
EECS 583 – Class 10

ILP Optimization and Intro. to

Code Generation

University of Michigan

October 4, 2023

- 1 -

Announcements & Reading Material
 Friday’s lecture

» Moved to 9-10:30am, 2505 GG Brown

 Reminder: HW 2

» Due next Fri, You should have started by now

» Talk to Aditya & Tarun if you are stuck

 Class project

» Focus on project team formation and general topic area

 Today’s class

» “Machine Description Driven Compilers for EPIC Processors”, B. Rau, V.

Kathail, and S. Aditya, HP Technical Report, HPL-98-40, 1998. (long paper

but informative)

 Next class

» “The Importance of Prepass Code Scheduling for Superscalar and

Superpipelined Processors,” P. Chang et al., IEEE Transactions on Computers,

1995, pp. 353-370.

- 2 -

Class Problem From Last Time – Solution

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

1. r10 = r1 * r2

2. r11 = r10 + r3

3. r12 = r11 + r4

4. r13 = r12 – r5

5. r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

Account for latency and arrival times

Expression after back substitution

r14 = r1 * r2 + r3 + r4 - r5 + r6

Want to perform operations on r1,r2,r3,r6 first

due to operand arrival times

t1 = r1 * r2

t2 = r3 + r6

The multiply will take 3 cycles, so combine t2

with r4 and then r5, and then finally t1

t3 = t2 + r4

t4 = t3 – r5

r14 = t1 + t4

Equivalently, the fully parenthesized expression

r14 = ((r1 * r2) + (((r3 + r6) + r4) - r5))

- 3 -

From Last Time: Loop Unrolling

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 >= 400) goto exit

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 >= 400) goto exit

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3
Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

loop:

unroll 3 times

exit:

for (i=x; i< 100; i++) {

sum += a[i]*b[i];

}

- 4 -

Smarter Loop Unrolling with Known Trip Count

r4 = 0

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

loop:

unroll multiple

of trip count

exit:

Want to remove early exit branches

Trip count = 400/4 = 100

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

iter3

iter4

- 5 -

What if the Trip Count is not Statically Known?

r4 = ??

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4
r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
Create a preloop to

ensure trip count of

unrolled loop is a multiple

of the unroll factor

exit:

for (i=0; i< ((400-r4)/4)%3; i++) {

sum += a[i]*b[i];

}

preloop

- 6 -

Unrolling Not Enough for Overlapping

Iterations: Register Renaming

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 7 -

Register Renaming is Not Enough!

 Still not much overlap possible

 Problems

» r2, r4, r6 sequentialize the

iterations

» Need to rename these

 2 specialized renaming optis

» Accumulator variable

expansion (r6)

» Induction variable expansion

(r2, r4)

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 8 -

Accumulator Variable Expansion

 Accumulator variable

» x = x + y or x = x – y

» where y is loop variant!!

 Create n-1 temporary

accumulators

 Each iteration targets a

different accumulator

 Sum up the accumulator

variables at the end

 May not be safe for floating-

point values

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r16 = r16 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 9 -

Induction Variable Expansion

 Induction variable

» x = x + y or x = x – y

» where y is loop invariant!!

 Create n-1 additional induction

variables

 Each iteration uses and

modifies a different induction

variable

 Initialize induction variables to

init, init+step, init+2*step, etc.

 Step increased to n*original

step

 Now iterations are completely

independent !!

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 12

r4 = r4 + 12

r11 = load(r12)

r13 = load(r14)

r15 = r11 * r13

r16 = r16 + r15

r12 = r12 + 12

r14 = r14 + 12

r21 = load(r22)

r23 = load(r24)

r25 = r21 * r23

r26 = r26 + r25

r22 = r22 + 12

r24 = r24 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

r12 = r2 + 4, r22 = r2 + 8

r14 = r4 + 4, r24 = r4 + 8

- 10 -

Better Induction Variable Expansion

 With base+displacement

addressing, often don’t need

additional induction variables

» Just change offsets in each

iterations to reflect step

» Change final increments to n

* original step

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r11 = load(r2+4)

r13 = load(r4+4)

r15 = r11 * r13

r16 = r16 + r15

r21 = load(r2+8)

r23 = load(r4+8)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 12

r4 = r4 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 11 -

Homework Problem

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

- 12 -

Homework Problem - Answer

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400)

goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

r1 = load(r2)

r5 = r1 + 3

r6 = r6 + r5

r2 = r2 + 4

r11 = load(r2)

r15 = r11 + 3

r6 = r6 + r15

r2 = r2 + 4

r21 = load(r2)

r25 = r21 + 3

r6 = r6 + r25

r2 = r2 + 4

if (r2 < 400)

