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Abstract. The manual tuning for the sequence of optimization passes in modern
compilers was impractical, where this sequence was not general to all benchmark
programs in achieving optimal performance. Therefore, the process of selecting a
set of passes manually them over a particular program to achieve optimal perfor-
mance is a very difficult problem. Moreover, choosing the order for these passes
will add another problem called phase order problem.

In this paper, the proposed approach provides auto tuning optimization
sequences instead of manual tuning by building a prediction scheme. The pro-
posed framework used machine learning to find a sequence for each program by
collecting these passes based on the features of program. K-Nearest Neighbors
classifier algorithm (KNN) is used in the prediction process and improved by that
the reduction algorithm that work after it. The reduction algorithm eliminated
passes that have a negative impact on program execution time.

The proposed approach was evaluated using the LLVM (Low Level Virtual
Machine) compiler underLinuxUbuntu. The obtained results showed that this app-
roach outperforms standard optimization level-O2 of LLVM compiler in improv-
ing the execution time byan average of 21% through building a prediction scheme
by using KNN algorithm. Consequently, the execution time is improved byan
average of 23% due to the application of the reduction algorithm on the sequences
of optimization passes resulting from KNN algorithm.

Keywords: LLVM · KNN algorithm · Reduction algorithm · Optimization
sequence · Optimization passes

1 Introduction

Modern compilers are portioned into three parts: the front end, middle end and back end.
The frontend creates an intermediate representation (IR) for the source program after
testing its syntactic and semantic rightness. The middle end which represents the opti-
mizer is a critical part. It applies a sequence of conversions on the IR in order to optimize
it to get better execution time, code size, and power consumption. The backend converts
the optimized IR to target assembly code. The optimizer part arranged as a sequence of
optimization passes that represents analysis passes followed by transformation passes.
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Analysis passes analyses the program and fetches important information needed through
the transformation passes [1].

Compiler developers work on the optimization passes to produce an optimized ver-
sion from the original version. A code segment may be a function, a basic block, a source
file, and the whole program. However, code optimizations are based on application, pro-
gramming language, and architecture. Generally, the number of optimizations passes in
the LLVM compiler is more than 100 passes, while the GCC compiler has more than
200 passes where they are organized at standard optimization levels (e.g. -O1, -O2, -O3)
[2].

Every set of optimization passes that can work on the program IR is named an
optimization sequence. The set of all optimization sequences is called the optimiza-
tion sequence space where it is infinitely large because the probability to producing
optimization sequences has been increased with growing the number of optimization
passes. Thus, the number of the optimization sequences equals (k)L, where k represents
the number of optimizations passes, and L represents the optimization sequence length.
However, there is a problem in finding a good optimization sequences because there are
a large number of optimization sequences that contain many passes that interact with
each other in complex ways [1] and [5].

These optimization sequences are applied in a fixed order. This order is tuned man-
ually for a specific group of programs impractically. It also requires to tuned it again
at every time the compiler is modified to a new version or when a new optimization
passes has been added [8]. Therefore, the word “optimization” is an inaccurate name
because these compilers may have a good performance for particular programs, but its
performance is bad for other programs, see [2] and [12]. Moreover, there is a problem
in understanding the effect of the optimization passes behavior on the code segment
to be optimized. These due to these passes are interacted with each other in an unpre-
dictable manner during the optimization process. Therefore, there are many problems in
the choosing the passes that achieve the optimal performance for a particular program
and in the choosing the order for these passes [2] and [11].

To solve these problems, this paper introduces a method for auto tuning optimization
sequences by building a prediction scheme usingmachine learning. Thismethod predicts
the sequences of optimization passes for each program and order these passes based on
the features of that program through applying K-Nearest Neighbors classifier algorithm
(KNN).

KNN is one of the machine learning algorithms that work under supervised learning.
This algorithm deals with classification tasks in the wide applications of various fields
such as pattern recognition, cluster analysis for image databases, internet marketing, and
etc. It is proposed by Fix & Hodges, and it is called KNN algorithm because it relies on
the use of the nearest neighbors to predict the class of unknown data belonging to those
neighbors. It is classified the unknown data based on its features to the nearest neighbor,
nearest neighbor is calculated based on the k value that determines the number of nearest
neighbors that have been observed after applying the similarity measures [3] and [10].

