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ABSTRACT

There is an expectation among experts that the memory hierar-
chy will be expanded to provide support for multi-level memory,
enabling the use of new memory technologies living side-by-side
with traditional DRAM. In doing so, the advantages of traditional
DRAM can be retained alongside the advantages of these new mem-
ory technologies. However, in order to be effective, memory must
be allocated to different memory levels, either manually by the
programmer, or automatically.

This paper introduces a novel process which combines a cus-
tom LLVM Pass with a custom C library to automatically handle
memory allocations performed by function calls without the need
for programmer input or hardware/OS level changes. When uti-
lizing a simulated multi-level memory architecture with dual non-
volatile RAM and volatile DRAM, the results demonstrate that such
a program can alleviate the burden on the programmer while still
maintaining the performance advantages of DRAM and the higher
density of non-volatile memory technology.
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1 INTRODUCTION

Since the introduction of dynamic random-access memory (DRAM)
in the 1970s, the memory hierarchy has generally had a single
level of main memory. Today, however, there are several different
memory technologies which look poised to replace DRAM long
term, as they have performance close to or exceeding DRAM[9],
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or they have higher capacity and non-volatility[3, 9, 20, 34, 37].
However, in the short term, all of these memory technologies will
likely serve as an additional layer in the memory hierarchy – in
some cases, they will be below traditional main memory such as
DRAM, in others, they may be above.

In order to best take advantage of multi-level memory tech-
nologies, programmers are expected to manually specify that a
particular write be done in one level of memory or the other. For
example, the Intel libpmem library[31], which supports non-volatile
memories, allows the programmer to indicate if a particular dy-
namic memory allocation ought to be committed to non-volatile or
volatile storage. However, there is a better method – rather than
relying on the programmer to make a decision in advance as to
where memory is stored, memory allocation functions can instead
be intercepted and redirected to whichever memory level is most
efficient as determined by the compiler. With a library and com-
piler working in tandem to perform these calculations as needed,
the programmer can be alleviated of much of the difficult work
in determining where dynamic memory allocations performed by
functions such as calloc(), malloc(), and realloc() should
ultimately perform their allocations.

This paper introduces llama ("LLVM Pass (and) Library (for)
Automatic Memory Allocations"), a new method for automatically
placing memory allocations for multi-level memory systems in the
correct memory levels. Llama combines a custom LLVM compiler
pass[2, 18, 19, 32] with a custom C library which intercepts memory
allocations, determines where the data should be allocated based on
information determined by the compiler pass, and then performs
the memory allocation. The goal of llama is to enable multi-level
memories while requiring as little user intervention as possible. By
simply running the pass and including the library, llama is able
to perform memory allocations where needed without disruptive
hardware or software level changes.

This work focuses on a two-level memory system comprised
of conventional volatile dual data rate dynamic random-access
memory (DDR DRAM), and "slow" non-volatile memory (NVRAM).
This is likely to be the primary use of this technology for the near
term and is elaborated in the "background" section below. Other
scenarios, where the "slow" memory is DDR and the fast memory is
a less dense but faster memory technology, is also briefly discussed,
and is an avenue for future research[9].

The rest of this paper is organized as follows: Section 2 provides a
brief background on historical and contemporary memory systems
as they relate to the goals of llama, and describes a hypothetical
multi-level memory hierarchy. Section 3 provides an overview of
related work in multi-level memory allocations. Section 4 describes
the implementation of the pass and the library, while section 5
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describes a simulated multi-level memory system with llama and
provides performance results with an analysis. Section 6 discusses
possible avenues of future work, and Section 7 concludes.

2 BACKGROUND

This section discusses main memory from an historical perspective,
and provides an overview of new emerging memory technologies.

2.1 History of Main Memory Technologies

Since the popularization of metal–oxide–semiconductor field-effect
transistors (MOSFETs) in the 1970s, dynamic random-access mem-
ory (DRAM), which is volatile, cheap, and of high density[13, 17],
has been the most common type of main memory[5, 12, 13] used
in computers. In contrast, static random-access memory (SRAM),
which is extraordinarily fast but not dense, is used as CPU cache[21].
However, before DRAM and the advent of MOSFET technology,
ferrite magnetic core memory (usually simply referred to as "core
memory")[27], was most commonly used. Core memory is similar
to DRAM in that it is random-access, however, unlike DRAM it is
partially non-volatile and does not require any type of memory
refresh[5, 22, 27].

