
Page 1 of 8 

EECS 583 – Fall 2019 – Midterm Exam 

Wednesday, November 13, 2019; 10:40am-12:20pm 

Friday, November 15, 2019; 10:40am-12:20pm 

Open book, open notes 
 

 

 

Name: ______________________________________ 
 

Please sign indicating that you have upheld the Engineering Honor Code at the 

University of Michigan. 

 
"I have neither given nor received aid on this examination." 

 

 

Signature: ______________________________________ 

 
 

 

 

 

There are 11 questions divided into 2 sections.  The point value for each question is 

specified with that question.  Please show your work unless the answer is obvious.  If you 

need more space, use the back side of the exam sheets. 

 
 

 

 

Part I: Short Answer  

 5 questions, 25 pts total  Score:_____ 

 

 

 

Part II: Medium Problems 

6 questions, 75 pts total  Score:_____ 

 

 

 

 

 

 

 

Total (100 possible): _______ 

 

 

 



Page 2 of 8 

 

Part I. Short Answer (Questions 1-5) (25 pts) 
 

1) Name a way that a compiler can use profiling information to improve performance.  

(5 pts) 

 

 

 

 

 

 

2) When is a control flow edge from basic block A to B (AB) a backedge? (5 pts) 

 

 

 

 

 

 

3) Why is it necessary to prove that an instruction will not cause an exception 

(Restriction 2) when performing upward code motion?  (5 pts) 

 

 

 

 

 

 

4) If any instruction in a basic block is scheduled later than its Lstart, then the schedule 

length for the basic block will be longer than the critical path length.  Is the preceding 

statement True or False?  Explain your answer.  (5 pts) 

 

 

 

 

 

 

5) A basic block can only be control dependent on an immediate predecessor block.  Is 

the preceding statement True or False? Explain why True or give counter example if 

False (5 pts) 

 

 

 



Page 3 of 8 

Part II. Medium Problems (Questions 6-11)  (75 pts) 
 

6)  Draw the control flow graph (CFG) and determine the minimum number of 

predicates required to if-convert the following code. Justify your answer.  (10 pts) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

do{ 

   if (a>0 && b>0){ 

      if (c>0) 

         x+=1; 

      else 

         x+=2; 

      z=x/3; 

   }else{ 

      y+=1; 

   } 

}while(z<100) 



Page 4 of 8 

7)  Find all uses of r2 defined by instruction 4 (i.e., DU chain for instruction 4). You 

may solve by inspection. (10 pts) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2: r1 = 10 

3: r4 = r2+2 4: r2 = r1*3 

5: r5 = r2–r4 
6: r2 = r3+4 

7: r5 = r2+4 8: r6 = r2*4 

1: r2 = 0 



Page 5 of 8 

8) You are trying to reverse engineer some optimized assembly code to determine the 

original locations of instructions before optimization.  In the following loop 

consisting of 4 basic blocks (BB1-BB4), the preheader (BB0) contains 4 instructions 

(I1, I2, I3, I4) that were possibly removed from the loop using LICM.  For each 

instruction, determine whether LICM could have been legally applied and if so, 

which basic block(s) the instruction could have originally resided.  Circle the correct 

answers. (10 pts) 

 

 

I1 LICM legal?   Yes   No Possible original blocks: BB1   BB2   BB3   BB4 

I2  LICM legal?   Yes   No Possible original blocks: BB1   BB2   BB3   BB4 

I3  LICM legal?   Yes   No Possible original blocks: BB1   BB2   BB3   BB4 

I4  LICM legal?   Yes   No Possible original blocks: BB1   BB2   BB3   BB4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BB1 

BB2 
BB3 

r7 = r7+1 

BB4 

r1 = r1+1 

Live = {r5, r6} Live = {r2, r3, r4, r8} 

I1. r2 = load(r1) 

I2. r3 = load(r4) 

I3. r5 = r6*3 

I4. r8 = r6*3 

BB0 



Page 6 of 8 

9) You are building a new dataflow analysis that can identify trusted variables. To be 

conservative, we assume all values loaded from memory to be untrusted and any 

variables consumed in a block that are defined in another basic block to also be 

untrusted.  Constants are assumed trusted. For other types of instructions, the 

destination register is trusted if all of its source operands contain known trusted 

values.  For your compiler, build a dataflow analysis pass that identifies trusted 

variables at a certain point p. (15 pts) 

 

For example,  

 

 

 

 

At point p, {r1,r2} are trusted while 

{r2,r3} are trusted at point q. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Is this a forward or backward data flow analysis problem? 

 

 

 

(b) Is this an all-path or any-path dataflow analysis problem? 

 

 

 

(c) Define GEN and KILL sets to identify trusted variables. 

 

 

 

 

 

 

 

 

 

 

r0 = load 0xDEAD   

r1 = 5                       

r2 = r1+8 

r3 = r0+r2 

r3 = 5 

r5 = r3-r0 

q 

p 

r4 = 2 r1 = load 0xBEEF 



Page 7 of 8 

10) Satisfy static single assignment (SSA) form by filling in the blanks with variables 

from the below pool. The result and arguments of a Phi node must either be all x’s or 

all y’s (i.e. x5 = Phi(x0, x4) ). Solving by inspection is fine. (15 pts) 
 

Variable Pool (each can be used more than once):  

x5, y0, y2, y3, y4, y6, y7, y8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0 = 2 

___ = 3 

x1 = Phi(x0, x8) 

y1 = Phi(y0, y8) 

y2 = x1 * y1 

y7 = x2 + 1 

___ = x2 + y7 

y3 = Phi(___, ___) 

___ = ___+1 x2 = 3 

y5 = Phi(y2, y4) 

x3 = Phi(x1, x2) 

x4 = x3 + y5 

y6 = 4 

x6 = Phi(x4, x5) 

___ = Phi(___,___) 

x7 = x6 + 1 

x8 = x7 + y8 

BB1 

BB2 

BB3 BB4 

BB5 BB6 

BB7 



Page 8 of 8 

11) Compute the ResMII, RecMII, and MII for following dependence graph and 

processor model. Then, generate the MII modulo schedule. Show the unrolled and 

rolled schedules for your answer. You can assume that instruction 1 is the highest 

priority, 2 is second, etc. You do not need to assign staging predicates. Also, 

calculate how many cycles it takes to execute 100 iterations of the loop. (15 pts) 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

1 (M) 

2 (A) 

3 (A) 

4 (M) 

5 (A) 

6 (B) 

2,0 

2,0 

2,0 

1,1 

Processor model 

2 fully pipelined function units 

1 ALU, 1 MEM 

 

Instructions 1 and 4 are memory 

Instructions 2, 3, 5, and 6 use the ALU 

Instruction 6 is a branch 

2,0 

0,0 

0,0 

1,1 


