
Tile size selection using cache
organization and data layout

EECS 583 Paper Presentation

Original authors: Stephanie Coleman and Kathryn S. McKinley

Presenters: Group 20: Boren Ke, Peijing Li, Yongyi Yang

Monday, December 4, 2023

1

1. Introduction
a. Why study matrix multiplication
b. Cache terminologies
c. Matrix tiling demonstration

2. Methods
a. Finding the height of the tile given its width
b. Finding the optimal width (and height) of the tile

3. Results
4. Commentary

2

Presentation Outline

● Wide applicability across many modern algorithms, e.g., machine
learning

● High computational complexity, no asymptotically fast algorithms
● Other algorithms that don’t necessarily involve matrices utilize similar

computational patterns.

Objective: accelerate matrix multiplication through exploiting spatial
locality of its large number of elements in caches.

3

Why study matrix multiplication?

1. Cache misses:
a. Compulsory miss
b. Capacity miss
c. Interference a.k.a. conflict miss

i. Self-interference: conflicts with elements of the same matrix
ii. Cross-interference: conflicts with elements of different matrix

2. Spatial locality and temporal locality
3. Describing matrix and tile dimensions…

4

Terminology and Definitions

5

Why is MM a problem?

6

Our goal:

Naive matrix multiplication
Between each use of....

A[i,j]: N elements in B

B[i,k]: N * N elements in B,
plus
 N elements in A
 N elements in C

cross-interference misses

self-interference misses

1. Eliminate self-interference misses
2. minimize cross-interference misses of B caused by A or C

7

Method: Tiling

8

Method: Tiling

Tile Size Selection

Between each use of B[i,k], we need to access
- colSize * rowSize elements in B, plus
- colSize elements in C, plus
- rowSize elements in A

C A B

rowSize

colSize

elements accessed between
each use of B[i,k]

9

== x

We want colSize and rowSize to be:
- small enough to eliminate self-interference misses of B
- big enough to fully use the cache

Tile Size Selection

10

C A B

rowSize

colSize

elements accessed between
each use of B[i,k]

== x

A naive method: select as many columns as possible.

unused cache units:

In the optimal solution, the number of
unused cache units should not exceed r1.

Tile Size Selection

B

colSize

rowSize

11

Proposed method: Euclidean Algorithm (originally used to calculate GCD)

Input : a, b

Each time, calculate the remainder of two remainders, until
one remainder becomes 0.

Tile Size Selection

12

Proposed method: Euclidean Algorithm (originally used to calculate GCD)

Input : a = N, b = cache size

Each time, calculate the remainder of two remainders, until
one remainder becomes 0.

Tile Size Selection

candidate colSize

13

Take into account cache line size

ca

B

colSize

rowSize

cache line

wasted cache memory

Tile Size Selection

(CLS = cache line size)

14

Minimizing Cross Interference Misses

worst case number of cross interference misses:

cross interference ratio:

working set size constraint:

the algorithm: choose the pair with
the best CIR while not violating
working set size constraint

Tile Size Selection

15

1. Test over 2D matrix multiplication, successive over relaxation, LU
decomposition, and (expanded) Livermore Loop 23 algorithms

2. Select problem size of 256*256, 300*300, and 301*301
3. Tiling improves average miss rates by a factor of 8.6

a. 32-byte cache line: 9.5x; 64-byte cache line: 7.62x
4. Cache performance always increases with set associativity

a. Even though algorithm is designed to work with direct-mapped cache

16

Performance vs. Untiled Matrix Multiplication

1. The competition: different tile shapes
a. Lam, Rothenberg, Wolf 1991: largest square tiles without self interference.
b. Esseghir 1993: fit as many entire rows into cache as possible

2. Esseghir has too big working set sizes, LRW has too small working set sizes
3. For larger cache sizes, the benefits of optimizing rectangular cache shape

becomes less apparent
4. Performance differences diminish with higher set associativity

17

Comparison with Other Tiling Algorithms

Miss rate @ 8KB Speedup @ 8KB Miss rate @ 64KB Speedup @ 64KB

LRW ‘91 1.03 1.54 0.85 1.06

Esseghir ‘93 6.66 1.27 1.19 0.98

18

Commentary

- Algorithm fully eliminates
self-interference misses

- Low time complexity for pinpointing
tile size (O(log^3))

- Good benchmarking and
comparison data instead of skewed
graphics dump

Strengths Limitations

- Loop order exchange
- Fitting cache line size after

determining colSize
- No explicit explanation of using

Euclidean Algorithm (heuristic)
- Further discussion on associativity
- Unintuitive writing and examples
- Inconsistent terminologies

Thanks!

19

