
Super-Node SLP: Optimized Vectorization for Code
Sequences Containing Operators and Their Inverse

Elements
Vasileios Porpodas Rodrigo C. O. Rocha Evgueni Brevnov

Intel Corporation, USA University of Edinburgh, UK Intel Corporation, USA
vasileios.porpodas@intel.com r.rocha@ed.ac.uk evgueni.v.brevnov@intel.com

Luı́s F. W. Góes Timothy Mattson
PUC Minas, Brazil Intel Corporation, USA

lfwgoes@pucminas.br timothy.g.mattson@intel.com

Abstract—SLP Auto-vectorization converts straight-line code
into vector code. It scans input code for groups of instructions
that can be combined into vectors and replaces them with their
corresponding vector instructions.

This work introduces Super-Node SLP (SN-SLP), a new SLP-
style algorithm, optimized for expressions that include a commu-
tative operator (such as addition) and its corresponding inverse
element (subtraction). SN-SLP uses the algebraic properties of
commutative operators and their inverse elements to enable
additional transformations that extend auto-vectorization to cases
difficult for state-of-the-art auto-vectorizing compilers.

We implemented SN-SLP in LLVM. Our evaluation on a real
system demonstrates considerable performance improvements of
benchmark code with no significant change in compilation time.

Index Terms—SIMD, SLP, Auto-Vectorization

I. INTRODUCTION

Modern high-performance processors include short SIMD
vector units to support higher computational throughput. Mak-
ing efficient use of the vector units is critical for achieving a
large fraction of the available performance from a processor.
The programmer can make use of the vector resources in
several ways: (i.) using a vector-aware language or high-level
programming model (e.g., OpenMP [1]), (ii.) using low-level
target-dependent intrinsics or assembly, or (iii.) relying on the
compiler’s auto-vectorizer for converting unmodified scalar
code into higher performing SIMD code. In practice, most
general purpose applications rely on the auto-vectorizer to gen-
erate SIMD code, as it requires no effort from the programmer.
For this reason, improving the coverage of auto-vectorizers is
crucial for extracting the most out of modern processors. The
extra vector units available in modern processors are wasted
every time the compiler misses vectorization opportunities.

In order to leverage the processor’s vector units, major
compilers provide two main types of auto-vectorization: (1)
the traditional loop vectorization (e.g., [2], [3]), and (2) a
vectorizer that operates on straight-line code [4], [5], [6]. This
work focuses on the second type, and more specifically on

the Superword-Level Parallelism (SLP) vectorizer, as imple-
mented in the GCC [7] and LLVM [8] compilers.

SLP does not operate directly on loop structures. Instead
it explores straight-line code to find groups of isomorphic
instruction sequences that can be converted into vectors. A
typical implementation works by first scanning the code to find
scalar instructions that can become the seeds of vectorization.
If found, they are grouped and marked as candidates for
vectorization. This group becomes the root of the SLP graph,
which holds all candidate groups of scalar instructions. Then,
SLP walks up the use-def chains, towards definitions, in an
attempt to form more groups of isomorphic instructions. This
process repeats until the SLP graph is fully formed. The next
step evaluates whether converting the groups of the SLP graph
into vector instructions will improve performance based on
the compiler’s cost model. This cost calculation factors in the
overheads of inserting/extracting data into/out of the vector
registers. If profitable, vector code gets generated, replacing
the corresponding scalar code in each group.

Solving SLP optimally is computationally intensive as
the underlying problem is a graph isomorphism problem.
Therefore, all industrial-quality SLP implementations rely on
heuristics to achieve the best outcome within reasonable com-
pilation time. Hence, the goal of SLP research is to improve
the algorithms that explore the code and collect vectorizable
instructions, without increasing the compilation time.

Even with an optimal code exploration, SLP can fail to
vectorize the code because the original scalar instructions
form patterns that prevents vectorization. It is a known fact
that performing some code massaging on the scalar code
can sometimes help vectorize the code, like when reordering
the operands of commutative operations (e.g., as shown in
[6] and [9]). In this paper, we improve upon such tech-
niques by introducing an SLP-based algorithm that performs
on-the-fly code morphing to convert non-vectorizable code
into a vectorizable form. We specifically target expressions
trees composed of operations that are both commutative and
associative (e.g. additions) and their corresponding inverse

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

206

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

elements (e.g. subtractions), and we use a combination of code
motion and operand reordering in a single coordinated step.
The resulting vectorizer has better coverage than the state-of-
the-art [9].