Today, manufacturers are hitting a limit on scaling DRAM cells
to smaller size[14]. In particular, when a DRAM cell is scaled
down, it becomes harder to maintain the same capacitance of the
DRAM cell[17, 24]. This results in higher failure rates of DRAM
memories[17, 24] as the size of the DRAM cell decreases.

2.2 Emerging Memory Technologies

Effective and long-term solutions to the problem of high DRAM
failure rates due to DRAM scaling may prove to be intractable[3,
17]. Because of this, main memory may once again transition to
a new technology. In particular, there have been two classes of
new memory technologies that are emerging which do not suffer
from the same scaling issues. They are the non-volatile memory
technologies, and the "fast" memory technologies. Both types of
memory technologies have the potential to replace DRAM.

Non-volatilememory technologies (NVM) retain data upon power
loss, and include Phase Change Memory (PCM)[17, 20], Memristor
based Resistive RAM (RRAM)[17], Ferroelectric RAM (FeRAM)[17],
Magnetoresistive RAM (MRAM)[3, 17, 21, 34, 37], Spin-Transfer
Torque RAM (STT-RAM)[7], Intel’s Optane Memory[4, 34], and
others. Non-volatile memory tends to be slower than traditional
DRAM[6, 21], but performance of non-volatile memory systems are
still much closer to DRAM than to traditional block devices such
as hard disks, which are orders of magnitude slower[8, 10].

"Fast" memory technologies include Zero capacitor RAM (Z-
RAM)[26], Twin-Transistor RAM (TTRAM)[1], A-RAM[30], ETA
RAM[21] as well as Hybrid Memory Cube (HMC)[17], and High
Bandwidth Memory(HBM)[9]. These technologies are often faster
and have orders of magnitude higher bandwidth than DRAM, but
have smaller memory densities. In general, these technologies cost
about 2 − 5 times more per bit compared to traditional DRAM[15].

Just as DRAM replaced magnetic core memory, computer engi-
neers hope that one of these technologies will eventually be able to
satisfy all of the requirements of an "ideal memory", such as low-
power, high-density storage, high speed, good endurance, and low

cost[17]. If this happens, one of these technologies could ultimately
completely replace DRAM as main memory in the long term. Re-
gardless of whether such an ideal memory comes to fruition, in the
short term, their potential is in complementing DRAM[34]. There-
fore, in the short term, these technologies will only be useful to
users if it does not require programmers to manually go through
legacy code and add support for multi-level memory. This paper
focuses on multi-level memory systems with two memory levels,
but multi-level memory systems can have more than two levels.
For example, it is possible to have "fast" memory, DRAM, and non-
volatile memory together, in an attempt to get the "best of both
worlds"[15].

2.3 A Hypothetical Memory Hierarchy

Figure 1 illustrates a hypothetical memory hierarchywith capacities
and access times. The figure illustrates two levels of primary mem-
ory, a faster DRAM, and a slower but larger non-volatile random-
access memory technology. Notice how the NVRAM is 32 times
larger than DRAM, while only 3 times slower. In this diagram, the
hypothetical NVRAM is able to surpass the scaling limit of DRAM
and have much higher densities without a significant loss in per-
formance. In addition, NVRAM, being non-volatile, can also act
as secondary memory for longer term storage. This paper utilizes
llama on a hypothetical system with a similar hierarchy.

Figure 1: A hypothetical computer memory hierarchy with

one level of non-volatile main memory and one level of

volatile dynamic random-access memory. The access la-

tency times are rough estimates.

3 RELATEDWORK

There has been much work on cache policies and memory paging
schemes, but while it is possible to treat one level of memory as
a cache and another level of memory as memory (or, to treat one
level of memory as traditional memory, and another as a backing
store), multi-level memories do not have a performance difference
as dramatic. Thus, these applications are not directly appropriate
for multi-level memory systems.
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While there has been a fair amount of work on multi-level
memories, including replacement and addition policies for these
systems[9], all require expensive hardware changes and additional
hardware controllers for automatic allocations. Alternatively, there
has been research in best practices for performingmanual allocation[38],
but this does not satisfy the requirement of alleviating the burden
on the programmer. There has been work on a portable run-time
interface for multi-level memory systems[11], but this requires the
programmer to manually specify through an API which memory
level they wish to write to. Other research, such as those done
by Chen, et. al.[6], focuses on reducing writebacks from cache to
non-volatile memories in order to counteract the issues of slow
writes and limited write endurance. However, their research does
not focus on multi-level designs.

