
EECS 583 – Class 3

Region Formation, Predicated

Execution

University of Michigan

September 8, 2023

- 1 -

Announcements & Reading Material

 HW0 was due Monday – Remember nothing to turn in

 HW1 is out – Due Monday Sep 18

» http://web.eecs.umich.edu/~mahlke/courses/583f23/homeworks

 Today’s class

» “Trace Selection for Compiling Large C Applications to Microcode”,

Chang and Hwu, MICRO-21, 1988.

» “The Superblock: An Effective Technique for VLIW and Superscalar

Compilation”, Hwu et al., Journal of Supercomputing, 1993

 Material for Monday

» “The Program Dependence Graph and Its Use in Optimization”,

J. Ferrante, K. Ottenstein, and J. Warren, ACM TOPLAS, 1987

 This is a long paper – the part we care about is the control dependence

stuff. The PDG is interesting and you should skim it

 “On Predicated Execution”, Park and Schlansker, HPL Technical

Report, 1991.

- 2 -

Homework 1 – Due Mon Sep 18

 Get started ASAP. If you haven’t done HW0, you are

falling behind!

 Goals: Learn how to profile with LLVM, write stats

collection pass

 583_F23_HW1.tgz

» hw1pass.cpp: template for your pass

» 583simple, 583anagram, 583compress: benchmark source code +

inputs + expected outputs + run instructions

 Easy to do, but hard to start because of newness

» Look for Aditya’s piazza post for help

 Skeleton code

 How to run profiler

 Simple example with opcode stats

» Talk to the GSI if you are stuck

- 3 -

Regions

 Region: A collection of operations that are treated as a
single unit by the compiler

» Examples

 Basic block

 Procedure

 Body of a loop

» Properties

 Connected subgraph of operations

 Control flow is the key parameter that defines regions

 Hierarchically organized

 Problem

» Basic blocks are too small (3-5 operations)

 Hard to extract sufficient parallelism

» Procedure control flow too complex for many compiler xforms

 Plus only parts of a procedure are important (90/10 rule)

- 4 -

Regions (2)

 Want

» Intermediate sized regions with simple control flow

» Bigger basic blocks would be ideal !!

» Separate important code from less important

» Optimize frequently executed code at the expense of

the rest

 Solution

» Define new region types that consist of multiple BBs

» Profile information used in the identification

» Sequential control flow (sorta)

» Pretend the regions are basic blocks

- 5 -

Region Type 1 - Trace

 Trace - Linear collection of
basic blocks that tend to
execute in sequence

» “Likely control flow path”

» Acyclic (outer backedge ok)

 Side entrance – branch into the
middle of a trace

 Side exit – branch out of the
middle of a trace

 Compilation strategy

» Compile assuming path
occurs 100% of the time

» Patch up side entrances and
exits afterwards

 Motivated by scheduling (i.e.,
trace scheduling)

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 6 -

Linearizing a Trace

BB2

BB4

BB6

BB5

BB1

BB3

80
20 (side exit)

10 (side exit)

90

10 (entry count)

90 (entry/

exit count)

10 (exit count)

80
20 (side entrance)

10 (side entrance)

- 7 -

Intelligent Trace Layout for Icache Performance

BB2

BB4

BB6

BB5

BB1

BB3

trace1

trace 2

trace 3

The rest

Intraprocedural code placement

Procedure positioning

Procedure splitting

Procedure viewTrace view

- 8 -

Issues With Selecting Traces

 Acyclic

» Cannot go past a backedge

 Trace length

» Longer = better ?

» Not always !

 On-trace / off-trace transitions

» Maximize on-trace

» Minimize off-trace

» Compile assuming on-trace is

100% (ie single BB)

» Penalty for off-trace

 Tradeoff (heuristic)

» Length

» Likelihood remain within the

trace

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 9 -

Trace Selection Algorithm

i = 0;

mark all BBs unvisited

while (there are unvisited nodes) do

seed = unvisited BB with largest execution freq

trace[i] += seed

mark seed visited

current = seed

/* Grow trace forward */

while (1) do

next = best_successor_of(current)

if (next == 0) then break

trace[i] += next

mark next visited

current = next

endwhile

/* Grow trace backward analogously */

i++

endwhile

- 10 -

Best Successor/Predecessor

 Node weight vs edge
weight

» edge more accurate

 THRESHOLD

» controls off-trace
probability

» 60-70% found best

 Notes on this algorithm

» BB only allowed in 1
trace

» Cumulative probability
ignored

» Min weight for seed to be
chose (ie executed 100
times)

best_successor_of(BB)

e = control flow edge with highest

probability leaving BB

if (e is a backedge) then

return 0

endif

if (probability(e) <= THRESHOLD) then

return 0

endif

d = destination of e

if (d is visited) then

return 0

endif

return d

end procedure

- 11 -

Example Problems

BB1

100

BB2 BB3

BB5 BB6BB4

BB7

BB8

40

135 100

35

75

25

25

50 10 5

60

15

100

Find the traces. Assume a threshold probability of 60%.