II. BACKGROUND

There are two distinct types of auto-vectorization algo-
rithms:

1) Loop-based vectorizations (e.g., [2], [3], [10], [11]) that
operate on loops and perform widening of each instruc-
tion in the loop. This is equivalent to fusing together
consecutive loop iterations into a single vectorized itera-
tion. For this to work, the loop has to be well structured
enough so that the compiler is able to analyze the data
dependencies and prove that the transformation is legal.

2) Straight-line code algorithms, the most common being the
fast bottom-up SLP [5] inspired by [4]. These algorithms
can handle straight-line code anywhere in the program
and, although not focused on loops, they can also vector-
ize code within loops where the loop-vectorizer fails.

SN-SLP improves upon the state-of-the-art bottom-up SLP,
while the concepts introduced can also be applied to other
types of vectorization algorithms too. This section is a short
introduction to the bottom-up SLP algorithm, as implemented
in GCC [7] and LLVM [8] .

A. SLP Overview

Vectorization algorithms based on SLP works by scanning
the code for repeated sequences of isomorphic scalar instruc-
tions, aiming at replacing each one of them for their vector
counterpart. Although SLP could be considered as a superset
algorithm of broader scope than the loop-based vectorizer [5],
in practice this is not the case. The algorithms are complemen-
tary and major compilers (e.g. GCC and LLVM) implement
both algorithms. A common configuration is to run the SLP
pass after the loop-vectorization pass.

The bottom-up SLP [5] algorithm, is an industrial-strength
algorithm, sharing some fundamental concepts with the Super-
word Level Parallelism paper [4]. This algorithm is present in
both GCC and LLVM and is enabled by default for the higher
optimization levels (-O2+ for LLVM).

As a first step, it scans the compiler’s intermediate represen-
tation, identifying specific type of instructions, referred to as
seeds. The seeds are scalar instructions sequences that have a
high probability of giving us profitable vectorization if they get
vectorized along with their dependent instructions. Commonly
used seeds are stores or instructions that form reduction trees.
The seeds become the first potential vector group and are
the starting point of the algorithm’s exploration. Then, the
algorithm follows the use-def chains towards the definitions,
to continue forming as many vectorizable groups as possible.

B. SLP Algorithm

A summarized overview of the SLP algorithm is shown in
Figure 1 (the highlighted parts have been added or modified by
SN-SLP). It starts by scanning the code for vectorizable seed

NO

Get next seed group

 cost<threshold

YES

Calculate cost of vectorization

YES

Remove current seed group

Seeds left ?

NO

DONE

Scalar IR

Find seed instructions for vectorization 1.

2.

3.

4.

5.

7.

8.

Generation of vector code

6.a. 6.b.

Generate the SLP graph

Cleanup

Fig. 1. Overview of the SLP algorithm. The highlighted sections are updated
by the SN-SLP algorithm.

instructions (step 1), such as stores accessing adjacent memory
locations, or the instructions feeding into a reduction tree (e.g.,
a reduction tree of additions). Adjacent memory instructions
are some of the most promising seeds and therefore most
compilers look for these first [5].

Next, the algorithm grabs a group of seeds from the seed
work-list (step 2) and creates the first node in the SLP
graph (step 3). Each node of the SLP graph is a group of
vectorizable scalar instructions. For building the rest of the
graph, the algorithm follows the use-def chains, towards the
definitions and keeps repeating this process until it reaches
non-isomorphic instructions, or until the instructions are not
legal to vectorize. Each node contains not only the scalar
instructions that are candidates for vectorization, but also some
additional data such as the group’s cost (see next step). Once
the algorithm encounters scalar instructions that cannot form
a vectorizable group it forms a final non-vectorizable group
which holds the cost of collecting the data from scalars and
inserting them into a vector. At this point the algorithm stops
exploring the code in this direction as this path cannot be
vectorized any further.

