality tests described in section 2.2 should be handled by an 
improved implementation. Field reordering appears to be 
underutilized at the moment and we plan to further enhance 
the heuristics for it. We also plan to augment our support for 
CU, for which we presently only have rudimentary support 
and will implement some form of automatic pool allocation 
to further improve locality. We are working with the HP- 
UX kernel team and based on their feedback we will further 
improve the reporting capabilities. Finally we are consider- 
ing re-packaging the analysis phase into a standalone tool. 
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