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Recap on SSA and PRE

❖  Static Single-Assignment 
(SSA) Form
➢ Each assignment to a variable is 

given a unique name
➢ All uses reached by that 

assignment are renamed



Recap on SSA and PRE

❖  Partial Redundancy Elimination (PRE)
➢ Eliminate expressions that are redundant on some but not 

necessarily all paths 
➢ Partially redundant expression → fully redundant 

■ Insert the partially redundant expression on the paths 
that do not already compute it



Recap on SSA and PRE

❖  Partial Redundancy Elimination (PRE)
➢ Eliminate expressions that are redundant on some but not 

necessarily all paths 

(a) before PRE (b) after PRE
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SSAPRE Algorithm

❖ Assumptions
➢ Input is a program in SSA form
➢ Prior computation of the dominator tree (DT) and iterated 

dominance frontiers (DF+) 
➢ Each φ assignment has the property that its left-hand side 

and all of its operands are versions of the same original 
program variable

➢ The live ranges of different versions of the same original 
program variable do not overlap



SSAPRE Algorithm

❖ Step 1: The Φ-Insertion Step
➢ Similar to SSA Phi insertion, but 

for expressions instead of 
variables

➢ Identify all lexically identical 
expressions
■ Same base variable and same 

operand



SSAPRE Algorithm

❖ Step 1: The Φ-Insertion Step
➢ Insert Phi nodes at 

■ Iterated dominance frontier (IDF)
● Same as SSA Phi insertion

■ When one variable of the expression 
is defined by a Phi node
● An alteration of expression



SSAPRE Algorithm

❖ Step 2: The Rename Step
➢ Conducts a preorder traversal of the 

dominator tree, while maintaining both 
variable and expression stacks

➢ Three types of expression 
occurrences:
■ Real occurrences
■ Φ nodes inserted in the 

Φ-Insertion step
■ Φ operands occurring at 

predecessor block ends



SSAPRE Algorithm

❖ Step 3: The DownSafety Step
➢ Insertions must be “down-safe”
➢ A Φ computation is not down-safe if there is a path to 

EXIT from Φ along which the result of Φ is:
■ not used
■ used only as an operand of another Φ that itself is 

NOT down-safe



SSAPRE Algorithm

❖ Step 3: The DownSafety Step
➢ Begins at each Φ that is initially not 

marked down safe
➢ Searches along upward edges, 

clearing the down safe flag for each 
Φ visited

➢ HasRealUse: Real occurrence of an 
expression



SSAPRE Algorithm

❖ Step 4: The WillBeAvail Step
➢ The set of Φ where the expression must be available in 

any computationally optimal placement
➢ Consist of two parts:

■ CanBeAvail
● Φs for which E is either available or anticipable or 

both
■ Later

● Φs that are CanBeAvail, but do not reach any real 
occurrence of E

➢ WillBeAvail = CanBeAvail Λ ㄱLater



SSAPRE Algorithm

❖ CanBeAvail
➢ Set Boundary Φs to be false

■ Not down-safe, and
■ At least one argument is ⊥

➢ Propagate false value along the chain of def-use to other Φs
■ exclude edges along which HasRealUse is true

❖ Later
➢ Initialize Later to true wherever CanBeAvail is true, otherwise false

➢ Assign false for Φs with at least one operand with HasRealUse flag true

➢ Propagate false value forward to other Φs



SSAPRE Algorithm

❖ Step 6: The CodeMotion Step
■ Iterates over pairs of expressions and instructions.
■ Handles variable or constant expressions by 

replacing instruction uses.
■ Processes and skips certain expressions based on 

conditions.
■ Computes substitutions for expressions and 

handles different cases.

❖ Step 5: The Finalize Step
■ Initializes AvailDef data structure.
■ Analyzes expressions in a control flow graph.
■ Updates and substitutes expression definitions.
■ Handles PHI nodes and operand traversals.



SSAPRE Algorithm

❖ Step 5: The Finalize Step



SSAPRE Algorithm

❖ Step 6: The CodeMotion Step



Analysis

❖ Time complexity:  O(n(E + V))
➢ E and V: number of edges and vertices in SSA graph
➢ Step 2-6 are all linear w.r.t (E + V)
➢ Phi Insertion is normally O(V^2) because of IDF

■ But there are linear algorithms
➢ Bit-vector PRE algorithms have cubic complexity



Performance

❖ Compared against bit-vector based PRE
➢ Program runtime: no noticeable difference
➢ Compile time: Varies



Performance

❖ Analysing performance results
➢ Larger procedures benefit more from SSAPRE

■ Sparse FRG smaller than CFG
➢ Prototype implementation, needs further tuning
➢ Algorithmic complexity



Future Work

❖ Further investigation wide compile time difference
❖ Improve SSA graph construction through 

characterization
❖ Extending SSA dataflow characterization to other 

classical optimization techniques
➢ Code hoisting, load/store redundancies



Conclusion/Commentary

❖ SSAPRE takes advantage of SSA form to present a 
sparse approach to PRE

❖ Using SSA to solve dataflow problem related to 
expressions

❖ Good algorithmic complexity compared to bit-vector 
based PRE algorithms