Once the SLP graph has been constructed, SLP estimates the
code’s performance (step 4), with the help of the compiler’s
target-specific cost model. The cost of the graph is equal
the sum of the savings from converting each group of scalar
instructions into vector form (the lower the cost the better).
Next, the cost is compared against a threshold (usually 0) to
determine whether vectorization should proceed (step 5). If so,
the compiler schedules the code and updates the intermediate
representation (IR), replacing the groups of scalar instructions
with their equivalent vector instructions, and emitting any
insert or extract instructions required for communicating any
required data between vectors and scalars outside the graph
(step 6.b.). If the cost is not profitable, then the code remains

207

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

unmodified. Since we are done using this seed group, we
remove it from the work-list (step 7), and the whole process
repeats for all the seed instructions in the work-list (step 8).

III. MOTIVATION

This section explains SN-SLP algorithm through the use
of examples. We compare it directly against the state-of-the-
art, showing how SN-SLP can successfully vectorize code that
state-of-the-art vectorizers cannot.

A. Algebraic Background

This work introduces the concept of the Super-Node, which
is an improved and generalized version of the Multi-Node
introduced by [9]. The Super-Node extends the concept of
Multi-Node by allowing inverse operations to be included into
a non-interrupted chain of operations with an operator that
is both commutative and associative. Recall that an inverse
element in abstract algebra generalizes the concept of sign
reversal relative to addition or the reciprocal operation relative
to multiplication. For example, Super-Nodes can be formed
of expressions such as A + B - C or A * B / C. Alge-
braically, these expressions involve an operator that is both
commutative and associative, i.e., addition or multiplication,
and terms that include the corresponding inverse elements.
Specifically, the expression A + B - C can be rewritten as
A + B + (-C), where (-C) is the inverse element of C
under addition. This fact enables us to reorder all terms of
this expression, namely, A, B, or (-C). Note that the operand
in the right-hand-side of the subtraction needs to be reordered
with the unary negation operator, e.g., A + B + (-C) can
be reordered as A + (-C) + B. A similar argument can
be given to the example A * B / C, which can be written
as A * B * (1 / C). We can then leverage the algebraic
properties of these operations in order to improve vectoriza-
tion.

SN-SLP uses these properties to modify both the instruc-
tions internal to the Super-Node (referred to as trunk nodes),
and its immediate predecessors (referred to as leaf nodes) to
improve vectorization coverage. In addition to being able to
reorder these leaf nodes across the whole Super-Node SLP,
we may also change the order of the internal (trunk) nodes,
if needed, to improve isomorphism. We explain how each of
these actions is performed in the examples that follow.

B. Reordering the Leaf Nodes

In this example we consider the C-style source code of Fig-
ure 2(a) which corresponds to the use-def DAG of Figure 2(b).

The state-of-the-art SLP algorithm will build the SLP graph
as shown in Figure 2(c). Each green rectangular node corre-
sponds to a group of scalars that can be potentially vectorized,
while each red oval node represents those that cannot. The
right-hand-side operand of the addition node [+ +] is a non-
vectorizable group of non-adjacent loads: D[i] and B[i+1].
Similarly, the left operand of the subtraction node [- -] is
non-vectorizable since B[i] and D[i+1] are not adjacent
in memory. Each of these non-vectorizable nodes incur a cost

long A[],B[],C[],D[];

A[i+0]=B[i+0]−C[i+0]+D[i+0];
A[i+1]=D[i+1]−C[i+1]+B[i+1];

(a) Source Code

S

−

LL

L −

LL

L

S

A[i+0]

Lane 0

A[i+1]

Lane 1

+

D[i+0]

B[i+0] C[i+0]

+

D[i+1] C[i+1]

B[i+1]

(b) Original Use-def DAG

SS −1

A[i:i+1]

−1

−1

Lanes 0 and 1

+ +

− − L

+2 L −1LL L

+2L

C[i:i+1]B[i]D[i+1]

D[i]B[i+1]

Cost = 0 Not Vectorized

(c) (L)SLP graph

S

−

LL

L −

LL

L

S

A[i+0]

Lane 0

A[i+1]

Lane 1

D[i+0]

B[i+0] C[i+0]

+

C[i+1]B[i+1]

D[i+1]

Reordering!

