
HW2 – Frequent Path Loop
Invariant Code Motion

Yunjie Pan

Sep 20, 2021

Loop Invariant Code Motion (LICM)

1

for (int i = 0; i < n; i++) {
x = y + z;
a[i] = 6 * i + x * x;

}

Their values don’t
change within the loop

Loop Invariant Code Motion (LICM)

2

for (int i = 0; i < n; i++) {
x = y + z;
a[i] = 6 * i + x * x;

}

x = y + z;
t1 = x * x;
for (int i = 0; i < n; i++) {

a[i] = 6 * i + t1;
}

• Move operations whose source
operands do not change within
the loop to the loop preheader
– Execute them only 1x per

invocation of the loop
– Be careful with memory

operations!
– Be careful with ops not executed

every iteration

• LICM code exists in LLVM!
– /lib/Transforms/Scalar/LICM.cpp

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

3

1

1

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

4

1

1

Cannot perform LICM on load, because of
the store-load dependency

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

5

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

6

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence

between loads and stores

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

7

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence

between loads and stores
2) Perform LICM on load

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

8

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence

between loads and stores
2) Perform LICM on load
3) Perform LICM on any consumers of

the load that become invariant

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)
r4 = load(r1)
r7 = r4 * 3

r8 = r2 + 7
store (r3, r8)

9

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence

between loads and stores
2) Perform LICM on load
3) Perform LICM on any consumers of

the load that become invariant
4) Insert fix-up code to restore correct

execution

99

BB2

BB1

BB4

BB3

Your Assignment: Frequent Path LICM

r1 = &A
r4 = load(r1)
r7 = r4 * 3

r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)
r4 = load(r1)
r7 = r4 * 3

r8 = r2 + 7
store (r3, r8)

10

1

1

After FPLICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

1

1

Before FPLICM

99 99

HW2: Frequent Path (FP) LICM

11

Correctness:
• Identify the Frequent Path (edge probability >= 80%)
• Find store instructions among all infrequent BBs and their

dependent load instructions in frequent BBs
destination operand of infrequent store = source operand of frequent load

• Hoist the FP invariants: Load instruction
• Replicate all hoisted instructions in the infrequent path
Performance:
• Create a heuristic that determines to perform FP LICM or not.

• Smart heuristic should apply optimization when it’s profitable.

• Hoist the profitable FP invariants.
• Load instruction
• Consumers of the load that become invariant* (For bonus points)

FPLICM: What constitutes to FP

12

Correctness:
• this can be accomplished by starting at the loop header and

repeatedly following the >=80% branch until a >=80% loop
backedge is taken.

• *Note: This means that the cumulative probability of a BB
might be lower than 80%

• Anything not on the frequent path is on the infrequent path.

Performance:
• tune the parameter to achieve the highest performance gains

HW2: Useful Resources

13

• run.sh
– List of commands used in HW2

– Check correctness of your pass!

• Project Template
– HW2PASS.cpp

– runOnLoop(…) inSubLoop(…)

• Visualization Script – will be on piazza later

• Benchmarks
– 6 correctness tests + README (Required)

• Only need to hoist the dependent load instructions

• Must generate the correct output after applying your FPLICM pass

• Only submit the file created after your pass could run. hw2correct1.fplicm.bc
=> hw2correct1_base.bc. You do NOT have to test your pass on the performance
benchmarks

– 4 performance tests + README (Optional)
• Hoist as many instructions as possible

• Correctness first, then the performance

• Same thing. except rename to hw2perf1_bonus.bc

LLVM Code of Interest

• The following slides present code from the LLVM codebase
that may help you with HW2.

• Disclaimers:

– Use of following API is your choice. There are many ways
to do this assignment.

– You are free to use any other code that exists in LLVM
12.0.1 or that you develop.

– Read the documentation/source before asking for help!

http://llvm.org/docs/ProgrammersManual.html#helpful-
hints-for-common-operations

14

http://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations

Code: Manipulating Basic Blocks

• SplitBlock(…) splits a BB at a
specified instr, returns ptr to
new BB that starts with the
instr, connects the BBs with
an unconditional branch

• SplitEdge(…) will insert a BB
between two specified BBs

• Code found in:
– <llvm-src-

root>/include/llvm/Transforms/U

tils/BasicBlockUtils.h

– <llvm-src-

root>/lib/Transforms/Utils/Basi

cBlockUtils.cpp

// I is an Instruction*

BasicBlock *BB1 = I->getParent();

BasicBlock *BB3 =

SplitBlock(BB1, I);

BasicBlock *BB2 =

SplitEdge(BB1, BB3);

15

Code: Creating and Inserting
Instructions

• Various ways to create & insert
instructions

• Hint: Instructions have a
clone() member function

• See specific instruction
constructors/member
functions in:
– <llvm-src-

root>/include/llvm/IR/Instruction
s.h

• See general instruction
functions available to all
instructions in:
– <llvm-src-

root>/include/llvm/IR/Instruction
.h

// 1) create load, insert at end of

// specified basic block

LoadInst *LD =

new LoadInst(Val,

“loadflag”,

BB1);

// 2) create branch using Create

// method, insert before BB1’s

// terminating instruction

Branch::Create(BB1, BB2, flag,

BB1->getTerminator());

// 3) create a store inst that stores

// result of LD to some variable

// (related to next slide)

StoreInst *ST =

new StoreInst(LD, var);

// inserting store into code

ST->insertAfter(LD);
16

Code: Creating Variables

• Use AllocaInst to
allocate memory space
on the stack.

// 1) Create a variable in the

// function Entry block

AllocaInst *Val = new AllocaInst(

I->getType(),

0,

nullptr,

Entry->getTerminator()

);

// 2) store to the variable

StoreInst *ST = new StoreInst(

Result,

Val,

Entry->getTerminator()

);

17

Important: Maintaining SSA Form

• Static Single Assignment form requires unique destination
registers for each instruction

– Replicated instructions in your infrequent BB will write to
different regs compared to the instructions in the
preheader!

– Store results of hoisted instrs to stack variables (see prev.
slide)

– Make sure AllocaInst’s are in function’s entry BB!

18

General Notes Regarding HW2

• Start early!

• Will be released on 9/20 (Mon)

• Make sure your optimization doesn’t break a program!

• Start with script/template.

• Try the bonus part

• Check the piazza

• Running/Debugging

• Performance Competition: Generate correct AND fast bitcode

19

