
EECS 583 – Class 2

Control Flow Analysis

University of Michigan

August 30, 2023

https://web.eecs.umich.edu/~mahlke/courses/583f23

- 1 -

Announcements & Reading Material
 eecs583a,eecs583b.eecs.umich.edu servers are ready

» Everyone has home directory and login

 HW 0 – Due Next Monday, but nothing to turn in

» Please get this done ASAP, talk to Aditya/Tarun if you have problems

» Needed for HW 1 which goes out next Friday

» Go to http://llvm.org

» Detailed instructions on piazza, see Aditya’s post

 Reading

» Today’s class

 Ch 9.4, 10.4 (6.6, 9.6) from Compilers: Principles, Techniques Tools Ed

1 (Ed 2)

» Next class

 “Trace Selection for Compiling Large C Applications to Microcode”,

Chang and Hwu, MICRO-21, 1988.

 “The Superblock: An Effective Technique for VLIW and Superscalar

Compilation”, Hwu et al., Journal of Supercomputing, 1993

http://llvm.org/

- 2 -

From Last Time: Identifying BBs - Answer

L1: r7 = load(r8)

L2: r1 = r2 + r3

L3: beq r1, 0, L10

L4: r4 = r5 * r6

L5: r1 = r1 + 1

L6: beq r1 100 L3

L7: beq r2 100 L10

L8: r5 = r9 + 1

L9: jump L2

L10: r9 = load (r3)

L11: store(r9, r1)

L1: r7 = load(r8)

L2: r1 = r2 + r3

L3: beq r1, 0, L10

L4: r4 = r5 * r6

L5: r1 = r1 + 1

L6: beq r1 100 L3

L7: beq r2 100 L10

L8: r5 = r9 + 1

L9: jump L2

L10: r9 = load (r3)

L11: store(r9, r1)

- 3 -

From Last Time: Control Flow Graph (CFG)

 Defn Control Flow Graph –

Directed graph, G = (V,E)

where each vertex V is a

basic block and there is an

edge E, v1 (BB1) v2

(BB2) if BB2 can

immediately follow BB1 in

some execution sequence

» A BB has an edge to all

blocks it can branch to

» Standard representation used

by many compilers

» Often have 2 pseudo vertices

 entry node

 exit node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 4 -

Property of CFGs: Dominator (DOM)

 Defn: Dominator – Given a CFG(V, E, Entry, Exit), a

node x dominates a node y, if every path from the Entry

block to y contains x

 3 properties of dominators

» Each BB dominates itself

» If x dominates y, and y dominates z, then x dominates z

» If x dominates z and y dominates z, then either x dominates y or

y dominates x

 Intuition

» Given some BB, which blocks are guaranteed to have executed

prior to executing the BB

- 5 -

Dominator Example 1

BB1

BB2

BB4

BB3

Entry

Exit

Compute Dom(BBi) = set of blocks that dominate BBi

- 6 -

Dominator Example 2

BB2

BB3

BB5BB4

Entry

Exit

BB6

BB1

BB7

- 7 -

Dominator Analysis

 Compute dom(BBi) = set of
BBs that dominate BBi

 Initialization

» Dom(entry) = entry

» Dom(everything else) = all
nodes

 Iterative computation

» while change, do

 change = false

 for each BB (except the entry
BB)

 tmp(BB) = BB + {intersect of
Dom of all predecessor BB’s}

 if (tmp(BB) != dom(BB))

dom(BB) = tmp(BB)

change = true

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 8 -

Immediate Dominator

 Defn: Immediate

dominator (idom) – Each

node n has a unique

immediate dominator m

that is the last dominator

of n on any path from the

initial node to n

» Closest node that

dominates

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 9 -

Dominator Tree

BB1

BB2 BB3 BB4

BB6BB5 BB7

BB DOM

1 1

2 1,2

3 1,3

4 1,4

BB DOM

5 1,4,5

6 1,4,6

7 1,4,7

Dom tree

First BB is the root node, each node

dominates all of its descendants

BB1

BB2

BB4

BB3

BB5 BB6

BB7

- 10 -

Dominator Tree Example

Draw the dominator tree

BB2

BB3

BB5BB4

Entry

Exit

BB6

BB1

BB7

BB DOM

1 E,1

2 E,1,2

3 E,1,2,3

4 E,1,2,3,4

5 E,1,2,5

6 E,1,2,6

7 E,1,7

- 11 -

Post Dominator (PDOM)