+

(d) DAG modified by SN-SLP

SS −1

A[i:i+1]

−1

−1

Lanes 0 and 1

+ +

− − L

L −1LL L

L

Vectorized!

B[i:i+1]

D[i:i+1]

C[i:i+1]

−1

−1

Cost = −6

(e) SN-SLP graph

Non−Vectorizable +/−#CostVectorizable

Fig. 2. Reordering the leaf nodes of a Super-Node.

penalty of +2, negating the gains from the vectorizable nodes.
The total cost is 0, which renders the whole SLP graph non-
profitable to vectorize.

Super-Node SLP is able to massage the code on-the-fly to
convert it fully vectorizable. It first forms the Super-Node out
of the addition and subtraction operations of both lanes (the
dashed rectangular around the + and - nodes). It then performs
operand reordering across the whole Super-Node, following
some legality rules to maintain the original semantics. The leaf
loads from B[i+1] and D[i+1] are swapped, which results
in all groups becoming isomorphic and therefore vectorizable.
The final cost reflects this, since the total cost is now a
profitable −6.

This leaf reordering across both additions and subtractions is
not supported by the state-of-the-art Look-Ahead SLP (LSLP)
algorithm [9]. LSLP can only operate on an uninterrupted
chain of a single opcode (both commutative and associative,
e.g, addition), since it is unable to check for reordering
legality across the inverse elements (e.g., subtractions). For
both motivating examples, vanilla SLP and LSLP perform
identically.

C. Reordering the Trunk Nodes

In the example of Section III-B, the trunk operations in
the Super-Node were isomorphic across lanes even in the
original code (see Figures 2(b) and 2(d)). This is not always

208

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

long A[],B[],C[],D[];

A[i+0]=B[i+0]−C[i+0]+D[i+0];
A[i+1]=B[i+1]+D[i+1]−C[i+1];

(a) Source Code

S

LL LL

LL

S

A[i+0]

Lane 0

A[i+1]

Lane 1

D[i+0]

B[i+0] C[i+0] D[i+1]

+

−

−

+

C[i+1]

B[i+1]

(b) Original Use-def DAG

SS −1

A[i:i+1]

Lanes 0 and 1

+

L

LLL L

L

+1−

− ++1

D[i]C[i+1]

+2

+2

C[i]D[i+1]B[i:i+1]

−1

Cost = +4 Not Vectorized

(c) (L)SLP graph

S

−

LL

L −

LL

L

S

A[i+0]

Lane 0

A[i+1]

Lane 1

+

B[i+0] C[i+0]

+

C[i+1]B[i+1]

D[i+1]D[i+0]

Swap Super−Node

Instructions

and Operands

(d) DAG modified by SN-SLP

SS −1

A[i:i+1]

−1

−1

Lanes 0 and 1

+ +

− − L

L −1LL L

L

Vectorized!

−1

−1

Cost = −6

C[i:i+1]B[i:i+1]

D[i:i+1]

(e) SN-SLP graph

+/−#CostVectorizable
Vectorizable
with High Cost

Non−Vectorizable

Fig. 3. Swapping both trunk nodes and leaves of a Super-Node.

the case. The DAG of Figure 3(b) would generate the SLP
graph of Figure 3(c) under the state-of-the-art SLP algorithm.
The [+ -] and [- +] nodes are vectorizable but with a
higher cost of +1, since they are add/sub alternate sequences1.
The state-of-the-art SLP can successfully form a vectorizable
group of loads from B[i:i+1] by reordering the operands
of the top-most addition node of Lane 1 in Figure 3(b) 2. The
other two load groups remain non-vectorizable. The total cost
of SLP is +4 which is not profitable for vectorization.