There has been a modest amount of research on compiler sup-
port for automatically determining where any particular allocation
of data should be written to without the involvement of expen-
sive hardware changes. Khaldi and Chapman, in their paper "To-
wards Automatic HBM Allocation Using LLVM: A Case Study with
Knights Landing"[16], describe a method of determining whether or
not a particular set of data should be allocated to High Bandwidth
Memory (HBM) or to DRAM, utilizing LLVM to modify source code
in a method similar to llama, however, they do not consider the size
of the underlying variable nor the size of each memory level when
determining where their variables should be allocated, instead they
attempt to determine whether or not the particular set of data is
bandwidth critical, and if it is, they then attempt to allocate the data
to the HBM, without regard to the size of the data or even if such
an allocation is possible. In addition, their work is specific to the
Intel Knights Landing Architecture and their performance analysis
only involves one use case.

Hammond, et. al., in their paper "Multi-Level Memory Policies:
What You Add Is More Important Than What You Take Out"[9]
describe hardware multi-level memory units responsible for decid-
ing where memory pages should be placed, as compared to user-
directed data placement, which they identify as imposing a heavy
burden on the programmer. Although in the long term, such spe-
cialized hardware memory units will become the primary method
of integrating multi-level memory systems, they do not propose a
solution for current multi-level memory systems which do not uti-
lize this specialized hardware and require software level solutions.
For these systems, function calls based on the particular imple-
mentation must be used, for example, with Intel’s libpmem[31], or
the portable run-time interface for multi-level memory systems
described above[11]. Rather than implementing these function calls
manually, these systems can utilize llama instead.

4 DESIGN AND IMPLEMENTATION

This section describes the two components which make up llama,
and goes into further detail about how each component works.

The main goal of llama is to automatically allocate without
programmer intervention larger data that is not often used in the
"slow" memory, and to allocate smaller data or data that is used
often in the "fast" memory. In order to do this, a compiler must
perform analysis on the particular memory allocation to determine
how often it is used, and pass this information along to a library

which intercepts memory allocation calls. Therefore, the design
behind llama involves two components:

• The LLVM Pass portion is used to give a score to each mem-
ory allocation, based on the depth of the loop it is in, and how
many instructions there are between two separate memory
operations.

• The Library portion is used to compute ad hocwhether or not
a particular memory allocation should occur in one memory
level or another.

The library uses the data collected by the pass in making a
determination of which memory level the data should be allocated
to, and in turn the pass looks for the variable names declared by
the library. A diagram depicting how the two parts work in tandem
is found in figure 2.

Memory allocations that are not allocated via a memory allo-
cation call, such as fixed-length arrays, variable-length arrays, or
variable declarations, are not affected by llama. They will be al-
located to whatever the default memory level is, generally level
0.

It is important to note that llama does not support whole-
program analysis. Llama assumes that all child libraries are com-
piled so that all memory functions can be analyzed by the LLVM
pass and intercepted by the library. This is because llama’s library
portion can only operate if it already intercepts the memory alloca-
tion functions. However, llama can support precompiled headers,
so long as the header is compiled with llama’s library and pass.

Library

LLVM

Function
Redefinitions

Score

1 0

< threshold
>= threshold

Memory Levels

Final ScoressetLLVMScore()

Figure 2: A broad overview of the two components of llama
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4.1 LLVM Pass

The LLVM Pass portion of llama is its unique contribution. It is
responsible for creating a score for each memory allocation invoked
by calloc(), malloc(), or realloc().

LLVM compiles to an intermediate representation, also known as
LLVM IR, which is an idealized RISC architecture with an infinite
number of registers[32]. This representation is what the LLVM pass
analyzes and modifies.

The LLVM Pass described in this work has two steps: the analysis
phase, and the modifying phase. The analysis phase is responsible
for analyzing the code and scoring the individual memory alloca-
tions, while the modifying phase is responsible for informing the
library of the LLVM score.

The entire pass happens after the LLVM common optimizations,
specifically, it is the last step after loop rotation. This is done in or-
der to allow the pass to have an accurate analysis of the depth of the
loop (the common optimizations perform analysis which provides
information such as the loop depth1, and other optimizations can
cause this depth to change), and to prevent the common optimiza-
tions from eliminating the changes performed by the modifying
phase.