Then, another algorithm called a reduction algorithm is applied to eliminate opti-
mization passes that have a negative impact on program execution time from the resulting
optimization sequence by using KNN algorithm.
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This paper is organized as follow:Sect. (2) describes the relatedworks to the proposed
approach. Sect. (3) illustrates the proposed approach and the steps of building a prediction
scheme. Sect. (4) shows the experimental results of the proposed approach. Finally,
Sect. (5) describes the conclusion.

2 Literature Review

In this section, some of the related works that has been done in this field are listed.
Matrins et al. [4] presented a Design Space Exploration scheme that uses a clustering
approach to find groups of good optimization sequences. This approach reduces search
space for the number of optimization passes used during the exploration of optimization
sequences, where it combines the previously suggested optimization passes into each
group to reduce the exploration time and improve the performance. The unseen program
is compiled with different groups of optimization sequences, and the best optimization
sequence is chosen for it.

Cavazos et al. [6] proposed a machine learning approach depend on a logistic regres-
sion scheme to find good optimization sequence for a particular program. This approach
used performance counters which based on the dynamic features for each programwhen
executed, where a similaritymetric is found between any two programs depending on the
similarities between these features. A machine learning approach predicted mechanism
depending on the behavior of many of the trained programs in a training phase to create
several optimization sequences. The obtained sequences used for training programs, and
the prediction mechanism in the test phase to predict the optimization sequence that will
be allowed to compile the unseen program by a training phase.

Purini and Jain [1] proposed an approach to find good optimization sequences
sets, which are able to cover several programs in each set. This approach uses ran-
dom and genetic algorithms to create multiple effective sets of optimization sequences
and eliminate passes that cause a negative impact from each set.

Ashouri et al. [7] presented a machine learning approach using Bayesian Network
to handle the problem of finding the best optimization sequence. This Network provides
a probability distribution for the optimization sequences based on the dynamic features
extracted for programs. These features feed the network to produce a program-specific
which bias to the best optimization sequence from the probability distribution.

Kulkarni and Cavazos [8] applied a Neuro-Evolution depends on a machine learning
approach to build an artificial neural network to predict best optimization sequence for
program to be improved. This network uses input features that describe the current state
of the program, where the best optimization sequence is found by applying network on
all passes to determine the probability of these passes. Then the features are extracted
again after applying this network one more time on the pass which represent the highest
probability because it represents the best pass prediction in the network. Thus, this
process continues for several iterations until the best optimization sequence is found
from the successful passes for previous attempts which have been applied to the network.
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Junior et al. [15] proposed a hybrid approach to solve the optimization sequence
selection problem, which combinesmachine learning using Support VectorMachine and
iterative compilation using Genetic Algorithm. This approach is initially used machine
learning to identify potential optimization sequences depending on programs character-
istics. Then, it uses iterative compilation to adapt these potential optimization sequences
to explore potential search optimization sequences and returns the best optimization
sequence by reducing the search space for these potential optimization sequences, this
procedure is done through a so-called solution adapter which uses a strategy depends on
the iterative compilation to improve the solution found in machine learning. Authors in
[16], used multi selection genetic algorithm that work over a cluster of programs to find
the best optimization sequence for each cluster.

3 Proposed Approach

The main objective of the proposed approach is to provide auto tuning optimization
sequences by building a prediction scheme. This scheme uses machine learning to find
a sequence for each program instead of the manual tuning. The outline of the proposed
approach is as follows:

• Extract static features for each program before and after applying passes, where each
pass is applied to all programs.

• Calculate the execution time for each program before and after applying passes.
• Using KNN algorithm to build a prediction scheme.
• Applying reduction algorithm to improve the resulting sequences from KNN.

