EECS 583 — Class 13
Software Pipelining

University of Michigan

October 18, 2023

Announcements + Reading Material

< Project discussion meetings — Oct 23 (M), Oct 25 (W), Oct 26 (Th) (slots
10am-noon each day)

» Each group meets 10 mins with Aditya, Tarun, and | on Zoom, use GSI office hour link

» Action items
* Form or join a team (3-5 people per team)
* Use piazza to recruit additional group members or express your availability
* Project areas, start looking for research papers, think about the specifics

» Google calendar signup available — see piazza post by Aditya — Please just sign up once!
< Project proposals
» Due Monday, Oct 30, midnight
» 1 paragraph summary of what you plan to work on
 Topic, what are you going to do, what is the goal, 1-2 references
» Emalil to me & Aditya & Tarun, cc all your group members

< Today’s class reading

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M.
Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

< Next class (Fri, Oct 20)

» “Register Allocation and Spilling Via Graph Coloring,” G. Chaitin, Proc. 1982
SIGPLAN Symposium on Compiler Construction, 1982.

-1-

Recap: Software Pipelining Terminology

time

Initiation Interval (I1) = fixed delay

Iter 3

Iter 2

Iter 1

between the start of successive iterations

Each iteration can be divided
Into stages consisting of Il cycles
each

Number of stages in 1 iteration
Is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

Recap: Resource Usage Legality

< Need to guarantee that

» No resource is used at 2 points in time that are separated by an
interval which is a multiple of Il

» L.E., within a single iteration, the same resource is never used
more than 1x at the same time modulo Il

» Known as modulo constraint, where the name modulo scheduling
comes from
» Modulo reservation table solves this problem

* Toschedule an op at time T needing resource R
¢ Theentry for R at T mod Il must be free

e Mark busy at T mod Il if schedule alul alu2 mem busO busl br

Dynamic Single Assignment (DSA) Form

Impossible to overlap iterations because each iteration writes to the same
register. So, we’ll have to remove the anti and output dependences.

Virtual rotating registers
* Each register is an infinite push down array (Expanded virtual reg or EVR)
* Write to top element, but can reference any element
* Remap operation slides everything down - r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never
assigned to more than 1x on any dynamic execution path

1: r3 = load(rl) 1: r3[-1] = load(r1[0])

2: 14 =r3* 26 2: r4[-1] = r3[-1] * 26

3: store (2, r4) 3: store (r2[0], r4[-1])
4:rl=rl+4 q 4:r1[-1] =r1[0] + 4
5:12=12+4 5:12[-1] =r2[0] + 4

6: p1 = cmpp (rl < r9) DSA 6: p1[-1] = cmpp (r1[-1] <r9)
7: brct pl Loop conversion | remap rl, r2, r3, r4, pl

7: brct p1[-1] Loop

LLoop Dependence Example

rl1 = &A
r2 =&B

Loop: | 1:r3[-1] = load(r1[0])

r4[-1] = r3[-1] * 26

store (r2[0], r4[-1])

ri[-1] =r1[0] + 4

r2[-1] =r2[0] + 4

6: p1[-1] = cmpp (r1[-1] <r9)
remap rl, r2, r3, r4, pl

7: brct p1[-1] Loop

A

In DSA form, there are no
inter-iteration anti or output
dependences!

Assume compiler can prove load

<delay, distance>
and store are never dependent y

Class Problem

Latencies: Id=2,st=1,add=1,cmpp=1,br=1

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] — r1]2]

3: store (r3[-1], r2[0])

4:r2[-1] =r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)
remap rl, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph
showing both intra and inter
iteration dependences

ONONONONONG

Class Problem Answer

Latencies: Id=2,st=1,add=1,cmpp=1,br=1

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] — r1]2]

3: store (r3[-1], r2[0])

4:r2[-1] =r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)
remap rl, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph
showing both intra and inter
iteration dependences

ONONONONONG

Red edges are memory anti and
flow dependences

Instructions 1-5 have <0,0>
control dependences to 6.