4.1.1 Analysis Phase. TheAnalysis Phase of the LLVMPass scans
each function of the pass and searches for the memory allocation
function calls. When this happens, it adds both the location of
the function call and the instruction itself to the values list, in
preparation for the modifying phase.

It then looks for an LLVM StoreInstruction, and verifies that
the StoreInstruction’s pointer operand is the instruction from
a previous memory allocation function call by searching the list
of saved memory allocations. In the case that the value operand
is a BitCastInstruction (which will be the case if the variable’s
type larger than 8 bits) it compares the first operand of that in-
struction to the value saved in the list. In doing so, only those
StoreInstructions which were invoked from a memory alloca-
tion call are considered.

Next it looks at the pointer operand of the StoreInstruction,
which is the reference to the memory allocated by the function call.
It is this value that other instructions refer to when they refer to
data allocated by these calls. It checks to see the number of times
the value is used, which is part of how the LLVM Pass generates
a score. The more times the value is used (T), the more important
it is that the memory is allocated in the lower memory level (the
"fast" memory).

Then the pass gets every instruction which uses the pointer
operand and iterates through them. For each, it checks the depth
of the loop via the LLVM getLoopDepth() function. It is assumed
that accesses inside a loop are more important than accesses outside
of a loop, and therefore accesses inside a loop should be weighed
more heavily as part of the LLVM score.

However, a large number of operations between accesses should
decrease the importance of the access. Thus, for memory accesses
in loops, each time an instruction (inst) between memory accesses

1The loop depth, which refers to the level of nesting the loop is in, is not to be
confused with the loop trip count for each basic block, which refers to the minimum
number of times a loop will execute.

%13 = add nsw i 3 2 %12 , 2
%14 = load i 3 2 ∗ , i 3 2 ∗ ∗ %3 , a l i g n 8
%15 = load i32 , i 3 2 ∗ %2 , a l i g n 4
%16 = s e x t i 3 2 %15 to i 6 4
%17 = g e t e l emen t p t r inbounds

i32 , i 3 2 ∗ %14 , i 6 4 %16
s t o r e i 3 2 %13 , i 3 2 ∗ %17 , a l i g n 4
%br l a b e l %18

Figure 3: An example of LLVM IR used in referencing data

from an array

in each basic block is found, the initial weight of 15 is decremented
by one.

The final weight of each individual instruction which is inside a
loop and referencing the pointer operand is the difference between
15 and the number of instructions between each reference to the
pointer operand raised to the power of the depth of the loop mul-
tiplied by 2. Mathematically, it is (15 − inst)(2×depth). However, if
the difference is less than 0, then the weight is 0.

Figure 4 depicts the full formula used by the LLVM pass to
calculate its own score for each memory allocation. This score is
then used by the library at runtime as described in figures 6 and 7.

score = T +
∑T
n=1


(15 − instn )

(2×depthn ) if 15 − inst > 0
0 if 15 − instn ≤ 0
0 if depthn = 0

Figure 4: The LLVM pass’s score of each memory alloca-

tion.T is the total number of instructions which refer to the

pointer to the memory allocation.

4.1.2 Modifying Phase. The score calculated in the analysis
phase is used in themodifying phase to insert the "setLLVMScore()"
function call. In particular, the LLVM pass iterates through every
value stored in the values list, and sets the IRBuilder’s insertion
point to the location of the function call. At this point, the LLVM
Pass performs its only modification: it inserts the setLLVMScore()
function call directly above the internal memory allocation call,
along with the calculated score.

4.2 Library

The library portion of llama is relatively simple and straightfor-
ward, providing a degree of dynamic analysis that otherwise would
not be possible with the LLVM pass alone. It utilizes the Structural
Simulation Toolkit which is described in section 5. In particular,
it utilizes the Ariel core (also described in section 5), which has
support for multi-level memories.

4.2.1 Function Intercepts. The library consists of a header file
(intercept.h) which redefines the traditional memory allocation
functions malloc(), calloc(), and realloc(), as well as the tra-
ditional memory deallocation function free(). These function def-
initions are redefined to the internal memory allocation functions
_internal_malloc(), _internal_calloc(), and
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_internal_realloc() which the Structural Simulation Toolkit
(described below) looks for.

