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Context

● What is a pass?

○ Analysis step

○ Transformation step

● Optimization passes

○ Dead code elimination, Loop Unrolling, etc.

● In LLVM: Optimizer - “opt”

○ Specify which optimization passes to use

○ Arrange the order of optimization passes
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Context

● Phase / Pass order:

○ The sequence of passes run on a program

● “The Phase (pass) Order Problem”

○ Orderings of passes can impact effectiveness of each pass

○ Interdependencies between passes

○ No universal optimal ordering

● Pass order is manually tuned — static

○ Not always ideal! Could be sub-optimal, causing slow down. 
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Significance

● Optimization sequence space: set of all valid pass orders

○ For reference, there are over 10^64 pass orders given 50 passes. 

■ LLVM: ~10 to ~70 passes 

■ GCC: ~30 to ~100 passes 

○ Impossibly large to search through 
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Purpose of the Paper

● The Big Idea: 

○ Dynamically auto-tuning optimization sequences without testing all pass orders

● Main Topics:

○ Machine Learning: Use K-NN algorithm to build a prediction scheme.

○ Feature Pass: Extract static features for each program.

○ Reduction Algorithm: Improve the resulting sequences from KNN model.
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Step 1: K-Nearest Neighbors Model
● “Non-parametric, supervised learning 

classifier”

○ Non-parametric: No assumptions on 

parameters

○ Supervised Learning: input 

parameters and corresponding “correct” 

value train a model

○ Classifier: Identifies which of a set of 

categories an observation belongs to

● Uses proximity to make classifications or 

predictions

○ Distance function
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Step 2: Feature Extraction

● Feature: a “parameter” for machine learning models to classify based on

● Many possible relevant features related to optimizations

● Researchers used: instruction count

○ Add instructions

○ Alloca instructions

○ And instructions

○ Etc…

● Resulted in 39 total features, each numerical
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Step 3: Model Training

Goal: Generate a semi-optimized pass for each program
● It’s really hard to find the actual optimized path for each algorithm
● Use a greedy search to be able to get a good result for training
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Model Training Overview

Training dataset
C programs

Generate 
sequences

Reduce 
sequences Trained model
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Generating Pass Sequences
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Generating Pass Sequences
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Ranking Optimizations
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D.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

C.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…
…

B.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

A.c
1.Const Prop

2.DCE
3.Loop Inv

4.Loop unroll
…

● Run each optimization on each 
program individually

● This does not capture order, but 
rather the best optimizations on 
the initial program, so we need to 
do more
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Generating Pass Sequences
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Opt. 
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Rank 
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Programs
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KNN 

We run feature extraction and our KNN model to identify the closest two programs
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Program
Program_A.c

Features
Adds:10

Subtracts:12
Multiplies:0

Loads:3

KNN

Program_A.c

Program_B.c
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Generating Pass Sequences
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Opt. 
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Rank 
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Optimization Selection
-We then add the highest unused optimizations from the programs to our sequence 
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Program_A.c
1.DCE

2.Constant Prop
3.Loop Inv

4.Loop unroll
…
…

Program_B.c
1.Const Prop

2.Loop Inv
3.Loop unroll

4.DCE

…

Sequence: Loop 
UnrollingDCE
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Generating Pass Sequences

19

Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Partially Optimized Program
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Compile
- We compile the current program with the optimization pass sequence
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Program_A.c
Sequence: Loop 

UnrollingDCE
Semi-optimized 

code
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Repeat!
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Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs

Opt_Progam_A.c
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KNN 

We run feature extraction and our KNN model to identify the closest two programs
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Program
Opt_Program_A.

c

Features
Adds:5

Subtracts:1
Multiplies:0

Loads:5
Loops:2

KNN

Program_A.c

Program_C.c
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Optimization Selection
-We then add the highest unused optimizations from the programs to our sequence 
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Program_A.c
1.DCE

2.Constant Prop
3.Loop Inv

4.Loop unroll
…
…

Program_C.c
1.Loop Inv

2.Const Prop
3.DCE

4.Loop Unroll

…

Sequence: Loop 
UnrollingDCE Loop InvConstant 

Prop
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Compile
- We compile the current program with the optimization pass sequence

24

Opt_Program_A.
c

More 
Semi-optimized 

codeLoop InvConstant 
Prop
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Pass Sequence
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Opt. 
selection CompileKNN

Rank 
Opt.

Pass 
Sequence

Training 
Programs Continue looping until all optimizations are in the sequence

Sequence: Loop 
UnrollingDCE Loop InvConstant 

Prop
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Training: Reduction

Training data
C programs

Generate 
optimized 

sequences

Reduce 
sequences Trained model
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Step 3: Reduction Algorithm

● Motivation: Some optimization passes can 

actually increase the runtime of the program

● Solution: Run a reduction pass to remove any 

non-improvement passes from the training data
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Optimize

Training: Reduction
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Pass A

Pass B

Pass C

Pass D

Pass E

Code

Compile 
and 

Profile

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare
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Training: Reduction
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Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
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5. Profile new executable
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Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
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5. Profile new executable
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Training: Reduction

1. Establish Baseline time
2. Select a pass to test
3. Deactivate Pass
4. Recompile code
5. Profile new executable
6. Compare

Baseline
Pass A

Pass B

Pass C

Pass D

Pass E

New

Pass B

Pass C

Pass D

Pass E

Pass A

New faster?

Harmful optimization

Baseline faster?

Useful optimization
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Training Completed

Training data
C programs

Generate 
optimized 

sequences

Reduce 
sequences Trained model
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Step 4: Running the Model

● Goal: We want to apply auto-tuned 

passes on new programs

● KNN Model: Categories are programs

○ 1st nearest neighbor

● Distance Function: “Cosine Similarity”

○ Addresses “sparse data”

34
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Running the Model
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New Program
new.c

Features
Adds:14

Subtracts:2
Multiplies:3

Loads:2

KNN Program_A.c

Return: new.c Seq

Program_A.c
 Seq
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Results - KNN

● Utilizing the KNN algorithm led to an average 21% enhancement in execution time.
● Utilizing the KNN algorithm plus the reduction led to an average 23% enhancement in execution time.
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Results - Number of Passes and Pass Order

● The combination of reduction algorithm and KNN resulted in an average 23% improvement in execution time 
○ ~2% performance improvement attributed to reduction
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Group Commentary

Pros

● Performance increase of 21% for KNN
● Performance increase of 23% for KNN plus reduction
● Interesting heuristic to find an optimized path on training data
● Finding optimization paths based on similar programs, useful for tailoring passes for specific categories of 

application

38
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Group Commentary

39

Areas For Improvement

● Tested against O2 should have included O3
● Training greedily selects optimizations does not take into account interactions between optimizations
● Better test and train data

○ Only 10 data points tested
● Basic feature selection

○ Only instruction counts
● Don't maximize the classification abilities of KNN because of the small sample size (k=1)
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Thank You!

40

Any Questions?