TheLLVMClanguage frontend (Clang) converts the source programcode tomachine
readable bit code file format (.bc). Moreover, it is providing two useful tools, the first
one is opt, and the second is llc. The first tool optimizes the program by applying the
specific sequence of optimization passes and stores the result in bit code format file. The
second tool converts an LLVM IR from a bit code file to targetcode. After compiling
the program using Clang -O0 level (i.e. no optimization applied) then the optimization
pass called–scalarrepl (scalar replacement) is applied alongside with each pass. This
pass converts the LLVM IR to Static Single Assignment (SSA) to enable other passes to
perform their optimizations. Now, the specific optimization sequence for each program
can be applied depending on its features by using the opt tool as well. Finally, llc tool
converts the LLVM IR produced from the optimizer to target code. Table 1 shows the
optimization passes used in -O2 level of LLVM compiler [1].
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Table 1. Optimization passes of –O2 standard optimization level

List of optimizations passes

-scalarrepl
-constmerge
-deadargelim
-globaldce
-inline
-ipconstprop
-loop-deletion
-loop-rotate
-loops
-lowerswitch
-partial-inliner
-sccp
-tailcallelim
-basicaa
-domtree
-memdep

-always-inline
-constprop
-die
-globalopt
-instcombine
-ipsccp
-loop-idiom
-loop-simplify
-lower-expect
-memcpyopt
-prune-eh
-simplify-libcalls
-targetlibinfo
-basiccg
-lazy-value-info
-strip-dead-prototypes

-argpromotion
-correlated-propagation
-dse
-gvn
-instsimplify
-jump-threading
-loop-instsimplify
-loop-unroll
-loweratomic
-mergefunc
-reassociate
-simplifycfg
-no-aa
-functionattrs
-lcssa

-codegenprepare
-dce
-early-cse
-indvars
-internalize
-licm
-loop-reduce
-loop-unswitch
-lowerinvoke
-mergereturn
-adce
-sink
-tbaa
-scalarrepl-ssa
-scalar-evolution

Figure 1 shows a summary of the compilation process for each program in our app-
roach by using the optimization passes shown in the Table 1 when building a prediction
scheme.

3.1 Features Extraction Using Instruction Count

To extract the static features, the programs must be stored in bit code file format (.bc).
Then LLVM InstCount pass is applied to extract them. Overall, these features describe
the static behavior for program. Table 2 illustrates the LLVM static features. The total
number of them equals 39 features distributed among different programs. Each one has
its own numerical value, which it is varying from one program to another as shown in
[13] and [14].

In our approach these features are used as shown below:

1. In the training set, the features for each program are extracted before and after
applying each pass to each program.

2. When using KNN algorithm, the similarity for each program is calculated based on
its features as shown in the scheme of finding optimization sequence.

3. In the testing set, each program is rounded based on its features to the closest program
in the training set by using KNN algorithm.

There are many similarity measures to calculate the similarity for features such as
Cosine, Simple Matching Coefficient, Jaccard Coefficient and etc. The cosine similarity
shown in Eq. (1) was used as a similarity measure in our approach because it is one of
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(Unoptimized IR)
Program.bc

Clang –O0

Scalarrepl Pass

(Optimized IR)
Program.bc

Optimization Sequence

(Optimized IR)
Program.bc

opt

opt

llc

Source Program.c

Target Program

Fig. 1. Program compilation process.
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Table 2. The static features for programs

List of static features

Add
instructions

FAdd
instructions

GetElementPtr
instructions

Ret
instructions

SRem
instructions

ZExt
instructions
basic blocksAlloca

instructions
FCmp
instructions

ICmp
instructions

SDiv
instructions

Shl
instructions

And
instructions

FDiv
instructions

Load
instructions

Sub
instructions

Store
instructions

Memory
instructions
non-external
functions

AShr
instructions

FMul
instructions

Mul instructions Switch
instructions

Trunc
instructions

BitCast
instructions

FPExt
instructions

or instructions SExt
instructions

URem
instructions

Br
instructions

FPToSI
instructions

PHI instructions Select
instructions

Unreachable
instructions

Call
instructions

FSub
instructions

PtrToInt
instructions

SIToFP
instructions

Xor
instructions

the most useful measures when using sparse data which contain a few non-zero values
(i.e. asymmetric). This measure ignores the zero values matching and handles other non-
zero values [9].