4.2.2 The mlm_malloc() function call. Although the goal of
llma is to be useful in production environments, for the purposes of
benchmarking, the library portion of llama is currently designed to
operate with the Structural Simulation Toolkit as a proof of concept.
The ultimate goal is to have llama be modular enough so that it is
agnostic to the function calls used by different memory libraries,
such as libpmem[31] or Hexe[25], and therefore can call different
allocation functions based on the multi-level memory library to be
used.

The Structural Simulation Toolkit includes the Ariel element,
which is a processor core emulation component that dynamically
streams instructions from a running application (via Intel PIN)
and intercepts memory read/write requests[33] which are then
forwarded to the memHierarchy element. The memHierarchy el-
ement simulates an intra- and inter-node directory-based cache
coherency architecture[23], which is used to model different levels
of the memory hierarchy, such L1, L2, and memory. The Ariel ele-
ment also searches for certain functions, which tell Ariel to perform
certain actions or do certain things. For example, ariel_enable()
tells Ariel to enable memory tracing and interception. The func-
tion: mlm_malloc(size_t,int), tells Ariel to allocate the partic-
ular block of data to whichever memory level is specified by its
second argument. This work’s particular usage of the Structural
Simulation Toolkit is explored in more detail in the next section,
"Performance Analysis".

4.2.3 InternalMemory allocation calls. The mlm_malloc() call
only simulates a traditional malloc() function call. Therefore,
to implement the internal calloc() and realloc(), they are re-
implemented by the library. The internal memory allocation calls
provide for a degree of dynamic analysis. In particular the library
is able to tell at runtime how much data is to be allocated based
on the arguments passed into calloc(), this is then used to make
a final determination of which memory level the data should be
allocated into, as described in the "Allocation Calculation" section
below.

The internal calloc() function call performs a memset() op-
eration which sets every value in the allocated memory to zero
immediately after the mlm_malloc() call. The source code for this
function is found in Figure 5. The internal realloc() function call
performs a memcpy() operation, which copies the value in the old
memory address to the value in the new memory address immedi-
ately after the mlm_malloc() call. After this call, the old memory
address is freed with _internal_free().

4.2.4 The setLLVMScore() function call. The LLVM pass in-
serts the function call setLLVMScore(int thisScore) immedi-
ately before the memory allocation function calls. A variable called
LLVMScore is set based on the value of thisScore. This value is
used in the allocation calculation below.

4.2.5 Allocation Calculation. The library performs a calcula-
tion based on the score given by the LLVM pass. The higher the
score, the more likely that the data is allocated to the first memory
level as described above. The score calculated by the LLVM pass is
computed as part of a formula, shown in figure 6. The final score is

vo id ∗ _ i n t e r n a l _ c a l l o c ( s i z e _ t ni tems ,
s i z e _ t s i z e )

{
i n t l e v e l =

_wh i ch_ l e v e l ( s i z e ∗ nitems ,
t h r e s h o l d ) ;

vo id ∗ r e t u r n _ p t r =
mlm_malloc ( s i z e ∗ nitems , l e v e l ) ;

r e t u r n _ p t r =
memset ( r e t u r n_p t r , 0 , s i z e ) ;

r e t u r n r e t u r n _ p t r ;
}

Figure 5: The source code for the _internal_calloc() function
call in llama’s library component

the ratio between the size of the data to be allocated and the score
given by the LLVM pass, multiplied by the ratio between the sizes
of each memory level.

finalscore = datasize
LLVMscore × level0size

level1size

Figure 6: A formula for calculating the final score for a par-

ticular memory allocation

The final score is then compared to a threshold. If the final score
is greater than or equal to the threshold, then the write goes to the
faster memory (level 0). If the final score is less than the threshold,
the write goes to the slower memory (level 1). The entire formula
for determining which level a particular memory allocation should
be assigned is described in figure 7.

level =

{
1 if datasize

LLVMscore × level0size
level1size ≤ threshold

0 if datasize
LLVMscore × level0size

level1size > threshold

Figure 7: The formula llama uses to calculate which level a

particular memory allocation will go to

5 PERFORMANCE ANALYSIS

The different threshold levels were tested using the Structural Simu-
lation Toolkit (SST)[28, 29]. SST was configured to model four CPU
cores with a private L1 and L2 Caches. Each L2 cache connects to
an on-chip router. For simplicity, there is no L3 cache. The on-chip
router connects to the separate directory controllers. Each con-
troller connects to its own memory, either DRAM or non-volatile
memory. The simulation model is depicted in figure 8.

