
EECS 583 – Class 11

Instruction Scheduling

University of Michigan

October 6, 2023

- 1 -

Announcements & Reading Material
 HW 2 – Due Next Friday at midnight!

» See piazza for answered questions, Talk to Aditya/Tarun for help

 Project discussion meetings (Oct 23-27)

» Project proposal meeting signup next next week – Signup on Google Calendar

» Each group meets 10 mins with Aditya, Tarun, and I

» Action items

 Need to identify group members

 Use piazza to recruit additional group members or express your availability

 Think about general project areas that you want to work on

 Today’s class

» “The Importance of Prepass Code Scheduling for Superscalar and Superpipelined

Processors,” P. Chang et al., IEEE Transactions on Computers, 1995, pp. 353-370.

 Next class

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. Rau,

MICRO-27, 1994, pp. 63-74.

- 2 -

From Last Time: Data Dependences + Latencies

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

Latency of

producer
1 0

- 3 -

From Last Time: More Dependences + Latencies

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control

r3 = r4 + r5

if (r1 != 0)

r2 = load(r1)

1 1 1 1

0

- 4 -

Homework Problem 1

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

store: 1

1. Draw dependence graph

2. Label edges with type and

latencies

1

2

5

4

3

6

7

8

- 5 -

Homework Problem 1: Answer

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

store: 1

Store format (addr, data)

1. Draw dependence graph

2. Label edges with type and

latencies
1

2

3

4

5

6

7

8

ra, 0

rf, 1

rf, 2

rf, 1

rf, 2

rf, 1

rf, 3

rf, 1

ra, 0

ra, 0

ra, 0

ro, 1

Memory deps all with latency =1: 13 (ma), 18 (ma),

34 (mf), 38 (mo), 48 (ma)

No control dependences

- 6 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency)

for each predecessor node

» Example

1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

0

1 2

5

8

910

4

Exit

0 0

10

- 7 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency)

for each successor node

» Example

1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

Exit

0 0

- 8 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example 1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

Exit

0 0

- 9 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical

operations from node with no

predecessors to exit node, can

be multiple crit paths

1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

Exit

0 0

- 10 -

Homework Problem 2

1

2

5

43

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

1

- 11 -

Homework Problem 2 - Answer

1

2

5

43

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1 0 0 0

2 1 2 2

3 2 2 0

4 0 3 3

5 4 5 1

6 4 4 0

7 5 6 1

8 7 7 0

9 8 8 0

Critical path(s) = 1,3,6,8,9

1

- 12 -

Operation Priority

 Priority – Need a mechanism to decide which ops to

schedule first (when you have multiple choices)

 Common priority functions

» Height – Distance from exit node

 Give priority to amount of work left to do

» Slackness – inversely proportional to slack

 Give priority to ops on the critical path

» Register use – priority to nodes with more source operands and

fewer destination operands

 Reduces number of live registers

» Uncover – high priority to nodes with many children

 Frees up more nodes

» Original order – when all else fails

- 13 -

Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1

2

3

4

5

6

7

8

9

10

10

1
1

8, 8

7

10, 1

0, 5

1

2

- 14 -

List Scheduling (aka Cycle Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 time = -1

 while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

 op can be scheduled at current time? (are the resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED/READY sets

 No, continue

- 15 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

10, 1

0, 5

1

2

Schedule

time Instructions

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

Time =

Ready =

Processor: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

- 16 -

Homework Problem 3

1m

2

Processor: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using cycle scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

Schedule

time Instructions

0

1

2

3

4

5

6

7

8

9

Time =

Ready =

- 17 -

Homework Problem 3 – Answer

1m

2

Processor: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0 X

1 X

2 X

3 X X

4 X

5 X

6 X

7 X

8 X

Schedule
Time Instructions

0 2

1 1

2 4

3 3, 9

4 6

5 7

6 5

7 8

8 10

Op priority

1 6

2 7

3 4

4 5

5 2

6 3

7 3

8 2

9 3

10 1

- 18 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 19 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 20 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 21 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 22 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

* Need a better solution!

Note: Control flow in red bold

- 23 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 24 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code insertion hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 25 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 26 -

To Be Continued

