
EECS 583 – Class 13

Software Pipelining

University of Michigan

October 18, 2023

- 1 -

Announcements + Reading Material
 Project discussion meetings – Oct 23 (M), Oct 25 (W), Oct 26 (Th) (slots

10am-noon each day)

» Each group meets 10 mins with Aditya, Tarun, and I on Zoom, use GSI office hour link

» Action items

 Form or join a team (3-5 people per team)

 Use piazza to recruit additional group members or express your availability

 Project areas, start looking for research papers, think about the specifics

» Google calendar signup available – see piazza post by Aditya – Please just sign up once!

 Project proposals

» Due Monday, Oct 30, midnight

» 1 paragraph summary of what you plan to work on

 Topic, what are you going to do, what is the goal, 1-2 references

» Email to me & Aditya & Tarun, cc all your group members

 Today’s class reading

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M.

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

 Next class (Fri, Oct 20)
» “Register Allocation and Spilling Via Graph Coloring,” G. Chaitin, Proc. 1982

SIGPLAN Symposium on Compiler Construction, 1982.

- 2 -

Recap: Software Pipelining Terminology

Iter 1

Iter 2

Iter 3

II

time

Initiation Interval (II) = fixed delay

between the start of successive iterations

Each iteration can be divided

into stages consisting of II cycles

each

Number of stages in 1 iteration

is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

- 3 -

Recap: Resource Usage Legality

 Need to guarantee that

» No resource is used at 2 points in time that are separated by an

interval which is a multiple of II

» I.E., within a single iteration, the same resource is never used

more than 1x at the same time modulo II

» Known as modulo constraint, where the name modulo scheduling

comes from

» Modulo reservation table solves this problem

 To schedule an op at time T needing resource R

 The entry for R at T mod II must be free

 Mark busy at T mod II if schedule

0

1

2

II = 3

alu1 alu2 mem bus0 bus1 br

- 4 -

Dynamic Single Assignment (DSA) Form

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Impossible to overlap iterations because each iteration writes to the same

register. So, we’ll have to remove the anti and output dependences.

Virtual rotating registers

* Each register is an infinite push down array (Expanded virtual reg or EVR)

* Write to top element, but can reference any element

* Remap operation slides everything down r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never

assigned to more than 1x on any dynamic execution path

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

DSA

conversion

- 5 -

Loop Dependence Example

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

1

2

3

4

5

6

7

In DSA form, there are no

inter-iteration anti or output

dependences!

Assume compiler can prove load

and store are never dependent

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

r1 = &A

r2 = &B

Loop:

- 6 -

Class Problem

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph

showing both intra and inter

iteration dependences

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

1

2

3

4

5

6

- 7 -

Class Problem Answer

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph

showing both intra and inter

iteration dependences

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

1

2

3

4

5

6

1

2

3

4

5

6

<0,0>
<2,3><2,2>

<1,0>

<1,1>

<1,1>

<1,0>

<1,0>

<1,1><0,0>

Instructions 1-5 have <0,0>

control dependences to 6.

<1,0>

<1,1>

Red edges are memory anti and

flow dependences

- 8 -

Minimum Initiation Interval (MII)

 Remember, II = number of cycles between the start of

successive iterations

 Modulo scheduling requires a candidate II be selected

before scheduling is attempted

» Try candidate II, see if it works

» If not, increase by 1, try again repeating until successful

 MII is a lower bound on the II

» MII = Max(ResMII, RecMII)

» ResMII = resource constrained MII

 Resource usage requirements of 1 iteration

» RecMII = recurrence constrained MII

 Latency of the circuits in the dependence graph

- 9 -

ResMII

Simple resource model

A processor has a set of resources R. For each resource r in R

there is count(r) specifying the number of identical copies

Concept: If there were no dependences between the operations, what

is the the shortest possible schedule?

ResMII = MAX (uses(r) / count(r))
for all r in R

uses(r) = number of times the resource is used in 1 iteration

In reality its more complex than this because operations can have

multiple alternatives (different choices for resources it could be

assigned to), but we will ignore this for now

- 10 -

ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

ALU: used by 2, 4, 5, 6

 4 ops / 2 units = 2

Mem: used by 1, 3

 2 ops / 1 unit = 2

Br: used by 7

 1 op / 1 unit = 1

ResMII = MAX(2,2,1) = 2

ResMII = MAX (uses(r) / count(r))

uses(r) = number of times the resource is used

in 1 iteration

- 11 -

RecMII

Approach: Enumerate all irredundant elementary circuits in the

dependence graph

RecMII = MAX (delay(c) / distance(c))
for all c in C

delay(c) = total latency in dependence cycle c (sum of delays)

distance(c) = total iteration distance of cycle c (sum of distances)