This simulation model provides for simulating the memory hier-
archy, and latencies between the different levels of the hierarchy.
SST’s memHierarchy, Merlin, and Ariel Components were used
for the caches, on-chip network, and CPU cores, respectively. The
simulation parameters and specified latencies can be found in table
1.
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A0 A1 A2 A3

L1
(32KB)

NVM (Messier)
(4096MB)

DRAM
(4096MB)

L2
(256KB)

L2
(256KB)

L2
(256KB)

L2
(256KB)

L1
(32KB)

L1
(32KB)

L1
(32KB)

DCDC

Network on a Chip (Merlin)

Figure 8: Proposed architecture and simulation model

Component Parameters
Core 2 GHz, 3 issue / cycle, L1 and L2 per core

Coherency MESI Protocol
L1 32KB, 8-way, 64B cache line, 4 cycles
L2 256KB, 8-way, 64B cache line, 10 cycles

Router 320GB/s, 72B flit, 4ns latency
DRAM 2GHz clock, 4096 MiB, DDR3
NVM 250MHz clock, 60ns access time, 4096MiB

Table 1: Simulation Parameters

5.1 Methodology

To test the effectiveness of llama, three separate benchmark tests
were run. Because the LLVM Portion of llama currently does not
support C++, all of the benchmarks tested are written in C.

The first benchmark is a custom simple memory allocation and
operation test. This test performs memory operations that would
be expected in common programs. A more thorough description is
provided in the subsection below.

Because this paper forsees llama being useful in high perfor-
mance computing (HPC) systems with multi-level memory, the
second and third tests are U.S. Department of Energy (U.S. DoE)
miniapps: the XSBenchMiniapp[36] and the SimpleMOCkernel[35].

5.2 Memory Allocator

This memory allocation test performs memory operations that
mirror memory read/write patterns that are typical of common
programs. In particular, the program performs a malloc() and
calloc() system call on two pointers, allocating a set number
of integers as determined by the program’s first argument. The
following memory read/write patterns are performed:

• Looping through the entire array and assigning each item a
value.

• Performing a memory test on the entire array and checking
if each value has been set as expected.

• Setting one array equal to another.
• Performing many operations between two memory accesses.
Figure 9 depicts the source code for this particular operation.

The arguments passed to this application are found in table 2.

i n t l = 0 ;
/ ∗ Perform i n t e r l e a v i n g a c c e s s e s ∗ /
f o r ( i = 0 ; i < SIZE ; i ++)
{

va r1 [ i ] = l ;
i n t j ;
f o r ( j = 0 ; j < 1 ; j ++)
{

i n t k ;
f o r ( k = 0 ; k < 5 ; k++)
{

l = j ∗ k ;
}

}
}

Figure 9: A segment of the source code for the memory allo-

cator benchmark illustrating a loop. The variable var1 was

allocated earlier. Since there are a fair number of operations

between accessing var1 and the end of its basic block, the

LLVMscore is lower than it otherwise would be.

5.3 Matrix Multiplier

The matrix multiplication benchmark allocates (via calloc()) two
matrices of a size specified by standard input. The program then
assigns a value to each item in each matrix. To avoid overhead from
randomization operations, the program assigns a value to each item
in the array in a deterministic fashion2. From there, the benchmark
performs a multiplication operation on the two matrices, which
creates a nested loop of depth two. The arguments passed to this
application are found in Table 2.

5.4 XSBench

The XSBench Miniapp is an HPC miniapp which represents the
key computational kernel found in the Monte Carlo neutronics
application OpenMC[36]. The arguments passed to this application
are found in Table 2.
2The value of each item in the array is (row + column) mod 10.
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5.5 SimpleMOC Kernel

The SimpleMOC-kernel miniapp represents the core computational
kernel found in SimpleMOC. It performs the inner-loop of the larger
SimpleMOC miniapp, that is, it is the attenuation of neutron fluxes
across an individual geometrical segment. This kernel composes ap-
proximately 92% of the walltime of the full application[35] and thus
is an accurate benchmark for SimpleMOC overall. The arguments
passed to this application are found in Table 2.