Sim(p, pi) =
∑m

w=1 Pw × Piw
√∑m

w=1(Pw)
2 ×

√∑m
w=1(Piw)

2
(1)

Where p represents the basic program, and pi represents other programs. In our app-
roach we observe this sparse because “for example” there is a program that has 15 fea-
tures from the total number that equals 39 features, and another program has 25 fea-
tures from the total number. This difference in the features number between these two
programs, and also the difference for these two programs with the total number of fea-
tures are processed by placing zero value for features not available in these programs in
order to be equal to the total number of features. Thus, each one of the programs con-
tains 39 values mostly zero. As a result, most feature values are zero for the benchmark
programs which have been processed through this metric.

3.2 Build a Prediction Scheme

In our approach, the prediction scheme is built to find the sequence of optimization
passes for each program through the data set as shown below.
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3.2.1 Data Set

The data set consists of programs taken from several benchmarks, see [12] for more
information [12]. Examples about these benchmarks are polybench, shootout, stand-
ford, and etc. Benchmark programs include various topics like image processing, data
structures, data mining, tail recursive, linear algebra. The data set is divided into 70%
of the training set and 30% of the testing set.

3.2.1.1 Training Set
In the training set, the features for each training program are extracted before and after
applying each pass, and the execution time is also calculated before and after applying
each pass. Where - scalarrepl pass was applied together with each pass.

After, KNN algorithm is applied to find a sequence of optimization passes for each
program. Then the order of these passes is determined according to the program features.

As a result, these programs are represented as a tree consisting of 62 programs divided
into 5 levels, where each level contains twice the level that precedes it (i.e. the first level
contains 2 programs, the second level on 4 programs, the third level on 8 programs, the
fourth level on 16 programs, and the fifth level on 32 programs) as shown in Fig. 2.

To find the sequence of optimization passes for each program in training set, the
similarity is calculated between its feature (before applying any pass) and other program
features. Then, two of the most similar programs (K= 2) are chosen to the original one
and add their passes to the optimization sequence (SequencArray as shown in Algorithm
1). Each one of chosen program is considered as a new program, then it classified again
to the nearest two neighbor programs in the tree by using its features (after applying
the pass). Another two similar programs are chosen where their execution time after
applying optimization passes represents the lowest one. This process will be repeated
until all the programs in the training set are chosen.

3.2.1.2 Testing Set
In the testing set, another 20 benchmark programs are fetched as unseen programs. Then,
classify each program depending on its features to the closest program in the training
set by using KNN algorithm to predict the good optimization sequence for this program,
which represents the same optimization sequence for the closest program in the training
set.

3.3 Interaction Between Optimization Passes

After finding the optimization sequences for all the benchmark programs in predic-
tion scheme, we noticed that there are some the optimization passes in the gener-
ated sequences have a negative impact on program execution time due to the wrong
interactions between these passes.
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To eliminate the optimization passes that cause the wrong interactions, the proposed
approach uses an algorithm called the reduction algorithm. This algorithm inspects the
effect of optimization passes on program execution time and check their impact to
determine whether it good or bad [1]. Therefore, a good optimization pass that improves
program execution time remains in the resulting optimization sequence, but the bad pass
that does not improve the program execution time is removed from that sequence.

Fig. 2. The scheme of finding optimization sequence
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Algorithm 1: Finding Optimization Sequence 
Input: benchmark programs, optimization passes. 
Output: optimization sequence of passes for each program (collectionSequencArray). 
1: For i=1 to end of benchmark programs 
2: Features extraction (program before executing optimization passes) 
3: End For i 
4: For i=1 to end of benchmark programs 
5:For j=1 to end of optimization passes 
6: Apply (–scalarrepl pass) 
7: Features extraction (program after executing each optimization pass)  
8: End For j 
9: End For i 
10: For i=1 to end of benchmark programs 
11:New_program benchmark program 
12:     For j  = 1 to length  New_program 
13:                  Use KNN to classify New_program[j] for two closest programs by its 

features. 
14:                    Choose best two optimization passesfrom two closest programs. 
15:Save two chosenoptimizationpasses in SequencArray. 
16:            Save two optimization passes as new programs in Temp_new_programs. 
17:End For j 
18            New_program = Temp_new_programs 
19:While (!End optimization passes) goto step 12 
20: Save SequencArray in collectionSequencArray 
21: End For i 
22:       Return collectionSequencArray 