Again, Super-Node SLP is able to fully vectorize this code.
Initially it forms the Super-Node that includes the additions
and subtractions of each lane. Then it tries to reorder the leaf
nodes in an attempt to improve isomorphism. While doing
so, it checks the legality of the transformation, and realizes
that a simple leaf reordering will break the semantics of the
computation. For example, the optimal Lane 1 order (from left
to right) of B[i+1], C[i+1] followed by D[i+1] would
change the program semantics, as it would correspond to this
code: A[i+1] = B[i+1] + C[i+1] - D[i+1], which

1These are vectorized with the use of additional instructions, including
select or shufflevector instructions, similarly to how it is described
in PSLP [12]. Please also note that the x86 platforms implement the family
of addsub vector instructions in the SSE instruction set. These can execute
an alternate sequence of additions and subtractions across the vector lanes

2This reordering is a standard feature of LLVM’s SLP (and LSLP [9])
and enables more effective vectorization of expressions with commutative
operations

is different than the original code for this lane. Nevertheless,
Super-Node SLP is able to legally form the groups of vectoriz-
able loads by also reordering the trunk nodes themselves. The
result of this reordering is shown in Figure 3(d). The final cost
of Super-Node SLP is −6 which is profitable for vectorization.

In this particular example, the trunk nodes also become fully
isomorphic, as they match perfectly after trunk reordering took
place. This, however, is incidental and the algorithm does not
rely on it. Please note, that even without this happening, the
code would still be vectorizable with a small overhead due to
the add/sub alternate trunk nodes, just like the trunk nodes of
Figure 3(c). The assumption is that the leaf nodes matter more
than the trunk nodes, so their ordering has a higher precedence.

IV. SUPER-NODE SLP

A. Overview

SN-SLP introduces several changes at the core of the SLP
algorithm. It changes the part of the algorithm that forms the
SLP graph (that is the highlighted step 3 “Generate the SLP
graph” of Figure 1). As already discussed in the examples of
Section III, the graph formation is critical for the effectiveness
of the vectorizer as it is the step where the code isomorphism is
explored. SN-SLP improves the vectorizer’s ability to massage
the code and expose the underlying isomorphism better than
before.

B. Construction of the Super-Node

The construction of the Super-Node is inspired by the
construction of the Multi-Node in [9]. There are two distinct
phases in our construction process. The first one grows the SLP
graph like in vanilla SLP, by performing a group-wide recur-
sive depth-first search into the use-def chains. This is shown
in the buildGraph function (Listing 1, line 3). Super-Node
SLP introduces the call to buildSuperNode of line 12, that
attempts to build a Super-Node (if it finds good instruction
candidates) and, if succesful, it performs the necessary code
morphing. In the usual execution buildSuperNode returns
early and buildGraph resumes building the vanilla SLP
graph as usual (line 14 onwards. The algorithm recursively
calls itself (line 19) growing the SLP-graph towards the
definitions.

If a valid instruction group for the root of the Super-Node
is identified by buildSuperNode, (by analyzing all the
legality tests of line 41), the main search of buildGraph
pauses and the algorithm switches to the second phase, the
construction of the Super-Node (line 43 onwards). In this
second phase, an independent bottom-up depth-first recursion
is performed, until all the Super-Node-compatible instructions
are collected for the trunk and leaf nodes of Super-Node.

The buildSuperNode function has two parts. The top
part (lines 27 to 38) executes while the Super-Node creation is
in progress and the bottom one (lines 41 to 54) handles both
the initialization and finalization of the Super-Node. A new
Super-Node is initialized with the set of Instrs (line 43),
and a recursive call buildGraph is attempting to grow the
Super-Node towards the definitions. Next, when the execution

209

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

Listing 1. Super-Node graph construction
1 // In: Candidate scalar array for vectorization
2 // Out: SLP graph of grouped scalars
3 buildGraph(Instrs) {
4 // Legality check if Instrs can get vectorized
5 if (nonVectorizable(Instrs) {
6 // Create Non-Vec node and stop growing graph
7 Node = createNewGroup(instrs, NO_VEC)
8 graph.addNode(Node)
9 return

