
EECS 583 – Advanced Compilers

Course Overview, Introduction to

Control Flow Analysis

Fall 2023, University of Michigan

Aug 28, 2023

https://web.eecs.umich.edu/~mahlke/courses/583f23

- 1 -

Announcements

No Friday lecture this week (conflict for Scott)

» Rescheduled for Wednes 10:30am-12pm

» Zoom only, normal lecture link

- 2 -

Lectures

Class meeting pattern

» Mon/Fri 10:30-12:30 (we’ll stop at ~noon)

» Scott office hours right after lecture: noon-12:30

In-person lecture: 1500 EECS (Mon), 1571 GG Brown (Fri)

» Try to attend, get more out of the lecture

» Please stay home if you are sick!

» May have some virtual classes during the semester

Class will also be presented live on Zoom

» Participate from home if you wish

» Zoom videos also available (try to use just for review!)

 Bad idea if this is all you do: run 1.5x, multi-task, don’t pay attention

Zoom info

» Same link/password for all lectures, posted on course website

» Separate link for GSI office hrs – more later

- 3 -

Attending Class Virtually

Lecture is synchronous and recorded

» Please try to attend live if you can

» We’ll start at 10:35 and end at noon

» Keep your camera and mic muted

 Critical to avoid disruptions

Asking questions on Zoom

» Type the word “question” in the chat box

» GSI will unmute you and you can ask question

» If you prefer not to speak, then just type out your

question in chat and the GSI can ask it for you

» I will also pause regularly to ask if there are questions

» Discussion important in a grad class, so don’t be bashful

- 4 -

About Me

Mahlke = mall key

» But just call me Scott

Been at Michigan since 2001

» Compiler guy who likes hardware

» Program optimization to make programs go faster

» Building custom hardware for high performance/low

power

Before this – HP Labs in Silicon Valley

Before before – Grad student at UIUC

Before ^ 3 – Undergrad at UIUC

- 5 -

More About Me

3 kids – 7, 7, and 5

» So if I show up to lecture half asleep, you know why!

- 6 -

Contact Information

Email: mahlke@umich.edu

Office hours

» Mon/Fri 12:00-12:30 in 1500 EECS/1571 GG Brown

» Or send me an email for an appointment

Visiting office hrs

» Mainly help on classroom material, concepts, etc.

» I am an LLVM novice, so likely I cannot answer any

non-trivial question

» See GSIs for LLVM details

mailto:mahlke@umich.edu

- 7 -

583 GSIs

Aditya Vasudevan (adivasu@umich.edu)

» Office hours: Tue 2-4pm, Wed noon-2pm,

Thu 2-4pm

Tarunesh Verma (tarunesh@umich.edu)

» Office hours: Mon 2-4pm, Wed 2-4pm,

Fri 2-4pm

Location: Zoom (link on course website,

same link for the entire semester, same for

both GSIs, passcode = eecs583)

mailto:tarunesh@umich.edu

- 8 -

Getting Help from the GSIs

LLVM help/questions

But, you will have to be independent in this class

» Read the documentation and look at the code

» Come to them when you are really stuck or confused

» They cannot and will not debug your code

» Helping each other is encouraged

» Use the class piazza group (GSIs will monitor)

Virtual office hours on Zoom

» Considering having appointments along with open

sessions

- 9 -

Class Overview

This class is NOT about:

» Programming languages

» Parsing, syntax checking, semantic analysis

» Handling advanced language features – virtual functions, …

» Frontend transformations

» Debugging

» Simulation

Compiler backend

» Mapping applications to processor hardware

» Retargetability – work for multiple platforms (not hard coded)

» Work at the assembly-code level (but processor independent)

» Speed/Efficiency

 How to make the application run fast

 Use less memory (text, data), efficiently execute

 Parallelize, prefetch, optimize using profile information

- 10 -

Background You Should Have

1. Programming

» Good C++ programmer (essential)

» Linux, gcc, emacs (vi or other editor is ok too)

» Debugging experience – hard to debug with printf’s alone – gdb!

» Compiler system not ported to Windows

2. Computer architecture

» EECS 370 is good, 470 is better but not essential

» Basics – caches, pipelining, function units, registers, virtual memory,

branches, multiple cores, assembly code

3. Compilers

» Frontend stuff is not very relevant for this class, but good to know

» Basic backend stuff we will go over fast

 Non-EECS 483 people will have to do some supplemental reading

- 11 -

Textbook and Other Classroom Material

No required text – Lecture notes, papers

LLVM compiler system – we will use version 16.0.6

» LLVM webpage: http://www.llvm.org

» Read the documentation!

» LLVM users group

Course webpage + course newsgroup

» https://www.eecs.umich.edu/~mahlke/courses/583f23

» Lecture notes – available the night before class

» Piazza – ask/answer questions, GSIs and I will try to check
regularly but may not be able to do so always

 http://www.piazza.com

http://www.llvm.org/
http://www.piazza.com/

- 12 -

What the Class Will be Like

Core backend stuff

» Text book material – some overlap with 483

» 2 homeworks to apply classroom material

Research papers

» Last 1/3rd of the semester, students take over

» Select paper related to your project

» Each project team - presents 1 paper. 15 min talk + Q&A.

