
Page 1 of 13

EECS 583 – Fall 2019 – Midterm Exam

Wednesday, November 13, 2019; 10:40am-12:30pm

Friday, November 15, 2019; 10:40am-12:30pm

Open book, open notes

Name: ________Key_(Answers in red)______________________

Please sign indicating that you have upheld the Engineering Honor Code at the

University of Michigan.

"I have neither given nor received aid on this examination."

Signature: ______________________________________

There are 11 questions divided into 2 sections. The point value for each question is

specified with that question. Please show your work unless the answer is obvious. If you

need more space, use the back side of the exam sheets.

Part I: Short Answer

 5 questions, 25 pts total Score:_____

Part II: Medium Problems

6 questions, 75 pts total Score:_____

Total (100 possible): _______

Page 2 of 13

Part I. Short Answer (Questions 1-5) (25 pts)

1) Name a way that a compiler can use profiling information to improve performance.

(5 pts)

(many answers were accepted for this question, here are a few)

 Find hot code and more aggressively optimize in those code regions.

 Forming traces/superblocks.

 Laying out hot code blocks in sequence to improve Icache performance

 Optimize for the common case and repair for the uncommon case such as the frequent

path LICM in homework 2.

2) When is a control flow edge from basic block A to B (AB) a backedge? (5 pts)

When B dominates A.

3) Why is it necessary to prove that an instruction will not cause an exception

(Restriction 2) when performing upward code motion? (5 pts)

Speculative execution occurs when instructions are moved upwards, hence

instructions execute more often than in the original program. It is necessary to prove

an instruction will not cause exceptions to prevent spurious exceptions from

occurring when an instruction would not have executed in the original program.

These spurious exceptions break otherwise working code.

4) If any instruction in a basic block is scheduled later than its Lstart, then the schedule

length for the basic block will be longer than the critical path length. Is the preceding

statement True or False? Explain your answer. (5 pts)

True. By definition, Lstart is the latest an instruction can be scheduled such that the

schedule length is not increased beyond the infinite resource schedule length (i.e., critical

path length). Scheduling an instruction after its Lstart will lengthen the critical path.

Page 3 of 13

5) A basic block can only be control dependent on an immediate predecessor block. Is

the preceding statement True or False? Explain why True or give counter example if

False (5 pts)

False. Many counter examples are possible and were accepted, the above is 1 example.

BB4 is CD on BB1 and is not its immediate predecessor. BB4 is CD on BB1 because

BB4 is only executed if the correct branch from BB1 is taken.

Page 4 of 13

Part II. Medium Problems (Questions 6-11) (75 pts)

6) Draw the control flow graph (CFG) and determine the minimum number of predicates

required to if-convert the following code. Justify your answer. (10 pts)

BB Post

dom

Imm

Post

dom

CD

1 1,8 8 -

2 2,8 8 -1

3 3,6,8 6 -2

4 4,6,8 6 -3

5 5,6,8 6 +3

6 6,8 8 -2

7 7,8 8 +1, +2

8 8 - -

do{

 if (a>0 && b>0){

 if (c>0)

 x+=1;

 else

 x+=2;

 z=x/3;

 }else{

 y+=1;

 }

}while(z<100)

CFG

(Remember, first step in CD

calculation is to nuke backedges)

5 unique CD sets. Thus, at least 5

predicates are necessary.

BB1

BB2

BB3

BB4

x=x+1

a>0 a<=0

b>0

c>0

BB5

x=x+2

BB6

z=x/3

BB8

BB7

y=y+1

b<=0

c<=0

Page 5 of 13

7) Find all uses of r2 defined by instruction 4 (i.e., DU chain for instruction 4). You may

solve by inspection. (10 pts)

3, 5, 7

2: r1 = 10

3: r4 = r2+2 4: r2 = r1*3

5: r5 = r2–r4
6: r2 = r3+4

7: r5 = r2+4 8: r6 = r2*4

1: r2 = 0

Page 6 of 13

8) You are trying to reverse engineer some optimized assembly code to determine the

original locations of instructions before optimization. In the following loop consisting of

