
Super-Node SLP: Optimized Vectorization
for Code Sequences Containing Operators
and Their Inverse Elements

Vasileios Porpodas; Rodrigo C. O. Rocha; Evgueni Brevnov; Luís F. W. Góes; Timothy Mattson

Group 5: Hongru Lu; Yining Wang; Yichao Yuan

Table of Contents
● Introduction & Motivation

Vectorization & SIMD
Super - Level Parallelism (SLP)

● Super Node SLP Algorithm
Algebraic Background
Examples: Leave Node & Trunk Node
Algorithm

● Results & Evaluations

● Commentary

Introduction - Vectorization & SIMD

b = a[i+0]

c = 5

d = b+c

e = a[i+1]

f = 6

g = e+f

b = a[i+0]
e = a[i+1]

c = 5
f = 6

d = b + c
g = e + f

Single Instruction, Multiple Data (SIMD)

Introduction - Superword-Level Parallelism (SLP)

vec_A = vec_In[4i: 4i+3]

vec_B = vec_X + vec_A

vec_C = vec_B * vec_W

vec_Out[4i: 4i+3] = vec_C

Out[4i: 4i+3] = C

C = B * W

WB = X + A

XA = In[4i: 4i+3]

In[4i: 4i+3] Load

Loop
Invariant

Constants

What if operators/operands do not match?

d = b1 + c1

g = c2 - b2

d = b1 + c1

g = b2 + c2

SuperNode SLP - Algebraic Background

Commutative and associative operators allows:

- Substitution with inverse operators

- Reordering

A + B - C A + B + (-C)

A + B - C A - C + B

Super Node SLP - Leaf Node

Source

Original SLP Super Node SLP

Super Node SLP - Trunk Node

Source

Original SLP Super Node SLP

Super Node SLP - Algorithm

Two Key Steps:

- Construction of Super-Node

- Reordering

Problem:
How to determine which reordering is legal?

Super Node SLP - Legal Motions

Calculating APO Legal Motion Illegal Motion

● Testbench: SPEC06 (*this paper also test SN-SLP’s
motivating examples)

● Configuration: SN-SLP, Look-ahead SLP (LSLP) and –O3

Evaluation

Speedup on Kernels

● SN-SLP outperforms LSLP
and –O3.

● On average about 1.25x
speedup over O3
optimization.

● Significant speedup on
motivating examples.

Speedup on Benchmarks

● No significant speedup

● Only run 2% faster than LSLP
in one out of 6 benchmarks.

● The kernels optimized are
not hot spot

Compilation Time

● No significant overhead

● Time save when there is a significant code size
reduction: less work for remaining passes

Commentary

● SNSLP brings the performance less significant benefit
for the whole program.

● SNSLP grows larger SLP graphs for evaluation, but the
cost model makes it still hard to trigger.

● Optimization on underlining architecture for SIMD may
result in more significant results.

Q&A

[1] V. Porpodas, R. C. O. Rocha, E. Brevnov, L. F. W. Góes and T. Mattson, "Super-Node SLP: Optimized
Vectorization for Code Sequences Containing Operators and Their Inverse Elements," 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2019, pp. 206-216, doi:
10.1109/CGO.2019.8661192.
[2] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware SLP in GCC,” in GCC Developers Summit, 2007

