
Page 1 of 7

EECS 583 – Fall 2021 – Midterm Exam

Wednesday, November 3, 2021
Time constraint: 1hr 45min

Open book, open notes

Name: ______________________________________

Please sign indicating that you have upheld the Engineering Honor Code at the
University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 11 questions divided into 2 sections. The point value for each question is
specified with that question. Please show your work unless the answer is obvious. If you
need more space, use the back side of the exam sheets.

Part I: Short Answer
6 questions, 30 pts total Score:_____

Part II: Medium Problems
5 questions, 70 pts total Score:_____

Total (100 possible): _______

Page 2 of 7

Part I. Short Answer (Questions 1-6) (30 pts)

1) What is the main difference between reaching definitions and available definitions?
(5 pts)

2) Does the order you process instructions in a basic block to compute GEN/KILL
matter for a given dataflow analysis? Yes/No and briefly explain. (5 pts)

3) Is it possible to unroll a loop with a statically (compile-time) unknown number of
iterations? Yes/No and briefly explain. (5 pts)

4) Can performing LICM on an instruction ever hurt performance? Yes/No and briefly
explain. (5 pts)

5) The 90/10 rule says that 90% of an application’s execution is spent in 10% of the
code. Give an example of how a compiler can exploit this rule to improve
performance. (5 pts)

6) Can the Estart for an instruction in a basic block ever be larger than its Lstart? Yes/No
and briefly explain. (5 pts)

Page 3 of 7

Part II. Medium Problems (Questions 7-11) (70 pts)

7) Given the following control flow graph and liveness information for BB1, BB2, and
BB3, compute the Liveness IN/OUT sets for BB4, and fill in the missing operands to
satisfy the Liveness analysis result. You should use each register r1, r2, r3, r4, or r5 at
most once for specifying the missing source/destination operands. (15 pts)

Page 4 of 7

8) Given the following if-converted code, draw the original CFG graph indicating the
home location of all arithmetic/load/store instructions. Hint: the original CFG should
have 8 BBs. (10 pts)

Recall that the format for cmpp instruction is as follows:
p1, p2 = CMPP.D1a.D2a(cond) if p3, where

p1 = first destination predicate
p2 = second destination predicate
D1a = action specifier for first destination
D2a = action specifier for second destination
cond = compare condition
p3 = guarding predicate

x = load(addr)
p1, p2 = cmpp.UN.UC(a<0) if T
p3 = cmpp.UN(b<0) if p1
x = x-a if p1
x = x+a if p2
b = b*2 if p3
c = c+b if p1
p4,p5 = cmpp.UN, UC(c<0) if p1
c = c*2 if p5
c = c+1 if p4
store(x, addr) if T

Page 5 of 7

9) Satisfy static single assignment (SSA) form by filling in the blanks in the code
segment below. Remember, the result and arguments of a Phi node must be different
instances of the same variable (i.e., x1 = Phi(x2, x3)). Note that some Phi nodes may
be unnecessary and should be left empty. For your answers, choose from x1 to x6
and y1 to y6. (15 pts)

Page 6 of 7

10) You want to apply Loop Invariant Code Motion (LICM) to the CFG below. Insert the
following instructions I1-I4 into BB1-BB4 with a maximum of 1 instruction added to
each BB (i.e., one instruction in BB1, one in BB2, etc.) so that LICM can hoist as
many instructions as possible. Just mark on the CFG below where the instructions
should be placed and indicate whether they can be hoisted to the preheader. For those
instructions that could not be hoisted, specify a reason. (15 pts)

I1: r6 = r6 + 1
I2: r5 = r3 * r1
I3: r4 = r2 + 2
I4: r3 = r1 + r2

Page 7 of 7

11) Given the dependence graph and the processor model below, answer the following
questions related to modulo scheduling. (15 pts)
(a) Is the graph resource or recurrence constrained? Justify your answer. (5 pts)
(b) Generate both unrolled and rolled schedules for MII = 3. (10 pts)

For scheduling, you can assume instruction 1 is the highest priority, 2 is the second
highest priority, etc. You do not need to assign staging predicates.