3.3.1 The Reduction Algorithm

After calculating the program execution time for each optimization sequence in the
prediction scheme, the reduction algorithm works on each sequence alone. It starts by
deleting the first optimization pass of that sequence and calculates the execution time
of optimization sequence again. If the current execution time (i.e. Resulting from the
use for the reduction algorithm) is less than the previous execution time (i.e. from the
original sequence), this algorithm continues in eliminating the other optimization passes
from the original one. Otherwise, this algorithm returns this optimization pass to the
original optimization sequence and then eliminates the next pass that come after it. This
process is repeated for all optimization passes in the optimization sequences. Algorithm
2 illustrates the steps of reduction algorithm.
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Algorithm 2:Reduction Optimization Sequence
Input:prog_Opt_seq by using KNN. 
Output: Best_Opt_seq. 
1: Execution time  execution (prog_Opt_seq) 
2: I  1 
3: While I< length of  prog_Opt_seq 
5: Temp_prog_Opt_seq  Delete (prog_Opt_seq, I)
6: Best_Execution time  execution(Temp_prog_Opt_seq) 
7: If Best_Execution time < Execution time 
8: Execution time  Best_Execution time  
9:Best_Opt_seq Temp_prog_Opt_seq 
10:I 0
11:End if 
12:           I I+1 
13: End  while 
14: Return  Best Opt_seq 

4 Experimental Results

Our approach was evaluated on Intel (R) Core (TM) i5 processor with 3.7 GB RAM
running a Linux - Ubuntu 16.4 operating system.

Each program from the benchmark programswas executedwith its own optimization
sequence by using the script file. Each program has been executed three times and the
average is calculated for them to increase the accuracy of the results.

In this section, the results will be displayed for 10 benchmark programs as a sample
of the training set and 10 benchmark programs as a sample of the testing set. Tables 3
and 4 show the optimization sequences obtained for the programs of these samples in
our approach.

Figures 3 and 4 show the execution time obtained for the programs shown in Tables 3
and 4.

Table 3. The optimization sequence before and after the reduction process in the training set.

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Training
program1.c

-instcombine -inline
-loop-rotate -early-cse
-indvars -gvn -basicaa
-basiccg -prune-eh
-loop-idiom
-loop-reduce
-jump-threading
-tailcallelim
-loop-deletion -licm

15 -instcombine -inline
-early-cse -indvars
-gvn -basicaa -basiccg
-prune-eh -loop-idiom
-loop-reduce
-jump-threading
-tailcallelim
-loop-deletion -licm

14

(continued)
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Table 3. (continued)

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Training
program2.c

-early-cse
-instcombine -basicaa
-basiccg -prune-eh
-loop-rotate
-loop-idiom -gvn
-loop-reduce -inline
-jump-threading
-tailcallelim -indvars
-loop-deletion -licm

15 -early-cse
-instcombine -basicaa
-basiccg -prune-eh
-loop-rotate
-loop-idiom -gvn
-loop-reduce
-jump-threading
-tailcallelim -indvars
-loop-deletion -licm

14

Training
program3.c

-prune-eh -loop-rotate
-tailcallelim -indvars
-early-cse
-loop-deletion
-loop-idiom -gvn
-jump-threading
-inline -basicaa
-loop-reduce -basiccg
-instcombine -licm

15 -prune-eh -tailcallelim
-indvars -early-cse
-loop-deletion
-loop-idiom -gvn
-jump-threading
-inline -basicaa
-loop-reduce -basiccg
-instcombine -licm

14

Training
program4.c

-basiccg -gvn
-early-cse -loop-rotate
-prune-eh -inline
-basicaa -instcombine
-loop-idiom
-jump-threading
-loop-reduce
-tailcallelim -indvars
-licm -loop-deletion

15 -basiccg -gvn
-early-cse -loop-rotate
-prune-eh -basicaa
-instcombine
-loop-idiom
-jump-threading
-loop-reduce
-tailcallelim -indvars
-licm -loop-deletion

