EECS 583 — Class 2
Control Flow Analysis

University of Michigan

August 30, 2023

https://web.eecs.umich.edu/~mahlke/courses/583f23



Announcements & Reading Material

< eecsb83a,eecs583b.eecs.umich.edu servers are ready
» Everyone has home directory and login

» HW 0 — Due Next Monday, but nothing to turn in

L)

M

Please get this done ASAP, talk to Aditya/Tarun if you have problems
» Needed for HW 1 which goes out next Friday
» Go to http://llvm.org

» Detailed instructions on piazza, see Aditya’s post
< Reading

» Today’s class

* Ch9.4,610.4 (6.6, 9.6) from Compilers: Principles, Techniques Tools Ed
1 (Ed 2)
» Next class

* “Trace Selection for Compiling Large C Applications to Microcode”,
Chang and Hwu, MICRO-21, 1988.

e “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation”, Hwu et al., Journal of Supercomputing, 1993

-1-


http://llvm.org/

From Last Time: Identifying BBs - Answer

L1:
L2:
L3:
L4:
L5:
L6:
L7:
L8:

r7 = load(r8)
rl=r2+r3
beqrl, 0, L10
4 =r5*r6
rl=rl+1

beq rl 100 L3
beq r2 100 L10
r=r9+1

L9: jump L2
L10: r9 = load (r3)
L11: store(r9, rl)

L1:

r7 = load(r8)

L2:

ri=r2+1r3

L3:

beqrl, 0, L10

L4:
L5:
L6:

r4=15*r6
n=rl+1
beq rl 100 L3

L7/:

beqr2 100 L10

L8:

L9

=r9+1
:jump L2

L10: r9 = load (r3)
L11: store(r9, rl)




From Last Time: Control Flow Graph (CFG)

» Defn Control Flow Graph —
Directed graph, G = (V,E) @
where each vertex V Is a
basic block and there is an
edge E, vl (BB1) - v2
(BB2) if BB2 can
Immediately follow BB1 in
some execution sequence

» A BB has an edge to all
blocks it can branch to

» Standard representation used
by many compilers
» Often have 2 pseudo vertices
e entry node
e exit node

" .
L



Property of CFGs: Dominator (DOM)

<« Defn: Dominator — Given a CFG(V, E, Entry, Exit), a
node X dominates a node vy, If every path from the Entry
block to y contains x

< 3 properties of dominators
» Each BB dominates itself
» If x dominates y, and y dominates z, then x dominates z

» If x dominates z and y dominates z, then either x dominates y or
y dominates x

< Intuition

» Given some BB, which blocks are guaranteed to have executed
prior to executing the BB




Dominator Example 1

Compute Dom(BBI) = set of blocks that dominate BBI

BB1

O

BB2

BB3

o~

BB4




Dominator Example 2

BB1

A 4

BB2

N
"\

BB4 BB5

— N/

BB6




Dominator Analysis

<« Compute dom(BBi) = set of
BBs that dominate BBI

< Initialization
» Dom(entry) = entry

» Dom(everything else) = all
nodes

< |terative computation

» while change, do
* change = false
» for each BB (except the entry
BB)

o tmp(BB) = BB + {intersect of
Dom of all predecessor BB’s}

o if (tmp(BB) '=dom(BB))
dom(BB) = tmp(BB)
change = true




Immediate Dominator

\/
0’0

Defn: Immediate

dominator (idom) — Each

node n has a unique
Immediate dominator m
that is the last dominator
of n on any path from the
Initial node to n

» Closest node that
dominates




Dominator Tree

First BB is the root node, each node
dominates all of its descendants

BB5 BB6

BB7

BB DOM BB DOM
1 1 5 1,45
2 1,2 6 1,4,6
3 1,3 7 1,4,7
4 1,4

BB1

LS

BB2

BB3 BB4

BB5 BB6 BBY

Dom tree




Dominator Tree Example

Draw the dominator tree

o

DOM
E,1
E,1,2
E,1,2,3
E,1,2,3,4
E,1,2,5
E,1,2,6
E,1,7

~NOoO O~ WNREDm

BB1

BB2

B

B3

B

|

B4 BB5
~
BB6




Post Dominator (PDOM)

<+ Reverse of dominator
< Defn: Post Dominator —

Given a CFG(V, E, Entry,

Exit), a node X post
dominates a node v, if
every path from y to the
EXit contains X

