
Page 1 of 8

EECS 583 – Winter 2023 – Midterm Exam

Wednesday, March 15, 2023
Time constraint: 1 hr 20 min
Open book, open notes

Name: _______KEY_______________________________

Please sign indicating that you have upheld the Engineering Honor Code at the
University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 11 questions divided into 2 sections. The point value for each question is
specified with that question. Please show your work unless the answer is obvious. If you
need more space, use the back side of the exam sheets.
The rubrics used to grade each question will be on Gradescope.

Part I: Short Answer
7 questions, 40 pts total Score:_____

Part II: Long Answer
4 questions, 60 pts total Score:_____

Total (100 possible): _______



Page 2 of 8

Part I. Short Answer (Questions 1-7) (40 pts)

1) In register allocation, live ranges are constructed by taking the intersection of 2
dataflow analyses. Name the 2 dataflow analyses used. (5 pts)

Reaching definitions & Liveness.

2) In liveness analysis, how would the analysis results be changed if the meet function
was modified from using union of live variables (IN sets) of the successor blocks to
intersection over the same sets of variables? Briefly explain your answer. (5 pts)

Must consume / Used on All paths

3) Calculate the liveness IN set for the following basic block, where the OUT set is
calculated as {r3,r4}. (5 pts)

OUT = {r3,r4}

IN = {r2, r4}



Page 3 of 8

4) We know from class that common subexpression analysis (CSE) creates opportunities
to apply copy propagation because it introduces moves. Is the reverse true, where
copy propagation creates opportunities for CSE? If yes, show an example with at
most 3 instructions. If not, explain why. (5 pts).

Yes. One possible example:
r1 = r2 + 10
r5 = r2
r4 = r5 + 10

5) Using profile data is generally viewed as a way to improve the effectiveness of
compilers. Are there any potential pitfalls (e.g., making application performance
worse) using profile data? Briefly explain why or why not. (5 pts)

Yes. The tests/inputs used for profiling may not match the actual use
case of an application. In which case, any optimizations made using it
may make the performance worse.
Profiling can lead to an overhead during compilation, which may not be
desirable.

6) Calculate the critical path length of the following basic block. Assume the following
instruction latencies: load = 2, add = 1, mpy = 3. (5 pts)

Length = 5



Page 4 of 8

7) Given the following scheduled superblock with associated liveness information for
each exit point, determine the basic blocks that instructions 1, 2, and 3 could have
originated from. Note that instructions may have originated from multiple basic
blocks. You should make no assumptions about the addresses used by the load and
store instructions. Stores are formatted as store (address, data). (10 pts)

Circle the basic blocks that the instruction could have originated from:

Instruction 1: BB1 BB2 BB3

Instruction 2: BB1 BB2 BB3

Instruction 3: BB1 BB2 BB3

Instruction 1 is a load, and hence cannot be safely moved across either
branch since we do not know anything about its address, which could
be illegal. Hence, Restriction 2 for upward code motion is violated
across both branches 4 and 6.

Instruction 2 is not restricted by any rule, hence it could originate from
any basic block.

Instruction 3 cannot be from BB3 since it is live out in the exit branch
from BB2. Hence, Restriction 1 is violated for branch 6. But there is
no violation for branch 4.



Page 5 of 8

Part II. Longer Problems (Questions 8-11) (60 pts)

8) For the following code:
a. Draw the control flow graph (CFG) (6 points)
b. Compute the CD (Control Dependence) sets for each Basic Block (BB) (6

points).
c. Using the CDs, determine the minimum number of predicates required to

if-convert the code. (3 points)
Hint: The CFG should contain 7 basic blocks, not including pseudo entry/exit basic
blocks. Some basic blocks may be empty.

Control Flow Graph

BB CD set

1 ɸ

2 {-1}

3 {-2}

4 {+2}

5 {-1}

6 {+1}

7 ɸ

The minimum number of predicates required to if-convert the code is ___4_______.



Page 6 of 8

9) Satisfy static single assignment (SSA) form by filling in the blanks in the code
segment below. (15 points)

● The result and arguments of a phi node must be different instances of the
same variable (e.g. y1 = phi(y2, y3)).

● Some phi nodes may be unnecessary and should be left empty.
● Choose operands between a0 and a8, and b0 and b8. Repetition is allowed.



Page 7 of 8

10)The following profile augmented CFG shows the code after optimizing it using
LICM. Four instructions (I1 to I4) were hoisted, one each from BB2, BB3, BB4, and
BB5. You can assume that none of the instructions cause exceptions. The number
nearest the branch arrow indicates the number of times that branch was taken.

a. Find a mapping of instructions to basic blocks such that each instruction (I1,
I2, I3, I4) is mapped to a different basic block (BB2, BB3, BB4, BB5) such
that the instruction could have been hoisted from that basic block. (10 points)

b. Calculate the savings, in terms of the number of dynamic instructions
reduced, by this optimization. (5 points)

r6 is used in BB6 and BB7,
hence I3 can go only in BB2.

r4 is used in BB6, but killed in
BB7, and hence I2 cannot go in
BB3 or BB5, and must go in
BB4. (because I3 is in BB2)

r1 is used in BB7, but killed in
BB6, and hence I1 cannot go in
BB3 or BB4, hence must be in
BB5. (because I)

r8 has no restrictions, hence, it
can be in any of the BBs. But
I4 must be in BB3, as that is
the only remaining option.

Block counts of BB1, BB2, BB3, BB4, BB5 are 20, 100, 10, 90,
90, respectively. Hence, the number of instructions saved is:
(BB2+BB3+BB4+BB5) - 4*(BB1) = 290 - 80 = 210.

Instruction I1 I2 I3 I4

Original Basic Block BB5 BB4 BB2 BB3

Savings = #instructions before LICM - #instructions after LICM = __210____



Page 8 of 8

11) Given below is a loop dependence graph and a processor model. (M), (A), and (B)
refer to memory, ALU, and branch instructions respectively. The memory instructions
use the memory units and the ALU and branch instructions use the ALU units.

a. Determine the MII. Show your working. (5 points)
b. Generate the rolled and unrolled schedules. Lower instruction numbers will

have a higher priority, i.e. instruction 1 has the highest priority. (10 points)

Unrolled Schedule (may contain extra rows)

ALU1 ALU2 MEM1 MEM2

0 1 2
1 4
2 3
3 5 7
4 8 6
5 9
6

7

8

Rolled Schedule (may contain extra rows)

ALU1 ALU2 MEM1 MEM2

0 5 7 1 2
1 8 4 6
2 9 3
3

ResMII = max(ceil(5/2), 4/2) = 3
Cycles: (3,7,8,3), (6,6), (7,5,8,3,7)
RecMII = max((1+1+1)/(0+0+1), 1/1, (1+1+1+1)/(1+0+1+0)) = 3
MII = max(3,3) = 3


