
Partial Redundancy Elimination in
SSA Form

Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred Chow

Presented by Group 19:
Peter Zhong, Zhengjie Xu, Zhongqian Duan, and Katsumi Ibaraki

Recap on SSA and PRE

❖ Static Single-Assignment
(SSA) Form
➢ Each assignment to a variable is

given a unique name
➢ All uses reached by that

assignment are renamed

Recap on SSA and PRE

❖ Partial Redundancy Elimination (PRE)
➢ Eliminate expressions that are redundant on some but not

necessarily all paths
➢ Partially redundant expression → fully redundant

■ Insert the partially redundant expression on the paths
that do not already compute it

Recap on SSA and PRE

❖ Partial Redundancy Elimination (PRE)
➢ Eliminate expressions that are redundant on some but not

necessarily all paths

(a) before PRE (b) after PRE

E1

E2
(fully redundant) E3 (partially redundant)

E1

E2
(fully redundant) E3 (fully redundant)

E4 (inserted)

SSAPRE Algorithm

❖ Assumptions
➢ Input is a program in SSA form
➢ Prior computation of the dominator tree (DT) and iterated

dominance frontiers (DF+)
➢ Each φ assignment has the property that its left-hand side

and all of its operands are versions of the same original
program variable

➢ The live ranges of different versions of the same original
program variable do not overlap

SSAPRE Algorithm

❖ Step 1: The Φ-Insertion Step
➢ Similar to SSA Phi insertion, but

for expressions instead of
variables

➢ Identify all lexically identical
expressions
■ Same base variable and same

operand

SSAPRE Algorithm

❖ Step 1: The Φ-Insertion Step
➢ Insert Phi nodes at

■ Iterated dominance frontier (IDF)
● Same as SSA Phi insertion

■ When one variable of the expression
is defined by a Phi node
● An alteration of expression

SSAPRE Algorithm

❖ Step 2: The Rename Step
➢ Conducts a preorder traversal of the

dominator tree, while maintaining both
variable and expression stacks

➢ Three types of expression
occurrences:
■ Real occurrences
■ Φ nodes inserted in the

Φ-Insertion step
■ Φ operands occurring at

predecessor block ends

SSAPRE Algorithm

❖ Step 3: The DownSafety Step
➢ Insertions must be “down-safe”
➢ A Φ computation is not down-safe if there is a path to

EXIT from Φ along which the result of Φ is:
■ not used
■ used only as an operand of another Φ that itself is

NOT down-safe

SSAPRE Algorithm

❖ Step 3: The DownSafety Step
➢ Begins at each Φ that is initially not

marked down safe
➢ Searches along upward edges,

clearing the down safe flag for each
Φ visited

➢ HasRealUse: Real occurrence of an
expression

SSAPRE Algorithm

❖ Step 4: The WillBeAvail Step
➢ The set of Φ where the expression must be available in

any computationally optimal placement
➢ Consist of two parts:

■ CanBeAvail
● Φs for which E is either available or anticipable or

both
■ Later

● Φs that are CanBeAvail, but do not reach any real
occurrence of E

➢ WillBeAvail = CanBeAvail Λ ㄱLater

SSAPRE Algorithm

❖ CanBeAvail
➢ Set Boundary Φs to be false

■ Not down-safe, and
■ At least one argument is ⊥

➢ Propagate false value along the chain of def-use to other Φs
■ exclude edges along which HasRealUse is true

❖ Later
➢ Initialize Later to true wherever CanBeAvail is true, otherwise false

➢ Assign false for Φs with at least one operand with HasRealUse flag true

➢ Propagate false value forward to other Φs

SSAPRE Algorithm

❖ Step 6: The CodeMotion Step
■ Iterates over pairs of expressions and instructions.
■ Handles variable or constant expressions by

replacing instruction uses.
■ Processes and skips certain expressions based on

conditions.
■ Computes substitutions for expressions and

handles different cases.

❖ Step 5: The Finalize Step
■ Initializes AvailDef data structure.
■ Analyzes expressions in a control flow graph.
■ Updates and substitutes expression definitions.
■ Handles PHI nodes and operand traversals.

SSAPRE Algorithm

❖ Step 5: The Finalize Step

SSAPRE Algorithm

❖ Step 6: The CodeMotion Step

Analysis

❖ Time complexity: O(n(E + V))
➢ E and V: number of edges and vertices in SSA graph
➢ Step 2-6 are all linear w.r.t (E + V)
➢ Phi Insertion is normally O(V^2) because of IDF

■ But there are linear algorithms
➢ Bit-vector PRE algorithms have cubic complexity

Performance

❖ Compared against bit-vector based PRE
➢ Program runtime: no noticeable difference
➢ Compile time: Varies

Performance

❖ Analysing performance results
➢ Larger procedures benefit more from SSAPRE

■ Sparse FRG smaller than CFG
➢ Prototype implementation, needs further tuning
➢ Algorithmic complexity

Future Work

❖ Further investigation wide compile time difference
❖ Improve SSA graph construction through

characterization
❖ Extending SSA dataflow characterization to other

classical optimization techniques
➢ Code hoisting, load/store redundancies

Conclusion/Commentary

❖ SSAPRE takes advantage of SSA form to present a
sparse approach to PRE

❖ Using SSA to solve dataflow problem related to
expressions

❖ Good algorithmic complexity compared to bit-vector
based PRE algorithms

