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Recap on SSA and PRE

% Static Single-Assignment
(SSA) Form
> Each assignment to a variable is
given a unigue name

> All uses reached by that
assignment are renamed

X3 := ®(x1,x2)
z2:=x3-3
x4 :=4




Recap on SSA and PRE
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% Partial Redundancy Elimination (PRE)
> Eliminate expressions that are redundant on some but not
necessarily all paths
> Partially redundant expression = fully redundant
m Insert the partially redundant expression on the paths
that do not already compute it



Recap on SSA and PRE

% Partial Redundancy Elimination (PRE)
> Eliminate expressions that are redundant on some but not
necessarily all paths
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(a) before PRE (b) after PRE




SSAPRE Algorithm

 Assumptions
> |nputis a program in SSA form
> Prior computation of the dominator tree (DT) and iterated
dominance frontiers (DF+)
> Each ¢ assignment has the property that its left-hand side
and all of its operands are versions of the same original

program variable
> The live ranges of different versions of the same original
program variable do not overlap



SSAPRE Algorithm

» Step 1: The ®-Insertion Step
> Similar to SSA Phi insertion, but
for expressions instead of
variables
> |dentify all lexically identical

expressions

m Same base variable and same
operand




SSAPRE Algorithm

» Step 1: The ®-Insertion Step
> |nsert Phi nodes at

m lterated dominance frontier (IDF)
e Same as SSA Phi insertion

m When one variable of the expression
is defined by a Phi node
e An alteration of expression




SSAPRE Algorithm
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% Step 2: The Rename Step
> Conducts a preorder traversal of the
dominator tree, while maintaining both
variable and expression stacks
> Three types of expression
occurrences:
m Real occurrences
m @ nodesinserted in the
®-Insertion step
m O operands occurring at
predecessor block ends

a1 —

=0 (hp, 1)
ap=¢(ay, ay)
~

an + by : [h1]
as=...

/

ho=®(hy, L)
ay=¢(a, as)
as + by : [ho]




SSAPRE Algorithm

s Step 3: The DownSafety Step

> |nsertions must be “down-safe”
> A © computation is not down-safe if there is a path to
EXIT from ® along which the result of @ is:
m not used
m used only as an operand of another ® that itself is
NOT down-safe



SSAPRE Algorithm

a1:...

» Step 3: The DownSafety Step o~

> Begins at each © that is initially not h1=;>((hz¢)): [ds = 1]
ax=¢\as, a
marked down safe =
a + by : [hy]
> Searches along upward edges, Sy
clearing the down safe flag for each A
h2=¢(h1,J_) : [dS = 1]
d visited ay=¢(az, as)
as + by : [he]

> HasRealUse: Real occurrence of an
expression

!
EXIT




SSAPRE Algorithm

 Step 4: The WillBeAvail Step

> The set of ® where the expression must be available in
any computationally optimal placement
> Consist of two parts:
m CanBeAvalil
e s for which E is either available or anticipable or
both
m Later
® Os that are CanBeAvail, but do not reach any real
occurrence of E
> WillBeAvail = CanBeAvail A 71 Later



SSAPRE Algorithm

% CanBeAvail

> Set Boundary ®s to be false
m Not down-safe, and
m Atleastone argumentis L

> Propagate false value along the chain of def-use to other ®s
m exclude edges along which HasRealUse is true

< Later
> |nitialize Later to true wherever CanBeAvail is true, otherwise false

> Assign false for ®s with at least one operand with HasRealUse flag true

> Propagate false value forward to other ®s



SSAPRE Algorithm

% Step 5: The Finalize Step

Initializes AvailDef data structure.

Analyzes expressions in a control flow graph.
Updates and substitutes expression definitions.
Handles PHI nodes and operand traversals.

X Step 6: The CodeMotion Step

lterates over pairs of expressions and instructions.

m Handles variable or constant expressions by
replacing instruction uses.

m Processes and skips certain expressions based on
conditions.

m Computes substitutions for expressions and
handles different cases.




SSAPRE Algorithm
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 Step 5: The Finalize Step

a = a1j
]
=0(hy, 1) hy=®(ho, hs)
ax=¢(a4, ay) ax=¢(a4, ay)
S N
a + by : [hy] a + by : []
aa=. hyA as=. wia
- = e
ho=d(hy, L)
ay=0(ay, as) Zif;)((g ’g:))
nih o) a4 by [he]

BT
[EXIT)




SSAPRE Algorithm

N
0‘0

Step 6: The CodeMotion Step

hi=®(hz, h3)
ap=0(a4, ar)

N

ag=--

ti=a; + by

l

t=¢(ts, 1)
ar=¢(as, a1)

a + by : [h1]

as=-
b=

P4

ho=®(hy, hy)
ay=¢(az, as)

as + b1 5 [hg]

N\

t

az=---
l=as + by

4

ta=4(tp, t3)
a4=¢(a2, a3)




Analysis

s Time complexity: O(n(E + V))
> E and V: number of edges and vertices in SSA graph
> Step 2-6 are all linear w.rt (E +V)
> Phi Insertion is normally O(V"2) because of IDF
m But there are linear algorithms
> Bit-vector PRE algorithms have cubic complexity




Performance
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» Compared against bit-vector based PRE

> Program runtime: no noticeable difference
> Compile time: Varies

] SPECint35 Benchmarks ||

go_

| m88ksim

cC compress li ijp ~ perl vortex
it-vector 1 116900 4850 | 886360 100 12950 10340 98340 62950
151260 4440 | 339160 60 5090 11200 34970 | ©
Ratio T2/T1 1.293 0.915 0.382 0.600 0.393 1.083 0.353 0.841
SPECIp95 Benchmarks || tomcatv| swim | su2cor | hydro2d| mgrid | applu [ turb3d | apsi | fpppp | waveb
it-vector I 1 40 170 500 | 7 5 1450 | 941
SSAPRE (12) 60 400 700 | 8780 | 1400 | 9450 | 5000 | 9 [ 1980 | 85800
Ratio 12/T1 1.500 | 2.352 | 1.399 | 1.240 | 2.799 | 1.867 | 2.066 | 2.477 | 1.365 | 0.911

Table 2: Time (in msec.) spent in Partial Redundancy Elimination in compiling SPECint95 and SPECfp95




Performance

% Analysing performance results
> Larger procedures benefit more from SSAPRE

m Sparse FRG smaller than CFG
> Prototype implementation, needs further tuning

> Algorithmic complexity




Future Work

R/ R/
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Further investigation wide compile time difference
Improve SSA graph construction through
characterization

Extending SSA dataflow characterization to other
classical optimization techniques

> Code hoisting, load/store redundancies




Conclusion/Commentary

* SSAPRE takes advantage of SSA form to present a
sparse approach to PRE

% Using SSA to solve dataflow problem related to
expressions

* Good algorithmic complexity compared to bit-vector

based PRE algorithms



