
1

Modular, Compositional, and Executable
Formal Semantics for LLVM IR
Authors: Zakowski, Beck, Yoon, Zaichuk, Zaliva, Zdancewic
Presentor: Eric Bond (group 27)

2

Outline
● Motivation & Background
● Introduction to Interaction Trees (ITrees)
● Modeling a simple assembly language (ASM) using ITrees
● Extending ASM to LLVM IR
● Authors’ results
● “Group” commentary

3

Formal Models
Specifications

● Informal:
○ Ex. design doc, tests, fuzzing
○ Easy to create
○ Only partial correctness
○ Errors can easily “sneak by”

● Formal:
○ Mathematical model
○ Model can prove total correctness
○ Challenge: coherence of model and implementation

VELLVM
● Model of LLVM IR
● Used to prove correctness of LLVM transformations,

optimizations, and compilation

Denotational Semantics
● A method of mapping a language into a mathematical object

and designing an equational theory to prove properties of
the language.

Modular, Compositional, and Executable Formal Semantics for LLVM IR

Proof Engineering Math

Coq Gallina
“Specification” by Bing Image Creator

4

Interaction Trees
● Tree with 3 types of nodes

○ Ret: a leaf holding a value of type R
○ Tau: an empty node that has one successor
○ Vis: a node with an Effect and a Continuation

5

Interaction Trees
● Tree with 3 types of nodes

○ Ret: a leaf holding a value of type R
○ Tau: an empty node that has one successor
○ Vis: a node with an Effect and a Continuation

● An ITree is parameterized by two types.
○ E: The type of effects this tree supports
○ R: The “return type” of the computation

● An ITree is a CoInductive type
○ Analogy: lists are Inductive, streams are CoInductive

6

Example Interaction Trees

An input/output effect

Ex 1) A program that just returns 42 Ex 2) A program that spins forever

ITree definition

7

Example Interaction Trees

An input/output effect

Ex 3) A program that
takes input and prints it (forever)

Ex 4) A program that
terminates upon receiving input “9”

ITree definition

8

Example Interaction Trees

A program that takes input and prints it (forever)

The same program, using monad syntax

9

Equational Reasoning with ITrees

Bisimulation is a way to define when two systems “behave the
same” relative to an external observer and independent of their
internal structure.

10

Outline
● Motivation & Background
● Introduction to Interaction Trees (ITrees)
● Modeling a simple assembly language (ASM) using ITrees
● Extending ASM to LLVM IR
● Authors’ results
● “Group” commentary

11

Simple Assembly Language → ITree
1. Define the syntax of ASM
2. Decide what effects ASM has
3. Map the syntax of ASM into an Itree

12

Step 1: Define ASM

ASM syntax

13

Step 2: Determine Effects

ASM syntax

14

Step 3: ASM → ITree RegAndMem void

15

Outline
● Motivation & Background
● Introduction to Interaction Trees (ITrees)
● Modeling a simple assembly language (ASM) using ITrees
● Extending ASM to LLVM IR
● Authors’ results
● “Group” commentary

16

LLVM → ITree
1. Define the syntax of LLVM
2. Decide what effects LLVM has
3. Map the syntax of LLVM into an Itree

17

Step 1: Define LLVM Syntax → ITree
● Accounts for full LLVM IR

○ Straightforward, but tedious
○ Including phi nodes, metadata, data layout, attributes, module flags,..

● Authors’ provide a parser from ll files into this syntax

18

Step 2: Determine Effects

19

Step 2: Determine Effects

20

Step 3: LLVM → ITree VellvmE V

Mapping GetElementPrt instruction to
ITree program

21

Step4: ITree E R → Monad Transformer Stack

22

Outline
● Motivation & Background
● Introduction to Interaction Trees (ITrees)
● Modeling a simple assembly language (ASM) using ITrees
● Extending ASM to LLVM IR
● Authors’ results
● “Group” commentary

● Block fusion
○ Conditions:

■ BB1 has a direct jump to BB2
■ BB1 is the only predecessor of BB2
■ BB1 ≠ BB2

○ Transformation
■ Remove BB1 branch
■ Merge BB1 and BB2
■ Update Phi nodes of BB2’s successors

Before

23

Authors’ Results

BB1

BB2

BB1
&

BB2

After

↦

24

Authors’ Results

G fuse(G)⟦G⟧ ⟦fuse(G)⟧≈

25

Authors’ Results
● This paper and the original ITrees paper have been used in recent

developments
○ VELLVM is used in the HELIX verification chain
○ HELIX is code generation and formal verification system with a

focus on the intersection of high-performance and high-assurance
numerical computing

● Distinguished paper POPL 2020

26

Outline
● Motivation & Background
● Introduction to Interaction Trees (ITrees)
● Modeling a simple assembly language (ASM) using ITrees
● Extending ASM to LLVM IR
● Authors’ results
● “Group” commentary

27

“Group” Commentary
● Strengths

○ Elegant theory
○ Excellent proof engineering

■ Modular, reusable components
■ Abstracted over hard coinductive proofs
■ Provide great tactic library

● Weaknesses
○ Coherence

■ Memory model is not sufficient to prove certain optimizations (in progress)
■ Only sequential programs supported for now

○ While they provide a good equational theory and proof tactics, a better program logic
will be needed to handle large programs. (In progress)

28

Questions?