10 }
11 // Try to build a Super-Node
12 buildSuperNode(Instrs)
13 // Create Vectorized node and add to Graph
14 Node = createNewGroup(Instrs, VEC)
15 // Add the node to the SLP-graph
16 Graph.addNode(Node)
17 // Normal SLP recursion
18 for operands in instrs.getOperands() {
19 buildGraph(operands)
20 }
21 }
22
23 // In: Candidate scalar seeds for Super-Node
24 // Out: The new Super-Node and massaged code
25 buildSuperNode(Instrs) {
26 // If already building a Super-Node, grow it
27 if (!SN.empty()) {
28 // Legality checks for candidate Instrs
29 if (SN.areCompatible(Instrs)) {
30 // Append the operands to the Super-Node
31 SN.append(operands)
32 // Compute the APOs for each lane
33 Graph.computeAccumulatedPathOps()
34 // Continue the recursion toward the Defs
35 for (Ops in values.getOperands())
36 buildGraph(operands)
37 return;
38 }
39 }
40 // Build a new Super-Node
41 else if SN.areCompatible(Instrs) {
42 // Initialize the Super-Node
43 SN.init(Instrs)
44 // Try to grow Super-Node
45 for (operands in values.getOperands())
46 buildGraph(operands)
47 // The Super-Node has now been built.
48 // Find best order of trunks and leaves
49 SN.reorderLeavesAndTrunks()
50 // Apply changes to the underlying IR
51 SN.generateCode()
52 // Save (for undoing) and cleanup the state
53 SN.cleanup()
54 }
55 }

flow reaches the top part (line 27), further legality checks take
place to ensure that the candidate instructions have compatible
opcodes, that the instructions have no external uses to the
Super-Node, and that they are not already part of the Super-
Node (line 29). A legal group is added to the Super-Node
in line 31, and the APO (Accumulated Path Operation) table
is updated for this entry (line 33). This process continues
recursively towards the definitions (line 36), until there are
no more instructions to add to the Super-Node.

The leaf and trunk node reordering takes place in line 49,
and then the IR is updated to reflect this new state of the code

in line 51. This code transformation is a critical component of
SN-SLP and is discussed in detail in Section IV-C. Since the
IR may need to be reverted upon profitability failure, the state
is saved and can be restored (line 53), allowing SLP to get
back to its normal operation within buildGraph (line 16).
This cleanup stage is also shown in Figure 1, step 6.a.

C. Reordering of Leaves and Trunks and Legality Checks

Unlike the Multi-Node of LSLP[9], operand reordering in a
Super-Node is not always legal, and can also require additional
transformations within the trunk nodes of the Super-Node
itself. This section describes in detail how both of these tasks
are performed by Super-Node SLP.

1) Accumulated Path Operation (APO): During the Super-
Node construction, we annotate each node with the APO for
each lane. This is the unary operation performed on each
element that results in the same computation as the original
expression. For example, the APOs in A - (B + C) are: ‘+’
for A, ‘-’ for B, and ‘-’ for C, since +A + (-B) + (-C)
is computationally equivalent to the original expression. Each
of these unary operations can be calculated by walking down
the expression tree and counting the number of right-hand-side
edges of subtractions that we encounter. If this sum is even,
then the APO is a ‘+’, otherwise it is a ‘-’. The same property
is obviously also used for multiplication and division.

Figure 4(a) shows a slightly more complicated example of
an expression tree (left-hand-side) and the corresponding APO
for each node (right-hand-side). The calculation path for nodes
C, D, and F are shown with the red dashed lines.

2) Legality of Leaf Reordering: Since the Super-Node may
contain inverse operators, leaf nodes can only move across the
Super-Node in a restricted way. The legality rule in Super-
Node SLP is that a leaf can only be placed at an operand
position with the same Accumulated Path Operation (see
Section IV-C1). For example, in Figure 3(d) Lane 0, B[i+0]
can only move legally to the position of D[i+0] (both have a
‘+’ APO), while C[i+0] cannot legally move to some other
location, since it is the only operand with a ‘-’ APO.

It turns out that this rule is quite restrictive. This legality
rule would not allow the leaf order shown in Figure 3(d), Lane
1, since C[i+1] would not be allowed to be swapped with
any other node. Similarly, we are not allowed to reorder nodes
B and D of Figure 4(a). To relax this, we introduce trunk node
reordering which, in effect, reorders the position of the APOs
across the border of the Super-Node.