Table 2: Application Parameters

Application Options

Memory Allocator 100000
Matrix Multiplier 100 100 100 100

XSBench -g 2 -p 500
SimpleMOC Kernel -s 3 -e 3

5.6 Results

The simulations in this paper ran with two different thresholds.
To establish a baseline, the simulations also test the performance
of purely level 1 non-volatile memory writes, and purely level 0
DRAM. The performance of the two benchmarks are compared to
different thresholds of varying levels. All the performance results
can be found in figure 10.

The figure 10 results show a steady increase across the memory-
heavy benchmarks (Memory Allocator and the two DOE bench-
marks) in execution time as the threshold for saving data in the
faster level 0 memory is raised. As more and more memory alloca-
tions are placed in the slower non-volatile memory, the execution
time increases. Note however that the choice of allocation is bi-
nary – for every allocation it will either be entirely placed in the
level 0 memory, or entirely in the level 1 memory. This is why the
performance appears to rapidly drop off at the higher threshold
levels.

5.7 Analysis

At first glance, the Matrix Multiplier benchmark exhibits counter-
intuitive behavior - in particular, performance does not change
based on threshold. This can be explained by the relatively small
amount of memory being allocated, as well as the fact that most of
the execution time is spent performing integer multiplication.

For the other three benchmarks, the results occur due to the
memory heavy nature of the application. Of particular interest is
what threshold a programmer using llama would want to use.

For the SimpleMOC-Kernel, the threshold would be about 10000.
This is because the performance is degraded only 10% compared to
purely allocating in DRAM, yet, most allocations are placed in the
non-volatile memory. When the results are examined more closely
by looking at the standard error (stderr) debugging outputted by
the library, it is found that the vast majority of data can be stored
in the non-volatile memory without affecting performance. Only
the three largest memory allocations appear to affect performance
at all – and these are allocations that with the specified arguments,
are two 270KB allocations and one 54KB allocation. At a threshold
of 10000, only the small allocations and the third largest allocation

is impacted – the pass gives this allocation a score of 5400, which
is why performance does not appear to change in a significant
manner.

For XSBench, the threshold is 20000. An examination of stderr
illustrates that the largest individual memory allocation is about
1MB. Since this allocation is used quite often, the score ends up
being 29652 –which is why performance dramatically declines once
the 30000 threshold is reached. The rest of the memory allocations
are placed in NVM because they have low scores, these do not
appear to affect performance to a significant degree.

For the Memory Allocator, the correct threshold when aiming
for performance is also 10000. However, an examination of stderr
shows that both memory allocations occur in DRAM, which is why
there are no actual performance differences between DRAM and
that threshold. At 20000, a 30% performance loss is observed. Upon
inspection of stderr, the reason is evident: the first memory allo-
cation (the malloc() ) is given a score of 11475, and it is 2.8MB
large – thus, at a threshold of 20000, that allocation is put in the
first memory level. Since it is heavily used, this degrades perfor-
mance dramatically. Figure 11 gives part of the stderr output for
one Memory Allocator run, where the threshold is 40000.

6 FUTUREWORK

Although running these benchmarks demonstrated that llama is
capable of alleviating the burden of manually deciding which mem-
ory level to allocate to, the memory footprints are small and thus
do not perfectly represent real-world scenarios. Any future work
should address this by increasing the memory footprints of each
benchmark such that it will not fit solely in level 0. These results
could then be compared to the results of a simple size threshold
policy such as provided by Intel’s memkind. As llama’s analysis
is much more complicated than memkind, in theory it should be
more effective, but research is required to demonstrate this.

Another avenue for future work is to extend llama to support
additional memory levels, rather than the dual memory levels that
llama currently supports. Theoretically this would merely require
adding additional thresholds, that when met, places the data in a
higher memory level. This would allow llama to work with, for
example, a three level memory system with "fast" memory as level
0, traditional DRAM as level 1, and non-volatile memory as level
2. This is relatively trivial to implement and is the most obvious
avenue of future work.

Another option for future work would involve extending llama
to automatically determine the proper threshold for a particular
program, so that the programmer does not need to decide the proper
threshold themselves. This would be complicated – it would likely
still involve the programmer telling llama how much memory is
being used by the program, as it’s not possible to determine that
before runtime. A profiling run which performs dynamic program-
ming analysis could help.