< Intuition
» Given some BB, which
blocks are guaranteed to
have executed after
executing the BB

< pdom(BBI) = set of BBs
that post dominate BBI

< Initialization
» Pdom(exit) = exit

» Pdom(everything else) = all
nodes

< |terative computation

» while change, do
* change = false
» for each BB (except the exit
BB)
¢ tmp(BB) = BB + {intersect
of pdom of all successor
BB’s}
o if (tmp(BB) != pdom(BB))
pdom(BB) = tmp(BB)
change = true

-11 -



Post Dominator Example 1

BB1

O

BB2

BB3

o~

BB4

-12 -




Post Dominator Example 2

BB1

A 4

BB2

N
"\

BB4 BB5

— N/

BB6

vy
BB/

-13-




Immediate Post Dominator

< Defn: Immediate post (Entry)
dominator (ipdom) — I
Each node n has a unigue BB1
immediate post N
dominator m that is the BB2 BB3
first post dominator of n ~_
on any path from n to the BB4
Exit PN
» Closest node that post BB5 BB6
dominates
S~

» First breadth-first
successor that post

dominates a node

-14 -



Why Do We Care About Dominators?

< Loop detection — next subject
_ Entr
< Dominator @

» Guaranteed to execute before Blt%l
» Redundant computation — an

op is redundant if it is /\

computed in a dominating BB BB2 BB3

» Most global optimizations use \/

dominance info
< Post dominator Bl

» Guaranteed to execute after /\

» Make a guess (ie 2 pointers BB5 BB6

do not point to the same locn) \ /

» Check they really do not BB7

point to one another in the

post dominating BB

-15 -



Natural Loops

< Cycle suitable for optimization
» Discuss optimizations later
< 2 properties

» Single entry point called the header
e Header dominates all blocks in the loop

» Must be one way to iterate the loop (ie at least 1 path
back to the header from within the loop) called a
backedge

< Backedge detection

» Edge, x> y where the target (y) dominates the source

(X)

-16 -



Backedge Example
BB1




LLoop Detection

L)

*

Identify all backedges using Dom info

« Each backedge (x = y) defines a loop
» Loop header is the backedge target (y)

» Loop BB — basic blocks that comprise the loop

 All predecessor blocks of x for which control can reach x
without going through y are in the loop

Merge loops with the same header

» l.e., a loop with 2 continues

» LoopBackedge = LoopBackedgel + LoopBackedge?2
» LoopBB = LoopBB1 + LoopBB2

Important property

» Header dominates all LoopBB

L)

*

L)

*%

L)

*%

-18 -



Loop Detection Example

BB1




Important Parts of a Loop

)

0’0

Header, LoopBB
Backedges, BackedgeBB

Exitedges, ExitBB
» For each LoopBB, examine each outgoing edge
» |If the edge is to a BB not in LoopBB, then its an exit

» Preheader (Preloop)

» New block before the header (falls through to header)

» Whenever you invoke the loop, preheader executed

» Whenever you iterate the loop, preheader NOT executed

» All edges entering header
* Backedges — no change
 All others, retarget to preheader

» Postheader (Postloop) - analogous

D)

0’0

D)

0’0

\/
*

\/
*

-20 -



Find the Preheaders for each Loop

BB1

= -
BB4
|

=21 -



Characteristics of a Loop

< Nesting (generally within a function scope)
» Inner loop — Loop with no loops contained within it
» Outer loop — Loop contained within no other loops

» Nesting depth
 depth(outer loop) =1
 depth = depth(parent or containing loop) + 1

< Trip count (average trip count)
» How many times (on average) does the loop iterate
» for (1=0; 1<100; I++) = trip count = 100
» With profile info:
* Ave trip count = weight(header) / weight(preheader)

-22.



Trip Count Calculation Example

Calculate the trip
counts for all the loops
in the graph

] 20
A 4

480

BB1

BB2

126

600

1340

140



Reducible Flow Graphs

< A flow graph is reducible if and only if we can partition
the edges into 2 disjoint groups often called forward and
back edges with the following properties

» The forward edges form an acyclic graph in which every node
can be reached from the Entry

» The back edges consist only of edges whose destinations
dominate their sources
< More simply — Take a CFG, remove all the backedges
(x-> y where y dominates x), you should have a
connected, acyclic graph bb1l

A P

bb2 bb3

Non-reducible!

=24 -



