Using Machine Learning to Predict the Sequences of Optimization Passes

Presenters: Anurag Bangera, Chirag Bangera, Jonhan Chen, Richard Wang

Paper Authors: Laith H. Alhasnawy, Esraa H. Alwan, and Ahmed B. M. Fanfakh

December 1st, 2023

Table of Contents

- I. Contextualizing the problem:
 - A. Context
 - B. Significance
 - C. Purpose of the Paper
 - D. What is KNN?
- II. What did the researchers do?
 - A. Feature Extraction
 - B. Model Training
 - C. Reduction Algorithm
 - D. Application Model
- III. Analysis of Results
- IV. Group Commentary
- V. Q&A

Context

- What is a pass?
 - Analysis step
 - Transformation step
- Optimization passes
 - Dead code elimination, Loop Unrolling, etc.
- In LLVM: Optimizer "opt"
 - Specify which optimization passes to use
 - Arrange the order of optimization passes

Context

- Phase / Pass order:
 - The sequence of passes run on a program
- "The Phase (pass) Order Problem"
 - Orderings of passes can impact effectiveness of each pass
 - Interdependencies between passes
 - No universal optimal ordering
- Pass order is manually tuned static
 - Not always ideal! Could be sub-optimal, causing slow down.

Significance

- Optimization sequence space: set of all valid pass orders
 - For reference, there are over 10^64 pass orders given 50 passes.
 - LLVM: ~10 to ~70 passes
 - GCC: ~30 to ~100 passes
 - Impossibly large to search through

Purpose of the Paper

The Big Idea:

- Dynamically auto-tuning optimization sequences without testing all pass orders
- Main Topics:
 - Machine Learning: Use K-NN algorithm to build a prediction scheme.
 - Feature Pass: Extract static features for each program.
 - Reduction Algorithm: Improve the resulting sequences from KNN model.

Step 1: K-Nearest Neighbors Model

- "Non-parametric, supervised learning classifier"
 - Non-parametric: No assumptions on parameters
 - Supervised Learning: input
 parameters and corresponding "correct"
 value train a model
 - Classifier: Identifies which of a set of categories an observation belongs to
- Uses proximity to make classifications or predictions
 - Distance function

k = 1

k = 3

Nearest points are {red, blue, blue} so x_{test} classified as blue

k = 4

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

Step 2: Feature Extraction

- **Feature**: a "parameter" for machine learning models to classify based on
- Many possible relevant features related to optimizations
- Researchers used: instruction count
 - Add instructions
 - Alloca instructions
 - And instructions
 - Etc...
- Resulted in 39 total features, each numerical

Step 3: Model Training

Goal: Generate a semi-optimized pass for each program

- It's really hard to find the actual optimized path for each algorithm
- Use a greedy search to be able to get a good result for training

```
Algorithm 1: Finding Optimization Sequence
Input: benchmark programs, optimization passes.
Output: optimization sequence of passes for each program (collectionSequencArray).
1: For i=1 to end of benchmark programs
      Features extraction (program before executing optimization passes)
3: End For i
4: For i=1 to end of benchmark programs
5:For i=1 to end of optimization passes
             Apply (-scalarrepl pass)
             Features extraction (program after executing each optimization pass)
     End For i
9: End For i
10: For i=1 to end of benchmark programs
11:New program ← benchmark program
     For j = 1 to length New program
13:
              Use KNN to classify New program[j] for two closest programs by its
14:
              Choose best two optimization passes from two closest programs.
15:Save two chosenoptimization passes in Sequenc Array.
16:
          Save two optimization passes as new programs in Temp new programs.
17:End For j
         New program = Temp new programs
19:While (!End optimization passes) goto step 12
20: Save SequencArray in collectionSequencArray
21: End For i
      Return collectionSequencArray
```


Fig. 2. The scheme of finding optimization sequence

Model Training Overview

Model Training Overview

Generating Pass Sequences

Generating Pass Sequences

Ranking Optimizations

B.c
1.Const Prop
2.DCE
3.Loop Inv
4.Loop unroll

A.c
1.Const Prop
2.DCE
3.Loop Inv
4.Loop unroll

D.c
1.Const Prop
2.DCE
3.Loop Inv
4.Loop unroll
...

- Run each optimization on each program individually
- This does not capture order, but rather the best optimizations on the initial program, so we need to do more

C.c
1.Const Prop
2.DCE
3.Loop Inv
4.Loop unroll
...

Generating Pass Sequences

KNN

We run feature extraction and our KNN model to identify the closest two programs

Generating Pass Sequences

Optimization Selection

-We then add the highest unused optimizations from the programs to our sequence

Generating Pass Sequences

Compile

- We compile the current program with the optimization pass sequence

Repeat!