4 basic blocks (BB1-BB4), the preheader (BB0) contains 4 instructions (I1, I2, I3, I4) that

were possibly removed from the loop using LICM. For each instruction, determine

whether LICM could have been legally applied and if so, which basic block(s) the

instruction could have originally resided. Circle the correct answers. (10 pts)

I1 LICM legal? Yes No Possible original blocks: BB1 BB2 BB3 BB4

I2 LICM legal? Yes No Possible original blocks: BB1 BB2 BB3 BB4

I3 LICM legal? Yes No Possible original blocks: BB1 BB2 BB3 BB4

I4 LICM legal? Yes No Possible original blocks: BB1 BB2 BB3 BB4

BB1

BB2
BB3

r7 = r7+1

BB4

r1 = r1+1

Live = {r5, r6} Live = {r2, r3, r4, r8}

I1. r2 = load(r1)

I2. r3 = load(r4)

I3. r5 = r6*3

I4. r8 = r6*3

BB0

I1: r1 is not loop invariant => no LICM

I2: There is use of r3 after BB4, so def must be available there => only BB1,4

I3: There is use of r5 at left branch out of BB2, so def must be available there => only BB1,2

I4: There is use of r8 after BB4, so def must be available there => only BB1,4

Page 7 of 13

9) You are building a new dataflow analysis that can identify trusted variables. To be

conservative, we assume all values loaded from memory to be untrusted and any

variables consumed in a block that are not defined in the current basic block to also be

untrusted. Constants are assumed trusted. For other types of instructions, the destination

register is trusted if all of its source operands contain known trusted values. For your

compiler, build a dataflow analysis pass that identifies trusted variables at a certain

point p. (15 pts)

For example,

At point p, {r1,r2} are trusted while

{r2,r3} are trusted at point q.

(a) Is this a forward or backward

data flow analysis problem?

(b) Is this an all-path or any-path

dataflow analysis problem?

(c) Define GEN and KILL sets to

identify trusted variables.

(a) Forward

(b) All path

(c) Next page

r0 = load 0xDEAD

r1 = 5

r2 = r1+8

r3 = r0+r2

r3 = 5

r5 = r3-r0

q

p

r4 = 2 r1 = load 0xBEEF

Page 8 of 13

For each basic block

 GEN = none

 KILL = none

 for dest in each instruction

 if load instr then

 GEN -= dest

KILL+=dest

 else if const move (const assignment) then

GEN += dest

KILL -= dest

 else

isTrusted = True

for each operand in instruction

 if operand not in GEN

 isTrusted = False

 break

if isTrusted then

 GEN += dest

 KILL -= dest

else

 GEN -= dest

 KILL += dest

Page 9 of 13

10) Satisfy static single assignment (SSA) form by filling in the blanks with variables

from the below pool. The result and arguments of a Phi node must either be all x’s or all

y’s (i.e. x5 = Phi(x0, x4)). Solving by inspection is fine. (15 pts)

Variable Pool (each can be used more than once):

x5, y0, y2, y3, y4, y6, y7, y8

Page 10 of 13

11) Compute the ResMII, RecMII, and MII for following dependence graph and

processor model. Then, generate the MII modulo schedule. Show the unrolled and

rolled schedules for your answer. You can assume that instruction 1 is the highest

priority, 2 is second, etc. You do not need to assign staging predicates. Also, calculate

how many cycles it takes to execute 100 iterations of the loop. (15 pts)

******This dependency graph is for the FRIDAY version, so look at the corresponding

FRIDAY answer. For the WEDNESDAY version, the edge from 2->3 was 2,0, which

makes the problem more difficult. The Wednesday graph is re-drawn in the Wednesday

solution for clarity.

Processor model

2 fully pipelined function units

1 ALU, 1 MEM

Instructions 1 and 4 are memory

Instructions 2, 3, 5, and 6 use the ALU

Instruction 6 is a branch

Page 11 of 13

Page 12 of 13

Page 13 of 13

