
EECS 583 – Class 5

Dataflow Analysis

University of Michigan

September 13, 2023 (Moved from Friday Sept 15)

- 1 -

Reading Material + Announcements

 Reminder – HW 1 due Monday Sept 18, midnight

» Submit uniquename_hw1.tgz file to:

 eecs583a.eecs.umich.edu:/hw1_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit

 Then, post question or talk to Aditya/Tarun if you are stuck

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

- 2 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 3 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 4 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 5 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in reverse sequential order in X, op, do

for each destination operand of op, dest, do

GEN(X) -= dest

KILL(X) += dest

endfor

for each source operand of op, src, do

GEN(X) += src

KILL(X) -= src

endfor

endfor

endfor

- 6 -

Example – GEN/KILL Liveness Computation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 7 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_IN = IN(X)

OUT(X) = Union(IN(Y)) for all successors Y of X

IN(X) = GEN(X) + (OUT(X) – KILL(X))

if (old_IN != IN(X)) then

change = 1

endif

endfor

endfor

- 8 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

GEN = r2

KILL = r1,r8

GEN = r1,r5

KILL = r3,r7

GEN = r2,r3,r7,r8

KILL = r1

GEN = r1

KILL = r2,r3,r7

- 9 -

Liveness Class Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

- 10 -

Liveness Class Problem - continued

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

GEN = r3, r4

KILL = r1, r2

GEN = r1, r2

KILL = r7

GEN = r2, r3

KILL = r4

GEN = r4

KILL = NULL

GEN = NULL

KILL = r8

GEN = r7, r8

KILL = r9

- 11 -

Liveness Class Problem Answer

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

GEN = r3, r4

KILL = r1, r2

GEN = r1, r2

KILL = r7

GEN = r2, r3

KILL = r4

GEN = r4

KILL = NULL

GEN = NULL

KILL = r8

GEN = r7, r8

KILL = r9

OUT = NULL

IN = r7, r8

OUT = r7, r8  OUT = r1, r2, r3, r4, r7, r8

OUT = r7  OUT = r1, r2, r3, r4, r7

OUT = r2, r3, r4, r7  OUT = r1, r2, r3, r4, r7

OUT = r1, r2, r3, r4

OUT = r7  OUT = r1, r2, r3, r4, r7

IN = r7  IN = r1, r2, r3, r4, r7

IN = r2, r3, r7  IN = r1, r2, r3, r7

IN = r1, r2, r3, r4  IN = r1, r2, r3, r4 (same!)

IN = r3, r4

IN = r4, r7  IN = r1, r2, r3, r4, r7

Blue sets are the first iteration IN/OUT,

Red sets are the second iteration IN/OUT

- 12 -

Reaching Definition Analysis (rdefs)

 A definition of a variable x is an operation that assigns, or
may assign, a value to x

 A definition d reaches a point p if there is a path from the
point immediately following d to p such that d is not
“killed” along that path

 A definition of a variable is killed between 2 points when
there is another definition of that variable along the path

» r1 = r2 + r3 kills previous definitions of r1

 Liveness vs Reaching defs

» Liveness  variables (e.g., virtual registers), don’t care about
specific users

» Reaching defs  operations, each def is different

» Forward dataflow analysis as propagation occurs from defs
downwards (liveness was backward analysis)

- 13 -

Compute Rdef GEN/KILL Sets for each BB

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

for each destination operand of op, dest, do

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

endwhile

GEN = set of definitions created by an operation

KILL = set of definitions destroyed by an operation

- Assume each operation only has 1 destination for simplicity

so just keep track of “ops”..