» Entire class is expected to watch presentations and grade
presentations

» You will need to attend live for at least your own presentation

- 13 -

What the Class Will be Like (2)
Learning compilers

» No memorizing definitions, terms, formulas,
algorithms, etc

» Learn by doing – Writing code

» Substantial amount of programming

 Fair learning curve for LLVM compiler

» Reasonable amount of reading

Classroom

» Attendance – Best to join live, lots of examples solved
in class

» Discussion important

 Work out examples, discuss papers, etc

» Essential to stay caught up

» Extra meetings outside of class to discuss projects

- 14 -

Course Grading

Yes, everyone will get a grade

» Distribution of grades, scale, etc - ???

» Most (hopefully all) will get A’s and B’s

» Slackers will be obvious

Components

» Midterm exam – 25%

» Project – 45%

» Homeworks – 15%

» Paper presentation – 10%

» Class participation – 5%

- 15 -

Homeworks

1 preliminary (HW0), available on course webpage now

» Get LLVM set up, nothing to submit

2 real homeworks

» 1 small &1 harder programming assignment

» Design and implement something we discussed in class

Goals

» Learn the important concepts

» Learn the compiler infrastructure so you can do the project

Grading

» Working testcases?, Does anything work? Level of effort?

Working together on the concepts is fine

» Make sure you understand things or it will come back to bite you

» Everyone must do and turn in their own assignment

- 16 -

Projects – Most Important Part of the Class

Design and implement an “interesting” compiler technique
and demonstrate its usefulness using LLVM

Topic/scope/work

» 3-5 people per project (Other group sizes allowed in some cases)

» You will pick the topics (I have to agree)

» You will have to

 Read background material

 Plan and design

 Implement and debug

Deliverables

» Working implementation

» Project report: ~5 page paper describing what you did/results

» 15 min presentation at end (demo if you want)

» Project proposal (late Oct) scheduled with each group during semester

- 17 -

Types of Projects
New idea

» Small research idea

» Design and implement it, see how it works

Extend existing idea

» Take an existing paper, implement their technique

» Then, extend it to do something small but interesting

 Generalize strategy, make more efficient/effective

Implementation

» Take existing idea, create quality implementation in LLVM

» Try to get your code released into main LLVM system

Using other compilers/systems (GPUs, JIT, mobile

phone, etc.) is possible

- 18 -

Topic Areas (You are Welcome to Propose Others)
Automatic parallelization

» Loop parallelization

» Vectorization/SIMDization

» Transactional
memories/speculation

» Breaking dependences

Memory system performance

» Instruction/data prefetching

» Use of scratchpad memories

» Data layout

Reliability

» Catching transient faults

» Reducing AVF

Customized hardware

» High level synthesis

» HW optimization

Power

» Instruction scheduling techniques to
reduce power

» Identification of narrow computations

Streaming/GPUs

» Stream scheduling

» Memory management

» Optimizing CUDA programs

Security

» Program analysis to identify
vulnerabilities

» Eliminate vulnerabilities via xforms

Dynamic optimization

» DynamoRIO

» Run-time optimization

- 19 -

Class Participation

Interaction and discussion is essential in a
graduate class

» Try to join live if you can (not required)

» If you are here, don’t just stare at the wall

» Be prepared to discuss the material

» Have something useful to contribute

Opportunities for participation

» Research paper presentations – thoughts, comments,
questions

» Saying what you think during class or in project
discussions outside of class

» Lectures: Solving class problems, asking questions

» Helping answer questions on piazza!

- 20 -

Tentative Class Schedule (on course website)
Week Date Topic

1 Mon Aug 28 Course intro, Control flow analysis, HW #0 out

Fri Sep 1 Control flow analysis

2 Sep 4 No class, Labor Day, HW #0 due (Nothing to turn in)

Sep 8 Control flow analysis, HW #1 out

3 Sep 11 Control flow analysis

Sep 15 Dataflow analysis

4 Sep 18 Dataflow analysis, HW #1 due

Sep 22 SSA form, HW #2 out

5 Sep 25 Code optimization

Sep 29 Code optimization

6 Oct 2 Code generation

Oct 6 Code generation

7 Oct 9 Code generation

Oct 13 Code generation, HW #2 due

8 Oct 16 No class – Fall Break!

Oct 20 Code generation, Advanced topics

9 Oct 23 No regular class - Project proposals

Oct 27 No regular class - Project proposals

10 Oct 30 Midterm Review

Nov 3 Midterm Exam

11 Nov 6 Research paper presentations

Nov 10 Research paper presentations

12 Nov 13 Research paper presentations

Nov 17 Research paper presentations

13 Nov 20 Research paper presentations

Nov 24 No class, Thanksgiving break

14 Nov 27 Research paper presentations

Dec 1 Research paper presentations

15 Dec 4 Research paper presentations

Dec 6-13 Project demos

- 21 -

Target Processors: 1) VLIW/EPIC Architectures

VLIW = Very Long Instruction Word

» Aka EPIC = Explicitly Parallel Instruction Computing

» Compiler managed multi-issue processor

Desktop

» IA-64: aka Itanium I and II, Merced, McKinley

Embedded processors

» All high-performance DSPs are VLIW

 Why? Cost/power of superscalar, more scalability

» TI-C6x, Philips Trimedia, Starcore, ST-200

- 22 -

Target Processors: 2) Multicore

Sequential programs – 1 core busy, 3 sit idle

How do we speed up sequential applications?