Minimum Initiation Interval (MII)

<« Remember, Il = number of cycles between the start of
successive iterations

< Modulo scheduling requires a candidate 11 be selected
before scheduling is attempted
» Try candidate I, see if it works
» If not, increase by 1, try again repeating until successful

< MII i1s a lower bound on the |1
» MIl = Max(ResMII, RecMlIlI)

» ResMII = resource constrained Ml
* Resource usage requirements of 1 iteration

» RecMII = recurrence constrained M|
 Latency of the circuits in the dependence graph

ResMI|

Concept: If there were no dependences between the operations, what
IS the the shortest possible schedule?

Simple resource model

A processor has a set of resources R. For each resource rin R
there is count(r) specifying the number of identical copies

ResMIl = MAX (uses(r) / count(r))

forallrinR

uses(r) = number of times the resource is used in 1 iteration

In reality its more complex than this because operations can have
multiple alternatives (different choices for resources it could be
assigned to), but we will ignore this for now

-9-

ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3,ld=2,st=1,br=1

: 13 = load(rl)
r4=r3%* 26

store (r2, r4)
ri=rl+4
r2=r2+4

pl =cmpp (rl1 <r9)
. brct p1 Loop

NN RE

ResMIl = MAX (uses(r) / count(r))

uses(r) = number of times the resource is used
in 1 iteration

ALU: usedby ?2,4,5,6

= 4 0ps /2 units =2
Mem: used by 1, 3

2> 20ps/1unit=2
Br: used by 7

2> 1lop/lunit=1

ResMIl = MAX(2,2,1) = 2

-10 -

RecMII

Approach: Enumerate all irredundant elementary circuits in the
dependence graph

RecMIl = MAX (delay(c) / distance(c))

forallcinC

delay(c) = total latency in dependence cycle ¢ (sum of delays)
distance(c) = total iteration distance of cycle ¢ (sum of distances)

3,1
1,0 ‘ k+2 3 4 cycles,
k+3

VL_R_eCM” =4

delay(c)=1+3=4
distance(c)=0+1=1
RecMIl =4/1=4

-11 -

RecMIl Example

1:r3 =load(rl)

2:14=r3* 26 4>4:1/1=1

3: store (r2, r4) 5->5:1/1=1
4:rl=rl+4 42>1>41/1=1
5:12=r2+4 52>3->51/1=1

6: p1 =cmpp (rl1 <r9)

7: brct pl1 Loop RecMIl = MAX(1,1,1,1) =1

RecMIl = MAX(delay(c) / distance(c)) Then,

MIl = MAX(ResMII, RecMII)

delay(c) = total latency in dependence MIl = MAX(2,1) =2

cycle ¢ (sum of delays)
distance(c) = total iteration distance
of cycle ¢ (sum of distances)

<delay, distance>

Homework Problem

Latencies: Id=2,st=1,add=1,cmpp=1,br=1
Resources: 1 ALU, 1 MEM, 1 BR

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] — r1]2]

3: store (r3[-1], r2[0])

4:r2[-1] =r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)
remap rl, r2, r3

6: brct p1[-1] Loop

Calculate RecMII, ResMIl, and Ml

-13-

Modulo Scheduling Process

< Use list scheduling but we need a few twists
» Il is predetermined — starts at MlI, then is incremented

» Cyclic dependences complicate matters
 Estart/Priority/etc.

e Consumer scheduled before producer is considered
+ There is a window where something can be scheduled!

» Guarantee the repeating pattern

< 2 constraints enforced on the schedule
» Each iteration begin exactly Il cycles after the previous one

» Each time an operation is scheduled in 1 iteration, it is tentatively
scheduled in subsequent iterations at intervals of Il

e MRT used for this

-14 -

Priority Function

Height-based priority worked well for acyclic scheduling, makes sense
that it will work for loops as well

Acyclic: 0, if X has no successors
Height(X) =
((Height(Y) + Delay(X,Y)), otherwise

forall Y = succ(X)

Cyclic: 0, iIf X has no successors
HeightR(X) =
MAX ((HeightR(Y) + EffDelay(X,Y)), otherwise

for all Y = succ(X)

EffDelay(X,Y) = Delay(X,Y) — lI*Distance(X,Y)

