IIIIIIIIIIIIIIIIIIII

Tile size selection using cache
organization and data layout

EECS 583 Paper Presentation

Original authors: Stephanie Coleman and Kathryn S. McKinley
Presenters: Group 20: Boren Ke, Peijing Li, Yongyi Yang

Monday, December 4, 2023

Presentation Outline

1. Introduction
a. Why study matrix multiplication
b. Cache terminologies
c. Matrix tiling demonstration
2. Methods
a. Finding the height of the tile given its width
b. Finding the optimal width (and height) of the tile
Results
4. Commentary

w

MICHIGAN ENGINEERING -

UNIVERSITY OF MICHIGAN

Why study matrix multiplication?

e Wide applicability across many modern algorithms, e.g., machine
learning

e High computational complexity, no asymptotically fast algorithms

e Other algorithms that don’t necessarily involve matrices utilize similar
computational patterns.

Objective: accelerate matrix multiplication through exploiting spatia

locality of its large number of elements in caches.

MICHIGAN ENGINEERING 3

UNIVERSITY OF MICHIGAN

EEEER. N\ 7 RN\ O\ ISR\
Terminology and Definitions

1. Cache misses:
a. Compulsory miss
b. Capacity miss
c. Interference ak.a. conflict miss
i. Self-interference: conflicts with elements of the same matrix
ii. Cross-interference: conflicts with elements of different matrix
2. Spatial locality and temporal locality
3. Describing matrix and tile dimensions...

MICHIGAN ENGINEERING 4

UNIVERSITY OF MICHIGAN

EER. N\ . Y CEEEEEEERR. \ \ \ NS \
Why is MM a problem?

a1 az a3 bl b2 b3 c:1 CZ C3
a, a, a b, b, b | =1]1¢ ¢ c
a, ad, 3 b, b, b, . € &

MICHIGAN ENGINEERING s

UNIVERSITY OF MICHIGAN

1. Eliminate self-interference misses

Our goal: 2. minimize cross-interference misses of B caused by A or C

Naive matrix multiplication

int A[N][N]; Between each use of....
int B[N][N];
int C[N][N];
init(); A[i,jl: N elements in B
for(int j = €;j < Njj++){ B[i,k]: N * N elements in B,
for(int k = 0;k < N;k++ plus
int X = C i1;
. .[k][ﬂ’ . N elements in A
for(int 1 = 0;i < N;i++){ N el i C
A[i1[3] = A[L1[3] + X * B[i][k]; clementsin

}

cross-interference misses

self-interference misses

MICHIGAN ENGINEERING &

UNIVERSITY OF MICHIGAN

EEER. N\ | (7 SRR \ \ \ AN \
Method: Tiling

int TK = 26;

int TI = 20;
for(int tileK = ©; tileK < N; tileK += TK){
for(int tileI = ©@;tileI < N; tileI += TI
for(int j = ©;j < N;j++){
for(int k = tileK;(k < tileK + TK) && (k < N);k++){

X Cikdtgil;

for(int 1 = tileI;(i < tileI + TI) & (i < N);i++
A[i][3] = A[i][3] + X * B[i][k];

MICHIGAN ENGINEERING -

UNIVERSITY OF MICHIGAN

U
Method: Tiling

tile size T maitrix size N

*

Matrix A
Outer loop over tiles
B Current tile in outer loop

Matrix B Matrix C
Inner loop over elements n Temporary result tile
Current element in inner loop

MICHIGAN ENGINEERING s

UNIVERSITY OF MICHIGAN

Tile Size Selection

colSize

_ X > rowSize

Between each use of B[i,k], we need to access
- colSize * rowSize elements in B, plus
- colSize elements in C, plus
- rowSize elements in A

MICHIGAN ENGINEERING o

UNIVERSITY OF MICHIGAN

Tile Size Selection

colSize

_ X > rowSize

We want colSize and rowSize to be:
- small enough to eliminate self-interference misses of B
- big enough to fully use the cache

MICHIGAN ENGINEERING 1o

UNIVERSITY OF MICHIGAN

Tile Size Selection

A naive method: select as many columns as possible.