14

Training
program5.c

-loop-idiom
-loop-rotate -basicaa
-gvn -early-cse
-basiccg -prune-eh
-inline
-jump-threading
-loop-reduce
-instcombine
-tailcallelim -indvars
-licm -loop-deletion

15 -loop-idiom
-loop-rotate -basicaa
-gvn -early-cse
-basiccg -prune-eh
-inline
-jump-threading
-loop-reduce
-instcombine -indvars
-licm -loop-deletion

14

Training
program6.c

-tailcallelim -inline
-prune-eh -indvars
-gvn -jump-threading
-early-cse -loop-rotate
-loop-deletion
-loop-idiom -basicaa
-loop-reduce -basiccg
-instcombine -licm

15 -tailcallelim -inline
-prune-eh -indvars
-gvn -jump-threading
-early-cse -loop-rotate
-loop-deletion
-loop-idiom -basicaa
-loop-reduce -basiccg
-instcombine -licm

15

(continued)
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Table 3. (continued)

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Training
program7.c

-loop-rotate -gvn
-prune-eh -early-cse
-jump-threading
-loop-idiom -basicaa
-inline -basiccg
-tailcallelim -indvars
-loop-deletion
-loop-reduce
-instcombine -licm

15 -loop-rotate -gvn
-prune-eh -basicaa
-inline -basiccg
-tailcallelim -indvars
-loop-deletion
-loop-reduce
-instcombine -licm

12

Training
program8.c

-inline -tailcallelim
-loop-rotate -basicaa
-gvn -loop-reduce
-instcombine
-early-cse -loop-idiom
-prune-eh -basiccg
-jump-threading
-indvars
-loop-deletion -licm

15 -inline -tailcallelim
-loop-rotate -basicaa
-gvn -loop-reduce
-early-cse -loop-idiom
-basiccg -indvars
-loop-deletion -licm

12

Training
program9.c

-loop-idiom
-loop-rotate -early-cse
-gvn -inline -basiccg
-prune-eh
-jump-threading
-loop-reduce
-tailcallelim -basicaa
-instcombine -indvars
-loop-deletion -licm

15 -loop-idiom
-loop-rotate -early-cse
-gvn -inline -basiccg
-prune-eh
-jump-threading
-loop-reduce
-tailcallelim -basicaa
-instcombine -indvars
-loop-deletion -licm

15

Training
program10.c

-loop-reduce -gvn
-early-cse -loop-idiom
-basicaa -loop-rotate
-inline -prune-eh
-basiccg
-jump-threading
-tailcallelim
-instcombine -indvars
-loop-deletion -licm

15 -loop-reduce -gvn
-early-cse -loop-idiom
-basicaa -loop-rotate
-inline -prune-eh
-basiccg
-jump-threading
-tailcallelim
-instcombine -indvars
-loop-deletion –licm

15

According to the Tables 3 and 4, there are some programs that do not apply the
reduction process on their optimization sequences because there are no wrong interac-
tions in passes of those optimization sequences when applying the reduction algorithm.
Therefore, these optimization sequences remain the same after the reduction process for
those programs.

The results mentioned in Figs. 3 and 4 showed the comparison at the execution
time when using both the KNN algorithm and the KNN algorithm with the reduction
algorithm in the prediction to the standard optimization level -O2.
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These results indicate that our approach outperforms standard optimization level-O2
by improving the execution time. This though building a prediction scheme to find a
good sequence of optimization passes for each program from the benchmark programs

Table 4. The optimization sequence before and after the reduction process in the testing set.

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Testing program1.c -prune-eh -early-cse
-loop-rotate
-loop-idiom -basicaa
-basiccg -gvn -inline
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -prune-eh -early-cse
-loop-rotate
-loop-idiom -basicaa
-basiccg -gvn -inline
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15

Testing program2.c -early-cse -inline
-prune-eh
-loop-idiom
-loop-rotate -basicaa
-gvn
-jump-threading
-basiccg
-loop-reduce
-instcombine
-tailcallelim -indvars
-loop-deletion -licm

15 -early-cse -inline
-prune-eh
-loop-idiom
-loop-rotate -basicaa
-gvn -basiccg
-instcombine
-indvars
-loop-deletion

