
EECS 583 Advanced Compilers F23 Group 24

Using Machine Learning to Predict the 
Sequences of Optimization Passes
Presenters: Anurag Bangera, Chirag 
Bangera, Jonhan Chen, Richard Wang

Paper Authors: Laith H. Alhasnawy, Esraa H. 
Alwan, and Ahmed B. M. Fanfakh

December 1st, 2023



EECS 583 Advanced Compilers F23 Group 24

Table of Contents I. Contextualizing the problem:
A. Context

B. Significance

C. Purpose of the Paper

D. What is KNN?

II. What did the researchers do?
A. Feature Extraction

B. Model Training

C. Reduction Algorithm

D. Application Model

III. Analysis of Results

IV. Group Commentary

V. Q&A

2



EECS 583 Advanced Compilers F23 Group 24 3

Context

● What is a pass?

○ Analysis step

○ Transformation step

● Optimization passes

○ Dead code elimination, Loop Unrolling, etc.

● In LLVM: Optimizer - “opt”

○ Specify which optimization passes to use

○ Arrange the order of optimization passes



EECS 583 Advanced Compilers F23 Group 24 4

Context

● Phase / Pass order:

○ The sequence of passes run on a program

● “The Phase (pass) Order Problem”

○ Orderings of passes can impact effectiveness of each pass

○ Interdependencies between passes

○ No universal optimal ordering

● Pass order is manually tuned — static

○ Not always ideal! Could be sub-optimal, causing slow down. 



EECS 583 Advanced Compilers F23 Group 24 5

Significance

● Optimization sequence space: set of all valid pass orders

○ For reference, there are over 10^64 pass orders given 50 passes. 

■ LLVM: ~10 to ~70 passes 

■ GCC: ~30 to ~100 passes 

○ Impossibly large to search through 



EECS 583 Advanced Compilers F23 Group 24 6

Purpose of the Paper

● The Big Idea: 

○ Dynamically auto-tuning optimization sequences without testing all pass orders

● Main Topics:

○ Machine Learning: Use K-NN algorithm to build a prediction scheme.

○ Feature Pass: Extract static features for each program.

○ Reduction Algorithm: Improve the resulting sequences from KNN model.



EECS 583 Advanced Compilers F23 Group 24 7

Step 1: K-Nearest Neighbors Model
● “Non-parametric, supervised learning 

classifier”

○ Non-parametric: No assumptions on 

parameters

○ Supervised Learning: input 

parameters and corresponding “correct” 

value train a model

○ Classifier: Identifies which of a set of 

categories an observation belongs to

● Uses proximity to make classifications or 

predictions

○ Distance function



EECS 583 Advanced Compilers F23 Group 24 8

Step 2: Feature Extraction

● Feature: a “parameter” for machine learning models to classify based on

● Many possible relevant features related to optimizations

● Researchers used: instruction count

○ Add instructions

○ Alloca instructions

○ And instructions

○ Etc…

● Resulted in 39 total features, each numerical



EECS 583 Advanced Compilers F23 Group 24
9

Step 3: Model Training

Goal: Generate a semi-optimized pass for each program
● It’s really hard to find the actual optimized path for each algorithm
● Use a greedy search to be able to get a good result for training



EECS 583 Advanced Compilers F23 Group 24 10

Model Training Overview

Training dataset
C programs

Generate 
sequences

Reduce 
sequences Trained model



EECS 583 Advanced Compilers F23 Group 24 11

Model Training Overview

Training dataset
C programs

Generate 
sequences

Reduce 
sequences Trained model



EECS 583 Advanced Compilers F23 Group 24

Generating Pass Sequences

12

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program



EECS 583 Advanced Compilers F23 Group 24

Generating Pass Sequences

13

Opt. 
selection CompileKNN

Ranking 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program



EECS 583 Advanced Compilers F23 Group 24

Ranking Optimizations

14

D.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

C.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…
…

B.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

A.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

● Run each optimization on each 
program individually

● This does not capture order, but 
rather the best optimizations on 
the initial program, so we need to 
do more



EECS 583 Advanced Compilers F23 Group 24

Generating Pass Sequences

15

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program



EECS 583 Advanced Compilers F23 Group 24

KNN 

We run feature extraction and our KNN model to identify the closest two programs

16

Program
Program_A.c

Features
Adds:10

Subtracts:12
Multiplies:0

Loads:3

KNN

Program_A.c

Program_B.c



EECS 583 Advanced Compilers F23 Group 24

Generating Pass Sequences

17

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program



EECS 583 Advanced Compilers F23 Group 24

Optimization Selection
-We then add the highest unused optimizations from the programs to our sequence 

18

Program_A.c
1.DCE

2.Constant Prop
3.Loop Inv

4.Loop unroll
…
…

Program_B.c
1.Const Prop

2.Loop Inv
3.Loop unroll

4.DCE

…

Sequence: Loop 
UnrollingDCE



EECS 583 Advanced Compilers F23 Group 24

Generating Pass Sequences

19

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program



EECS 583 Advanced Compilers F23 Group 24

Compile
- We compile the current program with the optimization pass sequence

20

Program_A.c
Sequence: Loop 

UnrollingDCE
Semi-optimized 

code



EECS 583 Advanced Compilers F23 Group 24

Repeat!