:) cache size
rowSize dolSine — | =Y
~ - - N
unused cache units: r; = cache size mod N
colSize
B

In the optimal solution, the number of
unused cache units should not exceed r1.

MICHIGAN ENGINEERING 1

UNIVERSITY OF MICHIGAN

Tile Size Selection

Proposed method: Euclidean Algorithm (originally used to calculate GCD)

Input:a, b
a = qb+r
b = @or1 + 172
r1 = q3re + 713
Tk—1 = (qk+1Tk T Tk+1

Each time, calculate the remainder of two remainders, until
one remainder becomes 0.

MICHIGAN ENGINEERING 12

UNIVERSITY OF MICHIGAN

Tile Size Selection

Proposed method: Euclidean Algorithm (originally used to calculate GCD)

Input:a=0N,b=
a = qb+nr
b = 6]2@4*7’2\
1 = Q3@‘|"'°3\>

o1 = Qh+1TR) Eh—

Each time, calculate the remainder of two remainders, until
one remainder becomes 0.

MICHIGAN ENGINEERING 13

UNIVERSITY OF MICHIGAN

Tile Size Selection

colSize Take 1nto account cache line size

/—/% colSize if colSize mod CLS = 0, or

colSize = % if colSize = column length
colize .
{T’Z_S_J CLS otherwise
cache line
[[| (CLS = cache line size)
wasted cache memory rowSize
B

MICHIGAN ENGINEERING 14

UNIVERSITY OF MICHIGAN

Tile Size Selection
Minimizing Cross Interference Misses

worst case number of cross interference misses:

CIM = 2 x rowSize + colSize the algorithm: choose the pair with

the best CIR while not violating
working set size constraint

cross interference ratio:

CIM

rowSize X colSize

CIR =

working set size constraint:

colSize x rowSize + rowSize + CLS < cache size

MICHIGAN ENGINEERING 15

UNIVERSITY OF MICHIGAN

Performance vs. Untiled Matrix Multiplication

1. Test over 2D matrix multiplication, successive over relaxation, LU
decomposition, and (expanded) Livermore Loop 23 algorithms

2. Select problem size of 256*256, 300*300, and 301*301

3. Tiling improves average miss rates by a factor of 8.6
a. 32-byte cache line: 9.5x; 64-byte cache line: 7.62x

4. Cache performance always increases with set associativity
a. Even though algorithm is designed to work with direct-mapped cache

MICHIGAN ENGINEERING 16

UNIVERSITY OF MICHIGAN

Comparison with Other Tiling Algorithms

1. The competition: different tile shapes
a. Lam, Rothenberg, Wolf 1991: largest square tiles without self interference.
b. Esseghir 1993: fit as many entire rows into cache as possible

2. Esseghir has too big working set sizes, LRW has too small working set sizes

3. For larger cache sizes, the benefits of optimizing rectangular cache shape
becomes less apparent

4. Performance differences diminish with higher set associativity

Miss rate @ 8KB | Speedup @ 8KB | Miss rate @ 64KB | Speedup @ 64KB
LRW ‘91 1.03 1.54 0.85 1.06

Esseghir ‘93 6.66 1.27 1.19 0.98

MICHIGAN ENGINEERING 17

UNIVERSITY OF MICHIGAN

Commentary
Strengths Limitations
- Algorithm fully eliminates - Loop order exchange
self-interference misses - Fitting cache line size after
- Low time complexity for pinpointing determining colSize
tile size (O(log”3)) - No explicit explanation of using
- Good benchmarking and Euclidean Algorithm (heuristic)
comparison data instead of skewed - Further discussion on associativity
graphics dump - Unintuitive writing and examples

- Inconsistent terminologies

MICHIGAN ENGINEERING 1s

UNIVERSITY OF MICHIGAN

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