11

Testing program3.c -loop-rotate -basicaa
-early-cse -gvn
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -loop-rotate -basicaa
-early-cse -gvn
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15

Testing program4.c -loop-reduce
-indvars -early-cse
-loop-idiom
-loop-rotate -inline
-prune-eh -basicaa
-basiccg -gvn
-instcombine
-tailcallelim
-jump-threading
-licm -loop-deletion

15 -loop-reduce
-indvars -early-cse
-loop-idiom
-loop-rotate -inline
-prune-eh -basicaa
-basiccg -gvn
-instcombine
-tailcallelim
-jump-threading
-licm -loop-deletion

15

(continued)
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Table 4. (continued)

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Testing program5.c -loop-idiom
-loop-rotate
-early-cse -gvn
-inline -basiccg
-prune-eh
-jump-threading
-loop-reduce
-tailcallelim -basicaa
-instcombine
-indvars
-loop-deletion -licm

15 -loop-idiom
-loop-rotate
-early-cse -gvn
-inline -basiccg
-prune-eh
-jump-threading
-loop-reduce
-tailcallelim
-basicaa
-instcombine
-indvars
-loop-deletion -licm

15

Testing program6.c -prune-eh
-loop-rotate -basicaa
-inline -gvn
-early-cse
-loop-idiom -basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -prune-eh
-loop-rotate -basicaa
-inline -gvn
-early-cse
-loop-idiom
-basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-loop-deletion -licm

14

Testing program7.c -loop-reduce
-loop-rotate
-early-cse
-loop-idiom -basicaa
-inline -prune-eh
-basiccg
-jump-threading
-gvn -tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -loop-reduce
-loop-rotate
-early-cse
-loop-idiom -basicaa
-prune-eh -basiccg
-gvn -tailcallelim
-instcombine
-indvars
-loop-deletion -licm

13

Testing program8.c -loop-rotate -basicaa
-early-cse -gvn
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -loop-rotate -basicaa
-early-cse -gvn
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-loop-reduce
-tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15

(continued)
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Table 4. (continued)

Programs Optimization
sequence before the
reduction process

Number of passes Optimization
sequence after the
reduction process

Number of passes

Testing program9.c -loop-reduce
-loop-rotate
-early-cse
-loop-idiom -basicaa
-inline -prune-eh
-basiccg
-jump-threading
-gvn –tailcallelim
-instcombine
-indvars
-loop-deletion -licm

15 -loop-reduce
-loop-rotate
-early-cse
-loop-idiom -basicaa
-prune-eh -basiccg
-gvn -tailcallelim
-instcombine
-indvars
-loop-deletion -licm

13

Testing program10.c -gvn -early-cse
-loop-rotate -basicaa
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-tailcallelim
-instcombine
-loop-reduce
-indvars
-loop-deletion -licm

15 -early-cse
-loop-rotate -basicaa
-loop-idiom -inline
-prune-eh -basiccg
-jump-threading
-tailcallelim
-instcombine
-loop-reduce
-indvars
-loop-deletion -licm

14
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Fig. 3. The performance comparison between our approach and -O2 for the training set.
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Fig. 4. The performance comparison between our approach and -O2 for the testing set.

based on its features using KNN algorithm. The results of application only KNN show
an improvement ratio of 21% on average in the execution time. There is also an increase
in improving the execution timewhen applying the reduction algorithm on the sequences
of optimization passes by 23% on average of the execution time compared with KNN
without reduction.

5 Conclusion

This work presented machine learning to build a framework prediction scheme for com-
piler optimization sequence. This scheme provided auto tuning to solve the problems
resulting from manual tuning. The KNN algorithm was used in the prediction scheme
to find the sequence of optimization passes for each program from the benchmark pro-
grams, and then order these passes based on the features of that program. The reduction
algorithm was also applied to eliminate passes that have a negative impact on program
execution time for the resulting sequence by using KNN algorithm.

LLVM infrastructure has been used to validate the proposed method. The experi-
ment results showed that the proposed approach outperforms LLVM -O2 by improving
the execution time by average of 21% when building a prediction scheme using KNN
algorithm.Moreover, it improved the execution time byan average of 23% after applying
reduction algorithm a long side to the KNN algorithm.
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