» Switch from ILP to TLP as major source of performance

» Memory dependence analysis becomes critical

- 23 -

Target Processors: 3) SIMD/GPU

Do the same work on different data: GPU, SSE, etc.

Energy-efficient way to scale performance

Must find “vector parallelism”

- 24 -

So, lets get started… Compiler Backend IR – Our Input

Variable home location

» Frontend – every variable in memory

» Backend – maximal but safe register promotion

 All temporaries put into registers

 All local scalars put into registers, except those accessed via &

 All globals, local arrays/structs, unpromotable local scalars put in
memory. Accessed via load/store.

Backend IR (intermediate representation)

» machine independent assembly code – really resource indep!

» aka RTL (register transfer language), 3-address code

» r1 = r2 + r3 or equivalently add r1, r2, r3

 Opcode (add, sub, load, …)

 Operands

Virtual registers – infinite number of these

Literals – compile-time constants

- 25 -

First Topic: Control Flow Analysis

Control transfer = branch (taken or fall-through)

Control flow

» Branching behavior of an application

» What sequences of instructions can be executed

Execution → Dynamic control flow

» Direction of a particular instance of a branch

» Predict, speculate, squash, etc.

Compiler → Static control flow

» Not executing the program

» Input not known, so what could happen

Control flow analysis

» Determining properties of the program branch structure

» Determining instruction execution properties

- 26 -

Basic Block (BB)

Group operations into units with equivalent execution
conditions

Defn: Basic block – a sequence of consecutive operations
in which flow of control enters at the beginning and
leaves at the end without halt or possibility of branching
except at the end

» Straight-line sequence of instructions

» If one operation is executed in a BB, they all are

Finding BB’s

» The first operation in a function starts a BB

» Any operation that is the target of a branch starts a BB

» Any operation that immediately follows a branch starts a BB

- 27 -

Identifying BBs - Example

L1: r7 = load(r8)

L2: r1 = r2 + r3

L3: beq r1, 0, L10

L4: r4 = r5 * r6

L5: r1 = r1 + 1

L6: beq r1 100 L3

L7: beq r2 100 L10

L8: r5 = r9 + 1

L9: jump L2

L10: r9 = load (r3)

L11: store(r9, r1)

??

- 28 -

Control Flow Graph (CFG)

Defn Control Flow Graph –

Directed graph, G = (V,E)

where each vertex V is a

basic block and there is an

edge E, v1 (BB1) → v2

(BB2) if BB2 can

immediately follow BB1 in

some execution sequence

» A BB has an edge to all

blocks it can branch to

» Standard representation used

by many compilers

» Often have 2 pseudo vertices

 entry node

 exit node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 29 -

CFG Example

x = z – 2;

y = 2 * z;

if (c) {

x = x + 1;

y = y + 1;

}

else {

x = x – 1;

y = y – 1;

}

z = x + y

x = z – 2;

y = 2 * z;

if (c) B2 else B3

x = x + 1;

y = y + 1;

z = x + y

x = x – 1;

y = y – 1;

goto B4;

then

(taken)

else

(fallthrough)

B1

B2 B3

B4

- 30 -

Weighted CFG

Profiling – Run the application on

1 or more sample inputs, record

some behavior

» Control flow profiling

 edge profile

 block profile

» Path profiling

» Cache profiling

» Memory dependence profiling

Annotate control flow profile onto

a CFG → weighted CFG

Optimize more effectively with

profile info!!

» Optimize for the common case

» Make educated guess

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

20

10 10

10 10

20 0

20 0

20

- 31 -

Property of CFGs: Dominator (DOM)

Defn: Dominator – Given a CFG(V, E, Entry,

Exit), a node x dominates a node y, if every path

from the Entry block to y contains x

3 properties of dominators

» Each BB dominates itself

» If x dominates y, and y dominates z, then x dominates

z

» If x dominates z and y dominates z, then either x

dominates y or y dominates x

Intuition

» Given some BB, which blocks are guaranteed to have

executed prior to executing the BB

- 32 -

Dominator Example 1

BB1

BB2

BB4

BB3

Entry

Exit

- 33 -

Dominator Example 2

BB2

BB3

BB5BB4

Entry

Exit

BB6

BB1

BB7

- 34 -

Get Started ASAP!! Homework 0

Go to http://llvm.org

Setup LLVM 16.0.6 on the class server or your

favorite Linux box

» For server, use the central version that is already set up

» For your own system, read the installation instructions

» See Aditya’s post on piazza for detailed instructions

Try to run it on a simple C program

HW1 goes out next week and you need LLVM

We will have 2 dedicated servers for class use

» eecs583a/eecs583b.eecs.umich.edu

» Everyone should have ssh access

http://llvm.org/