-15 -

Calculating Height

1. Insert pseudo edges from all nodes to branch with
latency = 0, distance = 0 (dotted edges)

2. Compute Il, For this example assume Il = 2

3. HeightR(4) =

4. HeightR(3) = 00 .77

r 00 2,2

5. HeightR(2) = "t 00
‘@1,1

6. HeightR(1)

-16 -

N

Calculating Height Solution

Insert pseudo edges from all nodes to branch with latency = 0, distance = 0 (dotted edges)
Compute I, For this example assume Il =2
HeightR(4) = H(4) + (1 — 111) (Assume H(4) is 0 since not calculated yet

0+1-2=-1- 0 (Always MAX answer with 0)

HeightR(3) = MAX(H(4) +0—-1I"0=0+0-2*0=0, 00 .-~
H2)+2-11"2=0+2-2*2=-2) P
Assume H(2) is 0 since not calculated yet ;/ 00. 2.2
=0 1\\ |,\ 20
HeightR(2) = MAX(H(4) + 0 — 11*0 = 0 + 0 — 2*0 = 0,

H3) +2-11*0=0+2-2*0=2) Ny 00
=2 Yii{ifﬂ

HeightR(1) = MAX(H(4) +0-11*0=0+0-2*0=0,
H(2) +3-11*0=2+3-2*0=05)
=5
Now recalculate the heights to see if anything changes since HeightR(3) assumed wrong value for node 2
HeightR(3) = MAX(H(4) +0—-11*"0=0+0-2*0=0,
H2)+2-11*2=2+2-2*2=0)
= 0 - Unchanged, so no need to compute any other heights again

-17 -

The Scheduling Window

With cyclic scheduling, not all the predecessors may be scheduled,
so a more flexible earliest schedule time is:

0, if X is not scheduled
E(Y)= MAX

for all X = pred(Y) MAX (0, SchedTime(X) + EffDelay(X,Y)),

otherwise

where EffDelay(X,Y) = Delay(X,Y) — lI*Distance(X,Y)

Every Il cycles a new loop iteration will be initialized, thus every Il

cycles the pattern will repeat. Thus, you only have to look in a
window of size 11, if the operation cannot be scheduled there, then

It cannot be scheduled.
Latest schedule time(Y) = L(Y) =E(Y) + 11 -1

-18 -

Loop Prolog and Epilog

Prolog

Kernel

Epilog

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

-19 -

Removing Prolog/Epilog

- =~

Prolog

-

Disable using_ /
predicated execution \

-
~—_ -

Kernel

Epilog

Execute loop kernel on every iteration, but for prolog and epilog
selectively disable the appropriate operations to fill/drain the pipeline

-20 -

Kernel-only Code Using Rotating Predicates

A0
Al BO
A2 Bl CO

A B C D - AifP[0] BifP[1] C ifP[2] D if P[3]

Bn Cn-1 Dn-2

Cn Dn-1
Dn . :
/ P referred to as the staging predicate

P[O] P[1] P[2] P[3]
1 0 0 0 A i
1 1 0 0 A B i
1 1 1 0 A B C i
1 1 1 1 A B C D
0 1 1 1 B C D
0 0 1 1 C D
0 0 0 1 - D

=21 -

Modulo Scheduling Architectural Support

< Loop requiring N iterations

» Will take N + (S — 1) where S is the number of stages
< 2 special registers created

» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

« Software pipeline branch operations
» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared
» SWP-BR (BRF)

* While LC >0, decrement LC and RRB, P[0] = 1, branch to top of
loop

o This occurs for prolog and kernel

e |f LC =0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

+ This occurs for the epilog

-22.

COCOO0COR,NWTI

Execution History With LC/ESC

LC = 3, ESC = 3 /* Remember O relative!! */
Clear all rotating predicates
P[0] =1

AifP[0]; BIifP[1l]; CifP[2]; Dif P[3]; P[O] = BRF;

C ESC P[0] P[] P[2] P[3]
3 1 0 0 0 A
3 1 1 0 0 A B
3 1 1 1 0 A B
3 1 1 1 1 A B
2 0 1 1 1 i B
1 0 0 1 1 i i
0 0 0 0 1 i i