Yet another avenue is to extend llama to work with Intel’s
libpmem[31] library, which would allow implementing llama on
actual hardware. This would require also extending llama to sup-
port memory mapping, and performing it whenever a memory
allocation is performed. Such an extension could then be used to
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Figure 10: Performance by threshold of each benchmark. Note that the appropriate threshold to balance performance while

maximizing memory allocations to the non-volatile store vary based on benchmark.

allow users to painlessly convert their source code to run on multi-
level memory systems.

Another is to allow fixed-length arrays, variable-length arrays,
and variable declarations (i.e., those arrays which are allocated on
the stack) to be written to different memory levels in the same
way memory allocations which are dynamically allocated with
malloc(), calloc(), realloc(), (i.e., on the heap) are. This would

require transforming these array allocations on the stack into dy-
namic memory allocations on the heap, which could impact perfor-
mance, as normally the stack is much faster than the heap.

The algorithm could also be extended to support read/write
leveling, having data which is read-heavy in the upper memory
(non-volatile) level, with data which is read and write heavy in the
lowermemory (DRAM) level. This can be useful in certain situations
such as in bioinformatics applications because most proposed forms
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ARIEL : Enab l i ng memory and i n s t r u c t i o n
t r a c i n g from program c o n t r o l .
Data s i z e : 2 800000 , LLVM Score : 244
Thresho ld i s 40000 , s c o r e i s 11475
0 : Per form a mlm_malloc from A r i e l 2 800000 ,
l e v e l 1
Reques ted : 2 800000 , but expanded to : 2801664
( on th r e ad : 0 )
0 : A r i e l mlm_malloc c a l l a l l o c a t e s da t a a t
a dd r e s s : 0 x2b8c f 40b7000
Data s i z e : 2 800000 , LLVM Score : 103
Thresho ld i s 40000 , s c o r e i s 27184
0 : Per form a mlm_malloc from A r i e l 2 800000 ,
l e v e l 1
Reques ted : 2 800000 , but expanded to : 2801664
( on th r e ad : 0 )

Figure 11: Standard-error for the Memory Allocator, at a

threshold of 40000 (always NVM). Notice that the LLVM

Score is 244 and 103, and the data size is 2800000 bytes, which

makes the final scores
2800000
244 = 11475 and

2800000
103 = 27184

respectively.

of non-volatile memory has a slower write speed than read speed
and suffer from a limited write-cycle capacity. This algorithmwould
require counting the number of times the pointer is written in
addition to counting the number of times the pointer is used, and
increasing the score appropriately as the ratio between the writes
and total number of accesses increases.

Yet another is to support C++ and object oriented languages
which LLVM supports. For memory allocation, allocating objects
with the "new" keyword is the most important difference from im-
perative languages. In LLVM bytecode and x86 assembly, the func-
tionwhich performs the new() operator is Znwm()\cite{cao2015efficient},it
is foreseeable to have LLVM search for the Znwm()function call and
then insert an mlm_malloc_flag()directly above, or alternatively
to crate an equivalent function call which performs the same oper-
ations as the new() operator, but works with SST.

Finally, one last avenue for future work is to allow splitting
memory allocations between different memory levels, such that
one part of the data is allocated in one memory level, and the other
part is allocated in the other. This would be done in order to store
large blocks of data that will not fit in one particular memory level,
and would essentially treat the lower memory levels as cache.

7 CONCLUSION

As multi-level memory become more common, developing tools to
automatically manage data placement during dynamic allocation
will become more important. Programmers cannot be expected to
manually specify which memory level any particular data should
be allocated to, and hardware changes to automatically determine
which memory level data should be written to are often cost pro-
hibitive.

To that end, this paper has presented a novel tool for performing
these memory allocations without burdening the programmer – all

the programmer must do is specify the desired threshold, link their
program to the llama library, add the llama header, and then run
the optimization pass via clang. Everything else is done for them.

The initial performance analysis of llama demonstrates that
each application needs to have its own threshold specified, and
that the algorithm works properly when determining whether to
allocate any particular set of data in one memory level or another.
While a programmer manually specifying which level of memory
they wish to allocate a particular set of data to will generally be
more efficient then relying on this tool, this tool works well for
large programs and programs that have already been written, and
where slightlyworse performance is acceptable because the changes
required to support multi-level memory would otherwise be too
prohibitively large.
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