3) Improving Reordering with Trunk Movement: Given that
reordering the leaf nodes by themselves is rather restrictive,
under certain conditions, Super-Node SLP allows for bundles
of leaf and trunk nodes to be reordered. It is legal to move
a trunk node across the Super-Node as long as the APO of
all nodes remains the same. For example, in Figure 3(d) Lane
1, both the Add and Sub locations have the same APO of
‘+’, therefore it is legal to swap them. Swapping them causes
the APOs of their operands to swap too, therefore allowing
the C[i+1] leaf node to move up to match the position of
C[i+0] in Lane 0. The rest of the leaf nodes on Lane 1, are

210

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

BA

A 0

B 0 +

C

D

E

F

G

H

I 0 +

Sum Operation (APO)

Accumulated Path

+

+ +

1 −

0 +

0 +

Sum=0 Sum=1

−

−+
C D

F
−
EG H

I

K

J

+1

J

K 0 +

+

+2

+1

+1

Sum=2

0 +

1 −

1 −

+

+

−

−

(a) Computing the Accumulated Path Operation.

A
+ +

C

−
E

I

K

J

F
+

− GH +

BD
− +

+

−

−

(b) Legal trunk swap.

BA

+

+ +

−

+
C

−
EG

I

K

H

J

F

D

−

+

+

−

−

(c) Illegal trunk swap.

Fig. 4. How the Accumulated Path Operation (APO) restricts which code
motions are legal.

now also free to match their Lane 0 counterparts, resulting in
full isomorphism, as shown in Figure 3(d).

Figure 4(b) illustrates a valid swap between two trunk
nodes, G and H, which allows swapping leaf nodes B and
D. After this valid transformation, all APOs remain the same.
Figure 4(c), on the other hand, shows an example of an invalid
trunk swap of H and J, while trying to swap D and F. If the
trunk reordering was allowed to take place (as shown in the
figure), then the APOs of the leaf nodes would change (as
shown), thus changing the semantics of the expression.

4) Putting it all together: The implementation of the Super-
Node SLP leaf and trunk reordering is shown in Listing 2.

The method definition of Listing 2 line 3 implements the
Super-Node’s reorderLeavesAndTrunks method, which
is called by buildGraph in Listing 1, line 49). It operates
on the Super-Node SN object which was just created by
buildGraph. Its job is to perform the necessary transforma-
tions on the Super-Node’s trunk instructions and its operands
leaf nodes, that will maximize the isomorphism and allow SLP
to vectorize best.

It starts by iterating through the operand indexes. The Super-
Node is considered as a single “fat” node with as many
operands as its incoming edges. The indexes are sorted (line 5)
such that we first visit the ones close to the root node of the
Super-Node. The intuition behind this is that the closest to
the root node, the more important it is to find good matching
leaf nodes, as the further away from the root, the probability
of finding isomorphism within the Super-Node’s trunk nodes

Listing 2. Reordering leaf and trunk nodes
1 // In: A Super-Node
2 // Out: The order of leaf and trunk nodes
3 SuperNode::reorderLeavesAndTrunks() {
4 // Visit the operands closest to the root first
5 for (OpI in SN.getSortedOperandIdxs()) {
6 BestScore = 0
7 BestGroup = none
8 LeftOperands = SN.getSortedOperands()
9 // Try out all operands for the Left-most lane

10 for (LeftOp in LeftOperands) {
11 // Build the best group starting with LeftOp
12 Group = buildGroup(OpI, LeftOp)
13 // Get the Look-Ahead score of the Group
14 Score = getGroupLookAheadScore(Group)
15 // Keep the group with the best score
16 if (Score > BestScore)
17 BestGroup = Group
18 }
19 if (BestGroup == none) continue
20 // Apply BestGroup’s ordering onto Super-Node
21 for (Lane in Lanes) {
22 // Swap the leaf and trunk nodes if needed
23 swapleafstrunkAndAPOs(BestGroup.getOperand(

Lane), SN.getOperand(Lane, OpI))
24 // Mark the operand as ’used’
25 BestGroup.getOperand(Lane).setUsed()
26 }
27 }
28 }

decreases. The goal is to find the best possible group of leaf
nodes, for all lanes, that should be moved to the OpI’th input
of the Super-Node. In order to find the best group, it tries all
possible leaf nodes at Lane 0, and using that as a starting point,
asks for buildGroup (line 12) to return the best possible
group for OpI. Next, it uses the look-ahead scoring routine as
listed in LSLP [9], to calculate the sum of the pair-wise cost
of each pair of instructions in Group (line 14). The score is
then compared against the current best in order to keep the
best group in BestGroup.