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20 80

BB6

BB8

BB9

51 49

49

10

41

10

41

- 12 -

Traces are Nice, But …

 Treat trace as a big BB

» Transform trace ignoring side

entrance/exits

» Insert fixup code

 aka bookkeeping

» Side entrance fixup is more

painful

» Sometimes not possible so

transform not allowed

 Solution

» Eliminate side entrances

» The superblock is born

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 13 -

Region Type 2 - Superblock

 Superblock - Linear
collection of basic blocks
that tend to execute in
sequence in which control
flow may only enter at the
first BB

» “Likely control flow path”

» Acyclic (outer backedge
ok)

» Trace with no side
entrances

» Side exits still exist

 Superblock formation

» 1. Trace selection

» 2. Eliminate side entrances

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 14 -

Tail Duplication

 To eliminate all side

entrances replicate the “tail”

portion of the trace

» Identify first side entrance

» Replicate all BB from the

target to the bottom

» Redirect all side entrances to

the duplicated BBs

» Copy each BB only once

» Max code expansion = 2x-1

where x is the number of BB

in the trace

» Adjust profile information

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 15 -

Superblock Formation

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

8

72

10

64.8

7.2

80 20

10

BB6’

BB4’

2

2.8 25.2

18

Duplicate

BB4 and BB6

and adjust

control flow

- 16 -

Issues with Superblocks

 Central tradeoff

» Side entrance elimination

 Compiler complexity

 Compiler effectiveness

» Code size increase

 Apply intelligently

» Most frequently executed

BBs are converted to SBs

» Set upper limit on code

expansion

» 1.0 – 1.10x are typical

code expansion ratios from

SB formation

BB2

BB4

BB6

BB5

BB1

BB3

80 20

8

72

10

64.8

7.2

80 20

10

BB6’

BB4’

2

2.8 25.2

18

- 17 -

Class Problem

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20 80

BB6

BB8

BB9

51 49

49

10

41

10

41

Create the superblocks, trace

threshold is 60%

- 18 -

Class Problem Solution – Superblock Formation

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20
80

BB6

BB8

BB9

40.8 39.2

49

10

41

10

41

Create the superblocks, trace

threshold is 60%

BB4’

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20 80

BB6

BB8

BB9

51 49

49

10

41

10

41

10.2

9.8

Each color represents

a trace.

To convert trace 1-3-4

into a superblock, BB4

is duplicated and the

edge weights are adjusted

- 19 -

An Alternative to Branches: Predicated Execution

 Hardware mechanism that allows operations to be
conditionally executed

 Add an additional boolean source operand (predicate)

» ADD r1, r2, r3 if p1

 if (p1 is True), r1 = r2 + r3

 else if (p1 is False), do nothing (Add treated like a NOP)

 p1 referred to as the guarding predicate

 Predicated on True means always executed

 Omitted predicated also means always executed

 Provides compiler with an alternative to using branches to
selectively execute operations

» If statements in the source

» Realize with branches in the assembly code

» Could also realize with conditional instructions

» Or use a combination of both

- 20 -

Predicated Execution Example

BB1

BB2

BB4

BB3

a = b + c

if (a > 0)

e = f + g

else

e = f / g

h = i - j

add a, b, c

bgt a, 0, L1

div e, f, g

jump L2

L1: add e, f, g

L2: sub h, i, j

BB1

BB1

BB3

BB3

BB2

BB4

Traditional branching code

BB1

BB2

BB3

BB4

add a, b, c if T

p2 = a > 0 if T

p3 = a <= 0 if T

div e, f, g if p3

add e, f, g if p2

sub h, i, j if T

BB1

BB1

BB1

BB3

BB2

BB4

Predicated code

p2 BB2

p3 BB3

- 21 -

What About Nested If-then-else’s?