4 iterations, 4 stages, Il = 1, Note 4 + 4 —1 iterations of kernel executed

-23-

OO0OO0

O O 00O

Modulo Scheduling Example

resources: 4 issue, 2 alu, 1 mem, 1 br
latencies: add=1, mpy=3,ld=2,st=1,br=1

Stepl: Compute to loop into

for (j=0; j<100; j++) form that uses LC
b[j] =al] * 26
LC =99
Loop:| 1: 13 = load(r1) Loop: % :j _ Irgag(zré)
. — * ' B
2:14=13726 3: store (r2, r4)
3: store (12, r4) A rl=rl+4
4:rL=rl+4 5:12=12 + 4
5:12=r2+4 I
6: pL = cmpp (1 < 9) 7: brlc Loop
7: brct p1 Loop

-24 -

Example — Step 2

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3,ld=2,st=1,br=1

Step 2: DSA convert

LC =99

Loop: = load(rl)
14 =r3* 26
. store (r2, r4)
rl=rl+4
r2=r2+4
. brlc Loop

~NaswWN e

Loop:

=

-25 -

LC =99

r3[-1] = load(r1[0])
r4[-1] = r3[-1] * 26
store (r2[0], r4[-1])
rl[-1] =r1][0] + 4
12[-1] =r2[0] + 4
remap rl, r2,r3, r4

7: brlc Loop

a0 RE

Example — Step 3

resources: 4 issue, 2 alu, 1 mem, 1 br Step3: Draw dependence graph
latencies: add=1, mpy=3,ld=2,st=1,br=1 Calculate Ml

LC =99 00

Loop: : r3[-1] = load(r1[0])
- r4[-1] = r3[-1] * 26
. store (r2[0], r4[-1])
r1[-1] =r1[0] + 4
:12[-1] = r2[0] + 4 0.0
remap rl, r2, r3, r4
7: brlc Loop

RecMIl =1
RESMII =2
MIl =2

o b~ whNhE

No memory dependences since load
and store refer to distinct arrays

- 26 -

Example — Step 4

Step 4 — Calculate priorities (MAX height

LmoOo T oo
SR TR TR TR TR
miHHHHHH
tllllllllll

0 H N WO~

e

)

c

o

=) DM OO oo

» oo onn

o

S S TITITTTT

u L = " == == =om

B T dN MmO~

o

o

+—

-27 -

Example — Step 5

resources: 4 issue, 2 alu, 1 mem, 1 br Schedule brilc attime 1l - 1
latencies: add=1, mpy=3,ld=2,st=1,br=1

Unrolled
Rolled Schedule
Schedule
LC =99 0
1
Loop: | 1:r3[-1] = load(r1[0]) 2
2: r4[-1] = r3[-1] * 26 0 2
3: store (r2[0], r4[-1]) 117 4
4:r1[-1] =r1[0] +4
5: r2[-1] = r2[0] + 4 .
remap rl, r2,r3, r4 6
7: brlc Loop alu0 alul mem br
0 MRT
1 X

-28 -

Example — Step 6

Step6: Schedule the highest priority op

Opl:E=0,L=1
Place at time 0 (0 % 2) Unrolled
Rolled Schedule

LC =99 Schedule

Loop: : r3[-1] = load(r1[0])

 r4[-1] = r3[-1] * 26 0|1

: store (r2[0], r4[-1]) 1
1 r1[-1] =r1[0] + 4

O N

o~ W DN PEF- O

5:r2[-1] =r2[0] + 4

remap rl, r2,r3,r4 6

7: brlc Loop alu0 alul mem br

0 X MRT

-29 -

Example — Step 7

Step7: Schedule the highest priority op

Op4:E=0,L=1
Place at time 0 (0 % 2) Unrolled
Rolled Schedule
LC =99 Schedule 0o [T 2
Loop: | 1:r3[-1] = load(r1[0]) ;
2: r4[-1] = r3[-1] * 26 o|l 4
3: store (r2[0], r4[-1]) 117 3
4: r1[-1] = r1[0] + 4 4
5: r2[-1] = r2[0] + 4 o
remap rl, r2,r3,r4 6
7: brlc Loop alu0 alul mem br
X
0 X MRT
1 X

-30 -

Example — Step 8

Step8: Schedule the highest priority op

Op2:E=2,L=3
Place at time 2 (2 % 2)