KNN

We run feature extraction and our KNN model to identify the closest two programs

Optimization Selection

-We then add the highest unused optimizations from the programs to our sequence

Compile

- We compile the current program with the optimization pass sequence

Pass Sequence

Step 3: Reduction Algorithm

 Motivation: Some optimization passes can actually increase the runtime of the program

 Solution: Run a reduction pass to remove any non-improvement passes from the training data

Algorithm 2: Reduction Optimization Sequence

```
Input:prog Opt seq by using KNN.
Output: Best Opt seq.
1: Execution time ← execution (prog Opt seq)
2: I← 1
3: While I< length of prog Opt seq
        Temp prog Opt seq ← Delete (prog Opt seq, I)
        Best Execution time ← execution(Temp prog Opt seq)
    If Best Execution time < Execution time
        Execution time ← Best Execution time
9:Best Opt seq ← Temp prog Opt seq
10:1←0
11:End if
12:
         I←I+1
13: End while
14:
        Return Best Opt seq
```


1. Establish Baseline time

- 2. Select a pass to test
- 3. Deactivate Pass
- 4. Recompile code
- 5. Profile new executable
- 6. Compare

- 1. Establish Baseline time
- 2. Select a pass to test
- 3. Deactivate Pass
- 4. Recompile code
- 5. Profile new executable
- 6. Compare

- 1. Establish Baseline time
- 2. Select a pass to test
- 3. Deactivate Pass
- 4. Recompile code
- 5. Profile new executable
- 6. Compare

- 1. Establish Baseline time
- 2. Select a pass to test
- 3. Deactivate Pass
- 4. Recompile code
- 5. Profile new executable
- 6. Compare

- 1. Establish Baseline time
- 2. Select a pass to test
- 3. Deactivate Pass
- 4. Recompile code
- 5. Profile new executable
- 6. Compare

Training Completed

Step 4: Running the Model

- Goal: We want to apply auto-tuned passes on new programs
- KNN Model: Categories are programs
 - 1st nearest neighbor
- Distance Function: "Cosine Similarity"
 - Addresses "sparse data"

Sim(p, pi) =
$$\frac{\sum_{w=1}^{m} Pw \times Piw}{\sqrt{\sum_{w=1}^{m} (Pw)^{2}} \times \sqrt{\sum_{w=1}^{m} (Piw)^{2}}}$$

Running the Model

Results - KNN

- Utilizing the KNN algorithm led to an average 21% enhancement in execution time.
- Utilizing the KNN algorithm plus the reduction led to an average 23% enhancement in execution time.

Fig. 3. The performance comparison between our approach and -O2 for the training set.

Fig. 4. The performance comparison between our approach and -O2 for the testing set.

Results - Number of Passes and Pass Order

- The combination of reduction algorithm and KNN resulted in an average 23% improvement in execution time
 - ~2% performance improvement attributed to reduction

Table 4. The optimization sequence before and after the reduction process in the testing set.

Programs	Optimization sequence before the reduction process	Number of passes	Optimization sequence after the reduction process	Number of passes
Testing program1.c	-prune-eh -early-cse -loop-rotate -loop-idiom -basicaa -basiccg -gvn -inline -jump-threading -loop-reduce -tailcallelim -instcombine -indvars -loop-deletion -licm	15	-prune-eh -early-cse -loop-rotate -loop-idiom -basicaa -basiccg -gvn -inline -jump-threading -loop-reduce -tailcallelim -instcombine -indvars -loop-deletion -licm	15
Testing program2.c	-early-cse -inline -prune-eh -loop-idiom -loop-rotate -basicaa -gvn -jump-threading -basiccg -loop-reduce -instcombine -tailcallelim -indvars -loop-deletion -licm	15	-early-cse -inline -prune-eh -loop-idiom -loop-rotate -basicaa -gvn -basiccg -instcombine -indvars -loop-deletion	11

Group Commentary

Pros

- Performance increase of 21% for KNN
- Performance increase of 23% for KNN plus reduction
- Interesting heuristic to find an optimized path on training data
- Finding optimization paths based on similar programs, useful for tailoring passes for specific categories of application

Group Commentary

Areas For Improvement

- Tested against O2 should have included O3
- Training greedily selects optimizations does not take into account interactions between optimizations
- Better test and train data
 - Only 10 data points tested
- Basic feature selection
 - Only instruction counts
- Don't maximize the classification abilities of KNN because of the small sample size (k=1)

Thank You!

Any Questions?