goto loop

loop:

after renaming and

tree height reduction

r1 = load(r2)

r5 = r1 + 3

r6 = r6 + r5

r11 = load(r2+4)

r15 = r11 + 3

r16 = r16 + r15

r21 = load(r2+8)

r25 = r21 + 3

r26 = r26 + r25

r2 = r2 + 12

if (r2 < 400)

goto loop

r6 = r6 + r16

r6 = r6 + r26

r16 = r26 = 0

loop:

after acc and

ind expansion

- 13 -

Code Generation

 Map optimized “machine-independent” assembly to final
assembly code

 Input code

» Classical optimizations

» ILP optimizations

» Formed regions (sbs, hbs), applied if-conversion (if appropriate)

 Virtual  physical binding

» 2 big steps

» 1. Scheduling

 Determine when every operation executions

 Create MultiOps (for VLIW) or reorder instructions (for superscalar)

» 2. Register allocation

 Map virtual  physical registers

 Spill to memory if necessary

- 14 -

Scheduling Operations

 Need information about the processor

» Number of resources, latencies, encoding limitations

» For example:

 2 issue slots, 1 memory port, 1 adder/multiplier

 load = 2 cycles, add = 1 cycle, mpy = 3 cycles; all fully pipelined

 Each operand can be register or 6 bit signed literal

 Need ordering constraints amongst operations

» What order defines correct program execution?

 Given multiple operations that can be scheduled, how do you pick the

best one?

» Is there a best one? Does it matter?

» Are decisions final?, or is this an iterative process?

 How do we keep track of resources that are busy/free

» Reservation table: Resources x time

- 15 -

Schedule Before or After Register Allocation?

r1 = load(r10)

r2 = load(r11)

r3 = r1 + 4

r4 = r1 – r12

r5 = r2 + r4

r6 = r5 + r3

r7 = load(r13)

r8 = r7 * 23

store (r8, r6)

R1 = load(R1)

R2 = load(R2)

R5 = R1 + 4

R1 = R1 – R3

R2 = R2 + R1

R2 = R2 + R5

R5 = load(R4)

R5 = R5 * 23

store (R5, R2)

physical registersvirtual registers

Too many artificial ordering constraints if schedule after allocation!!!!

But, need to schedule after allocation to bind spill code

Solution, do both! Prepass schedule, register allocation, postpass schedule

- 16 -

Data Dependences

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are transitively redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 17 -

More Dependences

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control

if (r1 != 0)

r2 = load(r1)

- 18 -

Dependence Graph

 Represent dependences between operations in a block via

a DAG

» Nodes = operations/instructions

» Edges = dependences

 Single-pass traversal required to

insert dependences

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

- 19 -

Dependence Graph - Solution

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)
1

2

5

4

3

6

BB3:
rf

rf
rf

rf
rf

rf

ra

ma

ma

mo

Instructions 1-4 have

control dependence to instruction 5

56 control dependence

- 20 -

Dependence Edge Latencies

 Edge latency = minimum number of cycles necessary
between initiation of the predecessor and successor in
order to satisfy the dependence

 Register flow dependence, a = b + c  d = a + 1

» Latency of producer instruction for most processors

 Register anti dependence, a = b + c  b = d + e

» 0 cycles for most processors

 Register output dependence, a = b + c  a = d + e

» 1 cycle for most processors

 Is negative latency possible?

» Yes, means successor can start before predecessor

» We will only deal with latency >= 0

- 21 -

Dependence Edge Latencies (2)

 Memory dependences

» Store  load (memory flow)

» Load  Store (memory anti)

» Store  Store (memory output)

» All 1 cycle for most processors

 Control dependences

» branch  b

 Instructions inside then/else paths dependent on branch

 1 cycle for most processors

» a  branch

 Op a must be issued before the branch completes

 0 cycles for most processors

- 22 -

Class Problem – Add Latencies to

Dependence Edges

latencies

add: 1

cmpp: 1

load: 2

store: 1

1

2

5

4

3

6

rf

rf
rf

rf
rf

rf

ra

ma

ma

mo

Instructions 1-4 have control

dependence to instruction 5

56 control dependence

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

BB3:

- 23 -

Homework Problem 1 – Answer Next Time

1. r1 = load(r2)

2. r2 = r2 + 1

3. store (r8, r2)

4. r3 = load(r2)

5. r4 = r1 * r3

6. r5 = r5 + r4

7. r2 = r6 + 4

8. store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

store: 1

1. Draw dependence graph

2. Label edges with type and

latencies

1

2

5

4

3

6

7

8

- 24 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 25 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

- 26 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

- 27 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 28 -

Homework Problem 2 – Answer Next Time

1

2

5

43

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