- 14 -

Example GEN/KILL Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

- 15 -

Compute Rdef IN/OUT Sets for all BBs

initialize IN(X) = 0 for all basic blocks X

initialize OUT(X) = GEN(X) for all basic blocks X

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_OUT = OUT(X)

IN(X) = Union(OUT(Y)) for all predecessors Y of X

OUT(X) = GEN(X) + (IN(X) – KILL(X))

if (old_OUT != OUT(X)) then

change = 1

endif

endfor

endwhile

IN = set of definitions reaching the entry of BB

OUT = set of definitions leaving BB

- 16 -

Example In/Out Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

GEN = 4,5,6

KILL = 1,8,9,10,11,12

GEN = 1,2,3

KILL = 4,7,11

GEN = 7,8,9

KILL = 2,5,6,10,12

GEN = 11,12

KILL = 1,4,5,9,10

- 17 -

Rdefs Homework Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute reaching defs

Calculate GEN/KILL for each BB

Calculate IN/OUT for each BB

- 18 -

Rdefs Homework Problem –Answer

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute reaching defs

Calculate GEN/KILL for each BB

Calculate IN/OUT for each BB

For solution IN/OUT sets specified as

A  B  C, A = initial state of sets,

B = after first iteration of analysis

C = after second iteration of analysis

- = empty set

GEN = 1, 2, 3

KILL = 4

GEN = 4,5

KILL = 1

GEN = 7

KILL = 6

GEN = 8

KILL = -

GEN = 9

KILL = -

GEN = 6

KILL = 7

IN = -  - -

OUT = 1,2,3  1,2,3  1,2,3

IN = -  1,2,3,8  1,2,3,4,5,6,7,8

IN = -  2,3,4,5,8  2,3,4,5,6,7,8

IN = -  2,3,4,5,6,7,8  2,3,4,5,6,7,8

IN = -  2,3,4,5,6,7,8  2,3,4,5,6,7,8

IN = -  2,3,4,5,8  2,3,4,5,6,7,8

OUT = 4,5  2,3,4,5,8  2,3,4,5,6,7,8

OUT = 7  2,3,4,5,7,8  2,3,4,5,7,8

OUT = 8  2,3,4,5,6,7,8  2,3,4,5,6,7,8

OUT = 9  2,3,4,5,6,7,8,9  2,3,4,5,6,7,8,9

OUT = 6  2,3,4,5,6,8  2,3,4,5,6,8

- 19 -

DU/UD Chains

 Convenient way to access/use reaching defs info

 Def-Use chains

» Given a def, what are all the possible consumers of the

operand produced

» Maybe consumer

 Use-Def chains

» Given a use, what are all the possible producers of the

operand consumed

» Maybe producer

- 20 -

Example – DU/UD Chains

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3

8. r8 = 8

9. r9 = r7 + r8

- 21 -

Generalizing Dataflow Analysis

 Transfer function

» How information is changed by “something” (BB)

» OUT = GEN + (IN – KILL) /* forward analysis */

» IN = GEN + (OUT – KILL) /* backward analysis */

 Meet function

» How information from multiple paths is combined

» IN = Union(OUT(predecessors)) /* forward analysis */

» OUT = Union(IN(successors)) /* backward analysis */

 Generalized dataflow algorithm

» while (change)

 change = false

 for each BB

 apply meet function

 apply transfer functions

 if any changes  change = true

- 22 -

What About All Path Problems?

 Up to this point

» Any path problems (maybe relations)

 Definition reaches along some path

 Some sequence of branches in which def reaches

 Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

 All-path: Definition guaranteed to reach

» Regardless of sequence of branches taken, def reaches

» Can always count on this

» Only 1 def can be guaranteed to reach

» Availability (as opposed to reaching)

 Available definitions

 Available expressions (could also have reaching expressions, but not

that useful)

- 23 -

Reaching vs Available Definitions

1:r1 = r2 + r3

2:r6 = r4 – r5

3:r4 = 4

4:r6 = 8

5:r6 = r2 + r3

6:r7 = r4 – r5
1,2,3,4 reach

1 available

1,2 reach

1,2 available

1,3,4 reach

1,3,4 available

1,2 reach

1,2 available

- 24 -

TO BE CONTINUED …

