
EECS 583 – Homework 1 
Fall 2023 

Assigned: Fri, September 8, 2023 

Due: Mon, September 18, 2023 (11:59pm Eastern USA) 

 

Late Submission Policy 

Submissions are accepted a maximum of two days after the specified deadline. For each 

day late, a 10% penalty will be deducted from your score. 

Statistics Computation Pass 
The goal of this homework is to learn to write your first real LLVM pass. As part of this, you 

will learn to use the profiler which provides dynamic execution frequencies for the compiler to 

make use of. 

 

Write a statistics computation pass in LLVM that computes several dynamic operation counts for 

each function. First, the total number of dynamic operations should be computed along with the 

percentages in the following categories: integer ALU, floating-point ALU, memory, biased- 

branch, unbiased branch, and all other operations. Use the following rules when categorizing the 

operations: 

● Branch: br, switch, indirectbr 

● Integer ALU: add, sub, mul, udiv, sdiv, urem, shl, lshr, ashr, and, or, xor, icmp, srem 

● Floating-point ALU: fadd, fsub, fmul, fdiv, frem, fcmp 

● Memory: alloca, load, store, getelementptr, fence, atomiccmpxchg, atomicrmw 

● Others: everything else 

Every operation should be placed in one of the above categories. Print this information out in a 

text file named benchmark.opcstats in the following format (comma separated, one function in 

each line): 

 

FuncName, DynOpCount, %IALU, %FALU, %MEM, %Biased-Br, %Unbiased-Br, %Others 

 

FuncName is the name of the function, DynOpCount refers to the dynamic operation count, i.e. 

the total number of all instructions that were executed as part of that function, when we ran the 

program. Note that this differs from the Static Operation count, which will be the number of 

instructions present in the static IR of the program. The remaining fields are percentage values 

computed to the third decimal place. All percentage values are computed as the targeted 

instruction type over the DynOpCount (e.g. %Biased-Br = biased_branch_inst_count / 

total_dyn_inst_count). 

 

For example, if 50% of the function’s operations are integer ALU operations, then its %IALU should 

be 0.500. You can use the following to print these values: #include "llvm/Support/Format.h" and 

errs() << format("%.3f", val). Print all zeros if a function has never been executed, i.e. (func_name, 

0, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) 

 

The bias of a branch is: (frequency_of_most_likely_target / total_execution_frequency). For 

branches with only a single target, the branch bias is considered to be 100%. Branches are 

considered biased if the bias > 80% and unbiased otherwise. 

 

To get started, download the compressed file from the course website. This file contains 3 

benchmarks, skeleton code for your pass and a run script for running LLVM. To unpack the file, 

run tar -zxvf <file_name>.tgz



Benchmarks to Run 
There are 3 benchmarks that you should profile and collect statistics for: simple (benchmark1), 

anagram (benchmark2), and compress (benchmark3). Each is progressively larger and more 

complex. Each benchmark contains directories for the source code (src) and the input file (input). 

 

The simple benchmark is just a C code that contains a single main function with loops and array 

accesses. The anagram benchmark takes a few input words and a dictionary of words and 

computes all possible anagrams of the input words. Note that this benchmark takes time to run 

(30-60 sec). The compress benchmark runs a compression algorithm on the given input file. 

 

We recommend that you use the run script (run.sh) that we have provided to execute your pass on 

the benchmarks. Instructions for using the script are given in comments at the beginning of the 

script. 

 

If running it manually remember to copy the input file to the same directory as your binary 

executable to ensure that your profile counts match ours. You can compile each benchmark with 

gcc to make sure they work before running LLVM. The compress benchmark may check if an 

output with the same name already exists (compress.in.Z). This will make a difference in 

program execution, and lead to different statistics. Therefore, please make sure you delete 

outputs from the previous run before collecting your statistics. 

 

Submission 
To submit your homework, put a single .tgz (gzipped tar file) into the directory 

/hw1_submissions/ on eecs583a.eecs.umich.edu via scp (later versions will automatically 

overwrite the earlier versions if you submit multiple times): 

$ tar cvzf ${uniquename}_hw1.tgz ${uniquename}_hw1 

$ scp ${uniquename}_hw1.tgz {uniquename}@eecs583a.eecs.umich.edu:/hw1_submissions/ 

 

Please name your tar file ${uniquename}_hw1.tgz, and organize the directory as follows: 

${uniquename}_hw1/ 

src/ 

hw1_pass.cpp (your source code) 

results/ 

simple.opcstats 

anagram.opcstats 

compress.opcstats 

 

Since you will be using cp/scp to submit, there is no validation on submitting. Use ls on the submission 

folder to verify that your submission is present. 