21

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Opt_Progam_A.c



EECS 583 Advanced Compilers F23 Group 24

KNN 

We run feature extraction and our KNN model to identify the closest two programs

22

Program
Opt_Program_A.

c

Features
Adds:5

Subtracts:1
Multiplies:0

Loads:5
Loops:2

KNN

Program_A.c

Program_C.c



EECS 583 Advanced Compilers F23 Group 24

Optimization Selection
-We then add the highest unused optimizations from the programs to our sequence 

23

Program_A.c
1.DCE

2.Constant Prop
3.Loop Inv

4.Loop unroll
…
…

Program_C.c
1.Loop Inv

2.Const Prop
3.DCE

4.Loop Unroll

…

Sequence: Loop 
UnrollingDCE Loop InvConstant 

Prop



EECS 583 Advanced Compilers F23 Group 24

Compile
- We compile the current program with the optimization pass sequence

24

Opt_Program_A.
c

More 
Semi-optimized 

codeLoop InvConstant 
Prop



EECS 583 Advanced Compilers F23 Group 24

Pass Sequence

25

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs Continue looping until all optimizations are in the sequence

Sequence: Loop 
UnrollingDCE Loop InvConstant 

Prop



EECS 583 Advanced Compilers F23 Group 24 26

Training: Reduction

Training data
C programs

Generate 
optimized 

sequences

Reduce 
sequences Trained model



EECS 583 Advanced Compilers F23 Group 24 27

Step 3: Reduction Algorithm

● Motivation: Some optimization passes can 

actually increase the runtime of the program

● Solution: Run a reduction pass to remove any 

non-improvement passes from the training data



EECS 583 Advanced Compilers F23 Group 24

Optimize

Training: Reduction

28

Pass A

Pass B

Pass C

Pass D

Pass E

Code

Compile 
and 

Profile

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare



EECS 583 Advanced Compilers F23 Group 24 29

Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare

Optimize
Pass A

Pass B

Pass C

Pass D

Pass E

Code

Compile 
and 

Profile



EECS 583 Advanced Compilers F23 Group 24 30

Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare

Optimize

Pass B

Pass C

Pass D

Pass E

Code

Compile 
and 

Profile

Pass A



EECS 583 Advanced Compilers F23 Group 24 31

Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare

Optimize

Pass B

Pass C

Pass D

Pass E

Code

Compile 
and 

Profile

Pass A



EECS 583 Advanced Compilers F23 Group 24 32

Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare

Baseline
Pass A

Pass B

Pass C

Pass D

Pass E

New

Pass B

Pass C

Pass D

Pass E

Pass A

New faster?

Harmful optimization

Baseline faster?

Useful optimization



EECS 583 Advanced Compilers F23 Group 24 33

Training Completed

Training data
C programs

Generate 
optimized 

sequences

Reduce 
sequences Trained model



EECS 583 Advanced Compilers F23 Group 24

Step 4: Running the Model

● Goal: We want to apply auto-tuned 

passes on new programs

● KNN Model: Categories are programs

○ 1st nearest neighbor

● Distance Function: “Cosine Similarity”

○ Addresses “sparse data”

34



EECS 583 Advanced Compilers F23 Group 24

Running the Model

35

New Program
new.c

Features
Adds:14

Subtracts:2
Multiplies:3

Loads:2

KNN Program_A.c

Return: new.c Seq

Program_A.c
 Seq



EECS 583 Advanced Compilers F23 Group 24

Results - KNN

● Utilizing the KNN algorithm led to an average 21% enhancement in execution time.
● Utilizing the KNN algorithm plus the reduction led to an average 23% enhancement in execution time.

36



EECS 583 Advanced Compilers F23 Group 24 37

Results - Number of Passes and Pass Order

● The combination of reduction algorithm and KNN resulted in an average 23% improvement in execution time 
○ ~2% performance improvement attributed to reduction



EECS 583 Advanced Compilers F23 Group 24

Group Commentary

Pros

● Performance increase of 21% for KNN
● Performance increase of 23% for KNN plus reduction
● Interesting heuristic to find an optimized path on training data
● Finding optimization paths based on similar programs, useful for tailoring passes for specific categories of 

application

38



EECS 583 Advanced Compilers F23 Group 24

Group Commentary

39

Areas For Improvement

● Tested against O2 should have included O3
● Training greedily selects optimizations does not take into account interactions between optimizations
● Better test and train data

○ Only 10 data points tested
● Basic feature selection

○ Only instruction counts
● Don't maximize the classification abilities of KNN because of the small sample size (k=1)



EECS 583 Advanced Compilers F23 Group 24

Thank You!

40

Any Questions?


