
EECS 583 – Class 12

Superblock Scheduling, Intro to

Modulo Scheduling

University of Michigan

October 9, 2023

- 1 -

Announcements & Reading Material
 Homework 2 – Due Friday midnight

 Project discussion meetings – signup next week, meetings week of Oct 23

» Each group meets 10 mins with Aditya, Tarun, and I

» Action items

 Need to identify group members

 Use piazza to recruit additional group members or express your availability

 Think about project areas that you want to work on

 Today’s class

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. Rau, MICRO-27,

1994, pp. 63-74.

 Next class

» “Code Generation Schema for Modulo Scheduled Loops”, B. Rau, M. Schlansker, and P. Tirumalai,

MICRO-25, Dec. 1992.

- 2 -

Recap: Generalize Scheduling Beyond a

Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 3 -

Recap: Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1 0 0 0

2 1 2 1

3 2 - 2

4 3 3 4

5 3 - 3

6 5 - 5

1

- 4 -

Recap: Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Estart Lstart0 Lstart1 Priority

1 0 0 0 .25(3-0+1) + .75(5-0+1)

2 1 2 1 .25(3-2+1) + .75(5-1+1)

3 2 - 2 .75(5-2+1)

4 3 3 4 .25(3-3+1) + .75(5-4+1)

5 3 - 3 .75(5-3+1)

6 5 - 5 .75(5-5+1)

1

Priority(op) = SUM(Probi * (MAX_Lstarti – Lstarti(op) + 1))
valid late times for op

- 5 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 6 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

* Need a better solution!

Note: Control flow in red bold

- 7 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 8 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code insertion hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 9 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 10 -

List Scheduling on Superblocks

 Follow same algorithm as BBs

 Steps

» Draw data dependence graph

» Compute Estart, all Lstarts,

priority

» Perform list scheduling

 Scheduling process

» Ignore side exits – treat SB just

like a BB

» Control dependences prevent

illegal code motion across

branches

1

2

3

5

6

4

7

8

9

All ops

have cdep

to op 9!

- 11 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

an exception when op1

is taken

- 12 -

Restricted Speculation Model

 Most processors have 2

classes of opcodes

» Potentially exception

causing

 load, store, integer

divide, floating-point

» Never excepting

 Integer add, multiply,

etc.

 Overflow is detected, but

does not terminate

program execution

 Restricted model

» R2 only applies to

potentially exception

causing operations

» Can freely speculate all

never exception ops (still

limited by R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4 6 and

4 8

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}
{r5}

- 13 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

{r5}

- 14 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 15 -

Homework Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Draw the dep graph assuming restricted speculation

2. What edges can be removed if

general speculation support is provided?

3. With more renaming, what dependences could

be removed?

1

2

3

5

6

4

7

8

- 16 -

Homework Problem – Solution

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Draw the dep graph assuming restricted speculation

2. What edges can be removed if

general speculation support is provided?

3. With more renaming, what dependences could

be removed?

1

2

3

5

6

4

7

8

Additional control deps: 24, 27, 47

No memory dependence between 3 and 5 since

can prove the addresses are always 4 apart

1. Dependence graph with restricted speculation

- 17 -

Homework Problem – Solution (continued)

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Draw the dep graph assuming restricted speculation

2. What edges can be removed if

general speculation support is provided?

3. With more renaming, what dependences could

be removed?

2. With general speculation, edges from

25, 45, 48, 78 can be removed

3. With further renaming, the edge from 28

can be removed.

Note, the edge from 23 cannot be removed

since we conservatively do not allow stores to

speculate.

Note2, you do not need general speculation to

remove edges from 26 and 46 since integer

subtract never causes exception.

- 18 -

Change Focus to Scheduling Loops

for (j=0; j<100; j++)

b[j] = a[j] * 26

r1 = _a

r2 = _b

r9 = r1 * 4

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Loop:

Most of program execution

time is spent in loops

Problem: How do we achieve

compact schedules for loops

- 19 -

Basic Approach – List Schedule the Loop Body

1 2 3 nIteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 6

2 2

3 -

4 -

5 3, 5, 7

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 6 * n

- 20 -

Unroll Then Schedule Larger Body

1,2 3,4 5,6 n-1,nIteration

time

Schedule each iteration

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, cmpp = 1, mpy=3, ld = 2, st = 1, br = 1

time ops

0 1, 4

1 1’, 6, 4’

2 2, 6’

3 2’

4 -

5 3, 5, 7

6 3’,5’,7’

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Total time = 7 * n/2

- 21 -

Problems With Unrolling

 Code bloat

» Typical unroll is 4-16x

» Use profile statistics to only unroll “important” loops

» But still, code grows fast

 Barrier after across unrolled bodies

» I.e., for unroll 2, can only overlap iterations 1 and 2, 3 and 4, …

 Does this mean unrolling is bad?