BB1

BB2

BB4

BB3

a = b + c

if (a > 0)

if (a > 25)

e = f + g

else

e = f * g

else

e = f / g

h = i - j

add a, b, c

bgt a, 0, L1

div e, f, g

jump L2

L1: bgt a, 25, L3

mpy e, f, g

jump L2

L3: add e, f, g

L2: sub h, i, j

BB1

BB1

BB3

BB3

BB2

BB6

BB6

BB5

BB4

Traditional branching code

BB5 BB6

- 22 -

Nested If-then-else’s – No Problem

a = b + c

if (a > 0)

if (a > 25)

e = f + g

else

e = f * g

else

e = f / g

h = i - j

BB1

BB2

BB3

BB4

BB5

BB6

add a, b, c if T

p2 = a > 0 if T

p3 = a <= 0 if T

div e, f, g if p3

p5 = a > 25 if p2

p6 = a <= 25 if p2

mpy e, f, g if p6

add e, f, g if p5

sub h, i, j if T

BB1

BB1

BB1

BB3

BB3

BB3

BB6

BB5

BB4

Predicated code

What do we assume to make this work ??

if p2 is False, both p5 and p6 are False

So, predicate setting instruction should set result to False if guarding

predicate is false!!!

- 23 -

Benefits/Costs of Predicated Execution

BB1

BB2

BB4

BB3 BB1

BB2

BB3

BB4

BB5

BB6

BB7BB5

BB7

BB6

Benefits:

- No branches, no mispredicts

- Can freely reorder independent

operations in the predicated block

- Overlap BB2 with BB5 and BB6

Costs (execute all paths)

-worst case schedule length

-worst case resources required

- 24 -

HPL-PD Compare-to-Predicate Operations (CMPPs)

 How do we compute predicates

» Compare registers/literals like a branch would do

» Efficiency, code size, nested conditionals, etc

 2 targets for computing taken/fall-through conditions with

1 operation

p1, p2 = CMPP.cond.D1a.D2a (r1, r2) if p3

p1 = first destination predicate

p2 = second destination predicate

cond = compare condition (ie EQ, LT, GE, …)

D1a = action specifier for first destination

D2a = action specifier for second destination

(r1,r2) = data inputs to be compared (ie r1 < r2)

p3 = guarding predicate

- 25 -

CMPP Action Specifiers

Guarding

predicate

0

0

1

1

Compare

Result

0

1

0

1

UN

0

0

0

1

UC

0

0

1

0

ON

-

-

-

1

OC

-

-

1

-

AN

-

-

0

-

AC

-

-

-

0

UN/UC = Unconditional normal/complement

This is what we used in the earlier examples

guard = 0, both outputs are 0

guard = 1, UN = Compare result, UC = opposite

ON/OC = OR-type normal/complement

AN/AC = AND-type normal/complement

- 26 -

OR-type, AND-type Predicates

p1 = 0

p1 = cmpp_ON (r1 < r2) if T

p1 = cmpp_OC (r3 < r4) if T

p1 = cmpp_ON (r5 < r6) if T

p1 = (r1 < r2) | (!(r3 < r4)) |

(r5 < r6)

Wired-OR into p1

p1 = 1

p1 = cmpp_AN (r1 < r2) if T

p1 = cmpp_AC (r3 < r4) if T

p1 = cmpp_AN (r5 < r6) if T

p1 = (r1 < r2) & (!(r3 < r4)) &

(r5 < r6)

Wired-AND into p1

Talk about these later – used

for control height reduction

Generating predicated code

for some source code requires

OR-type predicates

- 27 -

Use of OR-type Predicates

BB1

BB5

BB4

BB3

a = b + c

if (a > 0 && b > 0)

e = f + g

else

e = f / g

h = i - j

add a, b, c

ble a, 0, L1

ble b, 0, L1

add e, f, g

jump L2

L1: div e, f, g

L2: sub h, i, j

BB1

BB1

BB5

BB2

BB2

BB3

BB4

Traditional branching code

BB1

BB5

BB2

BB3

BB4

add a, b, c if T

p3, p5 = cmpp.ON.UC a <= 0 if T

p3, p2 = cmpp.ON.UC b <= 0 if p5

div e, f, g if p3

add e, f, g if p2

sub h, i, j if T

BB1

BB1

BB5

BB3

BB2

BB4

Predicated code

p2 BB2

p3 BB3

p5 BB5

BB2

- 28 -

Homework Problem – Answer on next slide

but don’t cheat!

if (a > 0) {

if (b > 0)

r = t + s

else

u = v + 1

y = x + 1

}

a. Draw the CFG

b. Predicate the code removing

all branches

- 29 -

Homework Problem Answer

if (a > 0) {

if (b > 0)

r = t + s

else

u = v + 1

y = x + 1

}

a. Draw the CFG

b. Predicate the code removing

all branches

u = v + 1r = t + s

y = x + 1

b > 0 b <= 0

a > 0
a <= 0

p1 = cmpp.UN(a > 0) if T

p2, p3 = cmpp.UNUC(b > 0) if p1

r = t + s if p2

u = v + 1 if p3

y = x + 1 if p1

