
Page 1 of 8

EECS 583 – Fall 2021 – Midterm Exam

Wednesday, November 3, 2021
Time constraint: 1hr 45min

Open book, open notes

Name: ____KEY__________________________________

Please sign indicating that you have upheld the Engineering Honor Code at the
University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 11 questions divided into 2 sections. The point value for each question is
specified with that question. Please show your work unless the answer is obvious. If you
need more space, use the back side of the exam sheets.

Part I: Short Answer
6 questions, 30 pts total Score:_____

Part II: Medium Problems
5 questions, 70 pts total Score:_____

Total (100 possible): _______

Page 2 of 8

Part I. Short Answer (Questions 1-6) (30 pts)

1) What is the main difference between reaching definitions and available definitions?
(5 pts)

Reaching definitions is any-path analysis thus uses union for the Meet function,
whereas available definition is all-path analysis thus it uses intersect for the Meet
function.

2) Does the order you process instructions in a basic block to compute GEN/KILL
matter for a given dataflow analysis? Yes/No and briefly explain. (5 pts)

Yes, there are forward analyses (e.g., reaching definitions) where GEN/KILL are
computed sequentially from the first instruction to the last instruction in each BB and
backward analyses (e.g., liveness) where GEN/KILL are computed sequentially from
the last instruction to the first instruction in each BB. Note there is no ordering
among the BBs, GEN/KILL can be computed for BBs in arbitrary order.

3) Is it possible to unroll a loop with a statically (compile-time) unknown number of
iterations? Yes/No and briefly explain. (5 pts)

Yes. There are 2 options. First, just insert conditional exit branches (breaks) at the
end of each unrolled body, which is the reverse condition of the original loop back
branch, i.e., i >= 100 for the original loop back branch of i < 100. Second, and the
preferred method, is to insert a remainder loop to execute the iterations that are not a
multiple of the unroll factor, then the loop back branches can be removed from the
unrolled body for all except the last iteration. Note that you can only use the
remainder loop approach when the number of iterations is known at run-time just
before the loop is entered, i.e., for (i=0; i<N; i++). The remainder loop approach will
not work for a pointer chasing loop, i.e., (while ptr!=NULL) ptr = ptr->next.

4) Can performing LICM on an instruction ever hurt performance? Yes/No and briefly
explain. (5 pts)

Yes, there are 2 options. First, if the preheader executes more frequently than the
basic block in the loop body where the instruction is hoisted from, then LICM will
increase dynamic instruction count which would likely hurt performance. Second,
LICM may also increase the register pressure by requiring the destination register of
the hoisted instruction to be live/occupied for the entire duration of the loop. In loops
that require large numbers of registers, then LICM again would likely hurt
performance.
(Note that it is not FPLICM)

Page 3 of 8

5) The 90/10 rule says that 90% of an application’s execution is spent in 10% of the
code. Give an example of how a compiler can exploit this rule to improve
performance. (5 pts)

Many answers are possible here with the common theme of enabling better
optimization of hot code at the possible expense of cold code. Use profile
information to form traces so that hot paths are placed sequentially in memory to
optimize instruction cache behavior. Cold code can also be placed separately from
hot code to optimize the instruction cache. Superblocks can be formed and scheduled
so the hot code gets better instruction overlap than the cold code. Similar to
homework 2, profile information can be used to optimize frequent paths by
performing optimizations (i.e., LICM) when the optimization conditions are only
satisfied along the hot paths and not along the cold paths thereby improving
performance of the hot code.

6) Can the Estart for an instruction in a basic block ever be larger than its Lstart? Yes/No
and briefly explain. (5 pts)

No, the Estart is the earliest start time you can schedule an instruction ignoring
resource constraints and reflects the maximal dependence distance from the start of
the BB, while the Lstart is the latest time you can schedule an instruction ignoring
resource constraints such that the basic block can finish by its maximal Estart time.
Since Lstart is computed from the bottom of the dependence graph using the maximal
Estart time, the smallest Lstart for any instruction is it’s Estart, and of course Lstart
can be larger than Estart for instructions not on the critical path.

Page 4 of 8

Part II. Medium Problems (Questions 7-11) (70 pts)

7) Given the following control flow graph and liveness information for BB1, BB2, and
BB3, compute the Liveness IN/OUT sets for BB4, and fill in the missing operands to
satisfy the Liveness analysis result. You should use each register r1, r2, r3, r4, or r5 at
most once for specifying the missing source/destination operands. (15 pts)

Page 5 of 8

8) Given the following if-converted code, draw the original CFG graph indicating the
home location of all arithmetic/load/store instructions. Hint: the original CFG should
have 8 BBs. (10 pts)

Recall that the format for cmpp instruction is as follows:
p1, p2 = CMPP.D1a.D2a(cond) if p3, where

p1 = first destination predicate
p2 = second destination predicate
D1a = action specifier for first destination
D2a = action specifier for second destination
cond = compare condition
p3 = guarding predicate

x = load(addr)
p1, p2 = cmpp.UN.UC(a<0) if T
p3 = cmpp.UN(b<0) if p1
x = x-a if p1
x = x+a if p2
b = b*2 if p3
c = c+b if p1
p4,p5 = cmpp.UN, UC(c<0) if p1
c = c*2 if p5
c = c+1 if p4
store(x, addr) if T

Page 6 of 8

9) Satisfy static single assignment (SSA) form by filling in the blanks in the code
segment below. Remember, the result and arguments of a Phi node must be different
instances of the same variable (i.e., x1 = Phi(x2, x3)). Note that some Phi nodes may
be unnecessary and should be left empty. For your answers, choose from x0 to x6
and y0 to y6. (15 pts)

1

Page 7 of 8

10) You want to apply Loop Invariant Code Motion (LICM) to the CFG below. Insert the
following instructions I1-I4 into BB1-BB4 with a maximum of 1 instruction added to
each BB (i.e., one instruction in BB1, one in BB2, etc.) so that LICM can hoist as
many instructions as possible. Just mark on the CFG below where the instructions
should be placed and indicate whether they can be hoisted to the preheader. For those
instructions that could not be hoisted, specify a reason. (15 pts)

I1: r6 = r6 + 1
I2: r5 = r3 * r1
I3: r4 = r2 + 2
I4: r3 = r1 + r2

I3 and I4 can be hoisted by LICM.
I1 cannot be hoisted because it is a self-increment and makes it not a loop invariant
I2 cannot be hoisted because r5 is live in both exits “for all exit BB, if dest(X) is live on
the exit edge, X is in the available defs set on the edge” according to lecture
Some will think about putting I2 in BB1 so it can be hoisted, but one of the src operands
of I2 is r3. If and only if I2 is in BB1 could make I2 loop invariant. Since we have the
constraint that BB1-BB4 has one instruction each, I2 cannot be hoisted.
So the best solution that could hoist as many instructions as possible is to put I4 in BB1
and put I3 in BB2.

Page 8 of 8

11) Given the dependence graph and the processor model below, answer the following
questions related to modulo scheduling. (15 pts)
(a) Is the graph resource or recurrence constrained? Justify your answer. (5 pts)
(b) Generate both unrolled and rolled schedules for MII = 3. (10 pts)

For scheduling, you can assume instruction 1 is the highest priority, 2 is the second
highest priority, etc. You do not need to assign staging predicates.