Rolled
LC =99 Schedule
Loop: | 1:r3[-1] = load(r1[0])
2: r4[-1] = r3[-1] * 26 o|l 4 2
3: store (r2[0], r4[-1]) 1
4:r1[-1] =r1[0] +4

5:r2[-1] =r2[0] + 4
remap rl, r2,r3, r4
7: brlc Loop

-31-

o~ W DN PEF- O

6

Unrolled
Schedule

1 4

alu0 alul mem br

0| X

X

X

MRT

Example — Step 9

Step9: Schedule the highest priority op

Op3:E=51L=6

Place at time 5 (5 % 2) Unrolled
Rolled Schedule
LC =99 Schedule o [T 2
Loop: | 1:r3[-1] = load(r1[0]) ; 5
2: r4[-1] = r3[-1] * 26 0|l 2 4
3: store (r2[0], r4[-1]) 1 3 3
4: r1[-1] = r1[0] + 4 4
5:1r2[-1] =r2[0] + 4 513
remap rl, r2,r3,r4 6
7: brlc Loop alu0 alul mem br
X [X
0 X MRT
1 X [X

-32 -

Example — Step 10

Step10: Schedule the highest priority op

Op5: E=5,L=6

Place at time 5 (5 % 2) Unrolled
Rolled Schedule
LC =99 Schedule 0o [1 2
Loop: | 1:r3[-1] = load(r1[0]) ; 5
2: r4[-1] = r3[-1] * 26 0|l 2 4
3: store (r2[0], r4[-1]) 1 3 &5 3
4: r1[-1] = r1[0] + 4 4
5: r2[-1] = r2[0] + 4 5135
remap rl, r2,r3,r4 6
7: brlc Loop alu0 alul mem br
X | X
0 X MRT
1|X X | X

-33-

Loop:

Example — Step 11

Stepll: calculate ESC, SC = ceiling(max unrolled sched length / ii)
unrolled sched time of branch = rolled sched time of br + (ii*esc)

SC=6/2=3,ESC=SC-1 Unrolled
timeofbr=1+2*2=5 Rolled Schedule
LC =99 Schedule o [T 2
1
1: r3[-1] = load(r1[0])
2: va[-1] = r3[-1] * 26 0|1 2 4 212
3: store (r2[0], r4[-1]) 117 3 5 3
4: r1[-1] = r1[0] + 4 4
5: r2[-1] = r2[0] + 4 513 5 7
remap rl, r2,r3,r4 6
7: brlc Loop alu0 alul mem br
X | X
0 X MRT
1|X X | X

-34 -

Example — Step 12

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,
initialize staging predicate outside loop

Staging predicate, each

LC =99 successive stage increment
ESC=2 the index of the staging predicate
p1[0] =1 by 1, stage 1 gets px[0]
Loop: | 1:r3[-1] =load(r1[0]) if p1[O] Unrolled
2: 14[-1] = r3[-1] * 26 if p1[1] Schedule
4:r1[-1] = r1[0] + 4 if p1[O] _
3: store (r2[0], r4[-1]) if p1[2] o1 4 Stage 1
5:1r2[-1] = r2[0] + 4 if p1[2] 1 |
7: brlc Loop if p1[2] 2 | 2 Stage 2
3 _
4 Stage 3
513 5 7 _
§)

-35-

Example — Dynamic Execution of the Code

time: ops executed

LC =99
ESC =2 0: 1, 4
p1[0] =1 R S
2:1,2,4
Loop: 1: r3[-1] = load(r1[0]) if p1[0] R
2: r4[-1] = r3[-1] * 26 if p1[1] 4:124
4:r1[-1] = r1[0] + 4 if p1[O] 5.3,5,7
3: store (r2[0], r4[-1]) if p1[2] 6124
5:12[-1] = r2_[0] + 4 if p1[2] 7. 3’5’7
7: brlc Loop if p1[2] TooTAmEEERTe—
198:1,2,4
Total time = II(num_iteration + num_stages — 1) 193 3.0
=2(100 + 3 -1) = 204 cycles 200:2
....201:3.9.7
202: -
203 3,5,7

-36 -