2

1

1,0
3,1

cycle

k 1

k+1 2

k+2

k+3

k+4 1

k+5 2

1

3 4 cycles,

RecMII = 4

delay(c) = 1 + 3 = 4

distance(c) = 0 + 1 = 1

RecMII = 4/1 = 4

- 12 -

RecMII Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

1

2

3

4

5

6

7

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

4 4: 1 / 1 = 1

5 5: 1 / 1 = 1

4 1 4: 1 / 1 = 1

5 3 5: 1 / 1 = 1

RecMII = MAX(1,1,1,1) = 1

Then,

MII = MAX(ResMII, RecMII)

MII = MAX(2,1) = 2

RecMII = MAX(delay(c) / distance(c))

delay(c) = total latency in dependence

cycle c (sum of delays)

distance(c) = total iteration distance

of cycle c (sum of distances)

- 13 -

Homework Problem

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Calculate RecMII, ResMII, and MII

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

Resources: 1 ALU, 1 MEM, 1 BR
1

2

3

4

5

6

<0,0>
<2,3><2,2>

<1,0>

<1,1>

<1,1>

<1,0>

<1,0>

<1,1><0,0>

- 14 -

Modulo Scheduling Process

 Use list scheduling but we need a few twists

» II is predetermined – starts at MII, then is incremented

» Cyclic dependences complicate matters

 Estart/Priority/etc.

 Consumer scheduled before producer is considered

 There is a window where something can be scheduled!

» Guarantee the repeating pattern

 2 constraints enforced on the schedule

» Each iteration begin exactly II cycles after the previous one

» Each time an operation is scheduled in 1 iteration, it is tentatively

scheduled in subsequent iterations at intervals of II

 MRT used for this

- 15 -

Priority Function

Height-based priority worked well for acyclic scheduling, makes sense

that it will work for loops as well

Acyclic:

Height(X) =

0, if X has no successors

MAX ((Height(Y) + Delay(X,Y)), otherwise
for all Y = succ(X)

Cyclic:

HeightR(X) =

0, if X has no successors

MAX ((HeightR(Y) + EffDelay(X,Y)), otherwise
for all Y = succ(X)

EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 16 -

Calculating Height

1

2

3

4

3,0

1,1

2,2

1. Insert pseudo edges from all nodes to branch with

latency = 0, distance = 0 (dotted edges)

2. Compute II, For this example assume II = 2

3. HeightR(4) =

4. HeightR(3) =

5. HeightR(2) =

6. HeightR(1)

2,0

0,0

0,0

0,0

- 17 -

Calculating Height Solution

1

2

3

4

3,0

1,1

2,2

1. Insert pseudo edges from all nodes to branch with latency = 0, distance = 0 (dotted edges)

2. Compute II, For this example assume II = 2

3. HeightR(4) = H(4) + (1 – II*1) (Assume H(4) is 0 since not calculated yet

0 + 1-2 = -1 0 (Always MAX answer with 0)

4. HeightR(3) = MAX(H(4) + 0 – II*0 = 0 + 0 – 2*0 = 0,

H(2) + 2 – II*2 = 0 + 2 – 2*2 = -2)

Assume H(2) is 0 since not calculated yet

= 0

5. HeightR(2) = MAX(H(4) + 0 – II*0 = 0 + 0 – 2*0 = 0,

H(3) + 2 – II*0 = 0 + 2 – 2*0 = 2)

= 2

6. HeightR(1) = MAX(H(4) + 0 – II*0 = 0 + 0 – 2*0 = 0,

H(2) + 3 – II*0 = 2 + 3 – 2*0 = 5)

= 5

7. Now recalculate the heights to see if anything changes since HeightR(3) assumed wrong value for node 2

HeightR(3) = MAX(H(4) + 0 – II*0 = 0 + 0 – 2*0 = 0,

H(2) + 2 – II*2 = 2 + 2 – 2*2 = 0)

= 0 Unchanged, so no need to compute any other heights again

2,0

0,0

0,0

0,0

- 18 -

The Scheduling Window

E(Y) =
0, if X is not scheduled

MAX (0, SchedTime(X) + EffDelay(X,Y)),

otherwise

With cyclic scheduling, not all the predecessors may be scheduled,

so a more flexible earliest schedule time is:

MAX

for all X = pred(Y)

Latest schedule time(Y) = L(Y) = E(Y) + II – 1

Every II cycles a new loop iteration will be initialized, thus every II

cycles the pattern will repeat. Thus, you only have to look in a

window of size II, if the operation cannot be scheduled there, then

it cannot be scheduled.

where EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 19 -

Loop Prolog and Epilog

Prolog

Epilog

Kernel

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

II = 3

- 20 -

Removing Prolog/Epilog

Prolog

Epilog

Kernel

II = 3

Disable using

predicated execution

Execute loop kernel on every iteration, but for prolog and epilog

selectively disable the appropriate operations to fill/drain the pipeline

- 21 -

Kernel-only Code Using Rotating Predicates
A0

A1 B0

A2 B1 C0

A B C D

Bn Cn-1 Dn-2

Cn Dn-1

Dn

P[0] P[1] P[2] P[3]

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

…

0 1 1 1

0 0 1 1

0 0 0 1

A if P[0] B if P[1] C if P[2] D if P[3]

A - - -

A B - -

A B C -

A B C D

…

- B C D

- - C D

- - - D

P referred to as the staging predicate

- 22 -

Modulo Scheduling Architectural Support

 Loop requiring N iterations

» Will take N + (S – 1) where S is the number of stages

 2 special registers created

» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

 Software pipeline branch operations

» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared

» SWP-BR (BRF)

 While LC > 0, decrement LC and RRB, P[0] = 1, branch to top of
loop

 This occurs for prolog and kernel

 If LC = 0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

 This occurs for the epilog

- 23 -

Execution History With LC/ESC

LC ESC P[0] P[1] P[2] P[3]

3 3 1 0 0 0 A

2 3 1 1 0 0 A B

1 3 1 1 1 0 A B C

0 3 1 1 1 1 A B C D

0 2 0 1 1 1 - B C D

0 1 0 0 1 1 - - C D

0 0 0 0 0 1 - - - D

A if P[0]; B if P[1]; C if P[2]; D if P[3]; P[0] = BRF;

LC = 3, ESC = 3 /* Remember 0 relative!! */

Clear all rotating predicates

P[0] = 1

4 iterations, 4 stages, II = 1, Note 4 + 4 –1 iterations of kernel executed

- 24 -

Modulo Scheduling Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop: Loop:

LC = 99

Step1: Compute to loop into

form that uses LC

- 25 -

Example – Step 2

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step 2: DSA convert

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

- 26 -

Example – Step 3

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 2

MII = 2

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step3: Draw dependence graph

Calculate MII

0,0

0,0

No memory dependences since load

and store refer to distinct arrays

- 27 -

Example – Step 4

1: H = 5

2: H = 3

3: H = 0

4: H = 0

5: H = 0

7: H = 0

1

2

3

4

5

7

1,1

0,0

3,0

2,0

1,1

1,1

1,1

1,1

Step 4 – Calculate priorities (MAX height

to pseudo stop node)

0,0

0,0

0,0

0,0

0,0

0,0

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0

Iter1 Iter2

- 28 -

Example – Step 5

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Schedule brlc at time II - 1

alu0 alu1 mem br

MRT
0

1 X

0

1 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

- 29 -

Example – Step 6

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step6: Schedule the highest priority op

Op1: E = 0, L = 1

Place at time 0 (0 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

10

1

2

3

4

5

6

- 30 -

Example – Step 7

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step7: Schedule the highest priority op

Op4: E = 0, L = 1

Place at time 0 (0 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

4

4

0

1

2

3

4

5

6

- 31 -

Example – Step 8

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step8: Schedule the highest priority op

Op2: E = 2, L = 3

Place at time 2 (2 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

4

4

2 2

X

0

1

2

3

4

5

6

- 32 -

Example – Step 9

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step9: Schedule the highest priority op

Op3: E = 5, L = 6

Place at time 5 (5 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

0

1

2

3

4

5

6

- 33 -

Example – Step 10

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step10: Schedule the highest priority op

Op5: E = 5, L = 6

Place at time 5 (5 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

5

X

5

0

1

2

3

4

5

6

- 34 -

Example – Step 11

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step11: calculate ESC, SC = ceiling(max unrolled sched length / ii)

unrolled sched time of branch = rolled sched time of br + (ii*esc)

SC = 6 / 2 = 3, ESC = SC – 1

time of br = 1 + 2*2 = 5

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

5

X

5 7

0

1

2

3

4

5

6

- 35 -

Example – Step 12

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,

initialize staging predicate outside loop

Unrolled

Schedule

1

2

3

4

5 7

Stage 1

Stage 2

Stage 3

Staging predicate, each

successive stage increment

the index of the staging predicate

by 1, stage 1 gets px[0]

0

1

2

3

4

5

6

- 36 -

Example – Dynamic Execution of the Code

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

0: 1, 4

1:

2: 1,2,4

3:

4: 1,2,4

5: 3,5,7

6: 1,2,4

7: 3,5,7

…

198: 1,2,4

199: 3,5,7

200: 2

201: 3,5,7

202: -

203 3,5,7

time: ops executed

Total time = II(num_iteration + num_stages – 1)

= 2(100 + 3 – 1) = 204 cycles