» No, in some settings its very useful

 Low trip count

 Lots of branches in the loop body

» But, in other settings, there is room for improvement

- 22 -

Overlap Iterations Using Pipelining

1 2 3 nIteration

time

1

2

3

n

With hardware pipelining, while one instruction is

in fetch, another is in decode, another in execute.

Same thing here, multiple iterations are processed

simultaneously, with each instruction in a separate

stage. 1 iteration still takes the same time, but time

to complete n iterations is reduced!

- 23 -

A

B A

C B A

D C B A

D C B A

…

D C B A

D C B

D C

D

A Software Pipeline

A

B

C

D

Loop body

with 4 ops

Prologue -

fill the

pipe

Epilogue -

drain the

pipe

Kernel –

steady

state

time

Steady state: 4 iterations executed

simultaneously, 1 operation from each

iteration. Every cycle, an iteration starts

and finishes when the pipe is full.

- 24 -

Creating Software Pipelines

 Lots of software pipelining techniques out there

 Modulo scheduling

» Most widely adopted

» Practical to implement, yields good results

 Conceptual strategy

» Unroll the loop completely

» Then, schedule the code completely with 2 constraints

 All iteration bodies have identical schedules

 Each iteration is scheduled to start some fixed number of cycles later than

the previous iteration

» Initiation Interval (II) = fixed delay between the start of successive

iterations

» Given the 2 constraints, the unrolled schedule is repetitive (kernel)

except the portion at the beginning (prologue) and end (epilogue)

 Kernel can be re-rolled to yield a new loop

- 25 -

Creating Software Pipelines (2)

 Create a schedule for 1 iteration of the loop such that

when the same schedule is repeated at intervals of II

cycles

» No intra-iteration dependence is violated

» No inter-iteration dependence is violated

» No resource conflict arises between operation in same or distinct

iterations

 We will start out assuming Intel Itanium-style hardware

support, then remove it later

» Rotating registers

» Predicates

» Software pipeline loop branch

- 26 -

Terminology

Iter 1

Iter 2

Iter 3

II

time

Initiation Interval (II) = fixed delay

between the start of successive iterations

Each iteration can be divided

into stages consisting of II cycles

each

Number of stages in 1 iteration

is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

- 27 -

Resource Usage Legality

 Need to guarantee that

» No resource is used at 2 points in time that are separated by an

interval which is a multiple of II

» I.E., within a single iteration, the same resource is never used

more than 1x at the same time modulo II

» Known as modulo constraint, where the name modulo scheduling

comes from

» Modulo reservation table solves this problem

 To schedule an op at time T needing resource R

 The entry for R at T mod II must be free

 Mark busy at T mod II if schedule

0

1

2

II = 3

alu1 alu2 mem bus0 bus1 br

- 28 -

Dependences in a Loop

 Need worry about 2 kinds

» Intra-iteration

» Inter-iteration

 Delay

» Minimum time interval between

the start of operations

» Operation read/write times

 Distance

» Number of iterations separating

the 2 operations involved

» Distance of 0 means intra-

iteration

 Recurrence manifests itself as a

circuit in the dependence graph

1

2

4

3

<1,1>

<1,0> <1,2>

<1,2>

<1,0>

<delay, distance>

Edges annotated with tuple

- 29 -

Dynamic Single Assignment (DSA) Form

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Impossible to overlap iterations because each iteration writes to the same

register. So, we’ll have to remove the anti and output dependences.

Virtual rotating registers

* Each register is an infinite push down array (Expanded virtual reg or EVR)

* Write to top element, but can reference any element

* Remap operation slides everything down r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never

assigned to more than 1x on any dynamic execution path

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

DSA

conversion

- 30 -

Physical Realization of EVRs

 EVR may contain an unlimited number values

» But, only a finite contiguous set of elements of an EVR are ever

live at any point in time

» These must be given physical registers

 Conventional register file

» Remaps are essentially copies, so each EVR is realized by a set

of physical registers and copies are inserted

 Rotating registers

» Direct support for EVRs

» No copies needed

» File “rotated” after each loop iteration is completed

- 31 -

Loop Dependence Example

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

1

2

3

4

5

6

7

In DSA form, there are no

inter-iteration anti or output

dependences!

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

- 32 -

Class Problem

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph

showing both intra and inter

iteration dependences

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

1

2

3

4

5

6

