HW?2 — Frequent Path Loop
Invariant Code Motion

Loop Invariant Code Motion (LICM)

for(inti=0;i<n;i++){
X=V+ 2z Their values don't

. _: change within the loop

Loop Invariant Code Motion (LICM)

for(inti=0;i<n;i++){ « Move operations whose source
X=VY+2Z operands do not change within
ali] =6 *i+x*x: the loop to the loop preheader

— Execute them only 1x per

} invocation of the loop
— Be careful with memory
operations!
X=Yy+1z — Be careful with ops not executed
tl=x*x; every iteration

for(inti=0;i<n;i++){
ali]=6*i+tl; LICM code exists in LLVM!
) — /lib/Transforms/Scalar/LICM.cpp

Your Assignment: Frequent Path LICM

BBl r1=gA

— |
r4 = load(rl)

r7=r4*3 BB2
r3=r3+r5

1
r2=r2+1
store (r2, rl)

1

99 BB3

r8=r2+7
store (r3, r8) BB4

1

Your Assignment: Frequent Path LICM

BB1 rl = &A Cannot perform LICM on load, because of
the store-load dependency

= Io"ad(r]_) /

—
r7=r4*3 BB2
r3=r3+r5

r2=r2 \1
store (r2, rl)

1

99 BB3

r8=r2+7
store (r3, r8) BB4

Your Assignment: Frequent Path LICM

BB1| ,1=-8A Cannot perform LICM on load, because of
the store-load dependency

1 /
r4 = load(rl) But... profile data says that the store rarely

(7 =r4 * 3 BB2 happens
r3=r3+r5

r2=r2 \1
store (r2, rl)

1

99 BB3

r8=r2+7
store (r3, r8) BB4

}

Your Assignment: Frequent Path LICM

BBl r1=gA

3

r4 = load(rl)
r7=r4*3
r3=r3+r5

BB2

1

99

r2=r2+1

store (r2, rl)

1

r8=r2+7
store (r3, r8)

BB4

}

Cannot perform LICM on load, because of
the store-load dependency

A. .. profile data says that the store rarely

happens

BB3
Frequent Path LICM:

1) Ignore infrequent dependence
between loads and stores

Your Assignment: Frequent Path LICM

BB1 rl = &A Cannot perform LICM on load, because of
<—~> the store-load dependency
?:4 Zload(rl) A. .. profile data says that the store rarely
r7=r4*3 BB2 happens
r3=r3+r5
1
59 r2=r2+1 BB3
SIGE (2, i, Frequent Path LICM:
1 1) Ignore infrequent dependence
=2 7 BB4 between loads and stores
S0l (I?" r8) 2) Perform LICM on load

Your Assignment: Frequent Path LICM

BBl r1=gA

~r7=r4*3

—>
d
%—1
~ra = load(rl)
\

r3=r3+r5

BB2

1

99

r2=r2+1
store (r2, rl)

1

r8=r2+7
store (r3, r8) BB4

}

Cannot perform LICM on load, because of
the store-load dependency

A. .. profile data says that the store rarely

happens

BB3
Frequent Path LICM:

1) Ignore infrequent dependence
between loads and stores

2) Perform LICM on load

3) Perform LICM on any consumers of
the load that become invariant

Your Assignment: Frequent Path LICM

BB1

\

Cannot perform LICM on load, because of
the store-load dependency

A. .. profile data says that the store rarely

Frequent Path LICM:

rl =&A
ﬂ
—
r4 = load(rl)
7 =r4 * 3 BB2 happens
r3=r3+r5
r2=r2+1
99 store (r2, rl1) | BB3
r4 = load(rl)
/ r7=r4*3 1)
r8=r2+7
store (r3, r8) BB4 2)
) 3)
4)

lgnore infrequent dependence
between loads and stores

Perform LICM on load

Perform LICM on any consumers of
the load that become invariant
Insert fix-up code to restore correct
execution

Your Assignment: Frequent Path LICM

rl1 =&A

[3

r4 = Io‘éd(rl)

r7=r4*3

r3=r3+r5

\1‘

99

r2=r2+1
store (r2, r1)

1

r8=r2+7
store (r3, r8)

Before FPLICM

rl = &A
r4 = load(rl)
r7=r4*3
r3=r3+r5
r2=r2+1
99 store (r2, rl)
r4 = load(rl)
/ r7=r4*3

r8=r2+7
store (r3, r8)

l

After FPLICM

10

HW2: Frequent Path (FP) LICM

Correctness:
* |dentify the Frequent Path (edge probability >= 80%)
* Find store instructions among all infrequent BBs and their
dependent load instructions in frequent BBs
destination operand of infrequent store = source operand of frequent load
* Hoist the FP invariants: Load instruction
* Replicate all hoisted instructions in the infrequent path
Performance:
* Create a heuristic that determines to perform FP LICM or not.
* Smart heuristic should apply optimization when it’s profitable.
* Hoist the profitable FP invariants.