 Reverse of dominator

 Defn: Post Dominator –
Given a CFG(V, E, Entry,
Exit), a node x post
dominates a node y, if
every path from y to the
Exit contains x

 Intuition

» Given some BB, which
blocks are guaranteed to
have executed after
executing the BB

 pdom(BBi) = set of BBs
that post dominate BBi

 Initialization

» Pdom(exit) = exit

» Pdom(everything else) = all
nodes

 Iterative computation

» while change, do

 change = false

 for each BB (except the exit
BB)

 tmp(BB) = BB + {intersect
of pdom of all successor
BB’s}

 if (tmp(BB) != pdom(BB))

pdom(BB) = tmp(BB)

change = true

- 12 -

Post Dominator Example 1

BB1

BB2

BB4

BB3

Entry

Exit

- 13 -

Post Dominator Example 2

BB2

BB3

BB5BB4

Entry

Exit

BB6

BB1

BB7

- 14 -

Immediate Post Dominator

 Defn: Immediate post

dominator (ipdom) –

Each node n has a unique

immediate post

dominator m that is the

first post dominator of n

on any path from n to the

Exit

» Closest node that post

dominates

» First breadth-first

successor that post

dominates a node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 15 -

Why Do We Care About Dominators?

 Loop detection – next subject

 Dominator

» Guaranteed to execute before

» Redundant computation – an

op is redundant if it is

computed in a dominating BB

» Most global optimizations use

dominance info

 Post dominator

» Guaranteed to execute after

» Make a guess (ie 2 pointers

do not point to the same locn)

» Check they really do not

point to one another in the

post dominating BB

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 16 -

Natural Loops

 Cycle suitable for optimization

» Discuss optimizations later

 2 properties

» Single entry point called the header

 Header dominates all blocks in the loop

» Must be one way to iterate the loop (ie at least 1 path

back to the header from within the loop) called a

backedge

 Backedge detection

» Edge, x y where the target (y) dominates the source

(x)

- 17 -

Backedge Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 18 -

Loop Detection

 Identify all backedges using Dom info

 Each backedge (x y) defines a loop

» Loop header is the backedge target (y)

» Loop BB – basic blocks that comprise the loop

 All predecessor blocks of x for which control can reach x
without going through y are in the loop

 Merge loops with the same header

» I.e., a loop with 2 continues

» LoopBackedge = LoopBackedge1 + LoopBackedge2

» LoopBB = LoopBB1 + LoopBB2

 Important property

» Header dominates all LoopBB

- 19 -

Loop Detection Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 20 -

Important Parts of a Loop

 Header, LoopBB

 Backedges, BackedgeBB

 Exitedges, ExitBB

» For each LoopBB, examine each outgoing edge

» If the edge is to a BB not in LoopBB, then its an exit

 Preheader (Preloop)

» New block before the header (falls through to header)

» Whenever you invoke the loop, preheader executed

» Whenever you iterate the loop, preheader NOT executed

» All edges entering header

 Backedges – no change

 All others, retarget to preheader

 Postheader (Postloop) - analogous

- 21 -

Find the Preheaders for each Loop

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

??

- 22 -

Characteristics of a Loop

 Nesting (generally within a function scope)

» Inner loop – Loop with no loops contained within it

» Outer loop – Loop contained within no other loops

» Nesting depth

 depth(outer loop) = 1

 depth = depth(parent or containing loop) + 1

 Trip count (average trip count)

» How many times (on average) does the loop iterate

» for (I=0; I<100; I++) trip count = 100

» With profile info:

 Ave trip count = weight(header) / weight(preheader)

- 23 -

Trip Count Calculation Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

20

600

360

2100

140

360

480

20

1000

1340

1100

Calculate the trip

counts for all the loops

in the graph

- 24 -

Reducible Flow Graphs

 A flow graph is reducible if and only if we can partition

the edges into 2 disjoint groups often called forward and

back edges with the following properties

» The forward edges form an acyclic graph in which every node

can be reached from the Entry

» The back edges consist only of edges whose destinations

dominate their sources

 More simply – Take a CFG, remove all the backedges

(x y where y dominates x), you should have a

connected, acyclic graph bb1

bb2 bb3

Non-reducible!