* Load instruction
 Consumers of the load that become invariant™ (For bonus points)

FPLICM: What constitutes to FP

Correctness:
* this can be accomplished by starting at the loop header and

repeatedly following the >=80% branch until a >=80% loop
backedge is taken.

* *Note: This means that the cumulative probability of a BB
might be lower than 80%

* Anything not on the frequent path is on the infrequent path.

Performance:
* tune the parameter to achieve the highest performance gains

HW?2: Useful Resources

run.sh
— List of commands used in HW2
— Check correctness of your pass!
Project Template
— HW2PASS.cpp

— runOnloop(...) inSubLoop(...)
Visualization Script — will be on piazza later
Benchmarks

— 6 correctness tests + README (Required)
* Only need to hoist the dependent load instructions
* Must generate the correct output after applying your FPLICM pass

* Only submit the file created after your pass could run. hw2correctl.fplicm.bc
=> hw2correctl_base.bc. You do NOT have to test your pass on the performance
benchmarks

— 4 performance tests + README (Optional)
* Hoist as many instructions as possible
* Correctness first, then the performance
* Same thing. except rename to hw2perfl_bonus.bc

LLVM Code of Interest

* The following slides present code from the LLVM codebase
that may help you with HW2.

* Disclaimers:

— Use of following APl is your choice. There are many ways
to do this assignment.

— You are free to use any other code that exists in LLVM
12.0.1 or that you develop.

— Read the documentation/source before asking for help!

http://llvm.org/docs/ProgrammersManual.html#thelpful-
hints-for-common-operations

http://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations

Code: Manipulating Basic Blocks

e SplitBlock(...) splits a BB at a

specified instr, returns ptr to

new BB that starts with the
instr, connects the BBs with
an unconditional branch

SplitEdge(...) will insert a BB
between two specified BBs

Code found in:

— <llvm-src-
root>/include/llvm/Transforms/U
tils/BasicBlockUtils.h

— <llvm-src-
root>/1ib/Transforms/Utils/Basi
cBlockUtils.cpp

// I is an Instruction¥*
BasicBlock *BB1l = I->getParent();
BasicBlock *BB3 =

SplitBlock (BB1l, I);
BasicBlock *BB2 =

SplitEdge (BB1, BB3);

Code: Creating and Inserting
Instructions

Various ways to create & insert // 1) create load, insert at end of

instructions

Hint: Instructions have a
clone() member function

See specific instruction
constructors/member
functions in:

— <llvm-src-
root>/include/1lvm/IR/Instruction
s.h

See general instruction
functions available to all
instructions in:

— <llvm-src-
root>/include/1lvm/IR/Instruction
.h

//
LoadInst *LD =
new LoadInst (Val,

specified basic block

“loadflag”,
BR1) ;
// 2) create branch using Create
// method, insert before BBl’s
// terminating instruction

Branch: :Create (BB1, BB2Z,
BBl->getTerminator ())

flag,

// 3) create a store inst that stores
// result of LD to some variable
// (related to next slide)

StoreInst *ST =

new Storelnst (LD, wvar);

//
ST->insertAfter (LD) ;

inserting store into code
16

Code: Creating Variables

// 1) Create a variable in the

* Use AllocaInSt to // function Entry block

allocate memory Space AllocalInst *Val = new AllocalInst(
I->getType (),

on the stack. 0
nullptr,
Entry->getTerminator ()

) ;

// 2) store to the variable
StoreInst *ST = new StorelInst (
Result,
Val,
Entry->getTerminator ()

) ;

Important: Maintaining SSA Form

e Static Single Assignment form requires unique destination
registers for each instruction

— Replicated instructions in your infrequent BB will write to
different regs compared to the instructions in the
preheader!

— Store results of hoisted instrs to stack variables (see prev.
slide)

— Make sure Allocalnst’s are in function’s entry BB!

General Notes Regarding HW?2

Start early!

Will be released on 9/20 (Mon)

Make sure your optimization doesn’t break a program!

Start with script/template.

Try the bonus part

Check the piazza

Running/Debugging

Performance Competition: Generate correct AND fast bitcode