Once the best group is found, it is applied onto the Super-
Node, meaning that the ordering of its leaf and trunk nodes is
updated such that the node’s OpI’th operands across all lanes
are the nodes listed in BestGroup. This is performed within
the loop of line 21. The old leaf operands are swapped with
the ones in BestGroup, and the trunk nodes are swapped too
if needed, along with the corresponding APO tables. Finally,
the instructions in BestGroup are all marked as ’used’, to
avoid being used as parts of future searches. This process is
greedy, since (i.) we need to cap compilation time for large
Super-Nodes, and (ii.) the existing scoring system that guides
the operand reordering has limited accuracy.

Now, let’s focus on the implementation of the
buildGroup function shown in Listing 3. As already
mentioned, its goal is to get the instructions that lead to the
best possible score, using LeftOp as the value in Lane 0
and given that this group of instructions will be the OpI’th
operand of the Super-Node. The first check is to make sure
that LeftOp can be legally moved to the OpI’th operand
(line 7). If not, then there is an early exit. Next, the initial
Group is formed (line 10), using LeftOp as its first

211

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

Listing 3. Optimizing the operands group score
1 // In: OpI: The Super-Node operand number,
2 // LeftOp: The Lane 0 operand
3 // Out: The group with the best score
4 buildGroup(OpI, LeftOp) {
5 // Early exit if illegal to move LeftOp at OpI
6 OrigLeftOp = MN.getOperand(0, OpI)
7 if (!isLegalToMove(LeftOp, OrigLeftOp)
8 return none
9 // Initialize MaxGroup with the LeftOp

10 Group.append(LeftOp)
11 // Find the best RightOp, for all lanes
12 for (Lane : Lanes[1:]) {
13 // The original operand at OpI
14 OrigRightOp = MN.getOperand(Lane, OpI)
15 // Find the RightOp with the best score
16 BestScore = 0
17 BestRightOp = none
18 for (RightOp : MN->getOperands(Lane)) {
19 // Skip already used nodes
20 if (RightOp.isUsed()) continue
21 // If illegal to move the leaf by itself
22 if (! isLegalToMoveleaf(RightOp,
23 OrigRightOp)) {
24 RTrunk = RightOp.gettrunk()
25 OrigRTrunk = OrigRightOp.gettrunk()
26 // If we cannot move its trunk node
27 if (RTrunk.getAPO() != OrigRTrunk.getAPO())
28 continue
29 }
30 // Get the score of RightOp candidate
31 Score = getLookAheadScore(LeftOp, RightOp)
32 if (Score > BestScore) {
33 BestScore = Score
34 BestRightOp = RightOp
35 }
36 }
37 if (BestRightOp == none)
38 return none
39 Group.append(BestRightOp)
40 LeftOp = BestRightOp
41 }
42 return Group
43 }

value. The rest of the code iterates through all remaining
lanes (line 12), in an attempt to get the best sequence of
instructions.

Building the best sequence of values is done by iterating
through all possible operands for the current lane (RightOp)
(line 18), skipping the used ones (line 20), and the one ones
that are illegal to move (lines 22 and 27). The legality check
is a two-step check, one that checks the movement of the
leaf node alone (line 22), and if that fails, one that checks
the movement of the trunk node that would allow the leaf
to move (line 27). If all checks pass, then the score of
matching RightOp with LeftOp from the previous lane is
evaluated, using the look-ahead calculation of LSLP [9]. This
score is compared against the BestScore found so far, and
the BestRightOp is appended to the group (line 39). The
current BestRightOp will become the LeftOp of the next
iteration for the following lane (line 40). If no best leaf is
found, an empty group is returned (line 37), otherwise the
complete group is returned (line 42).

TABLE I
KERNELS USED IN THE EVALUATION.

Kernel Benchmark Filename:Line

433-mult-su3-mat-hwvec 433.milc m mat hwvec.c:23
433-mult-su3-mat-vec 433.milc m matvec.c:64
433-mult-su3-nn 433.milc m mat nn.c:90
453-minvers 453.povray matcies.cpp:1331
454-solveSparseColumns 454.calculix SubMtx solveH.c:257
454-solveDenseSubColumns 454.calculix SubMtx solveH.c:9
motivation-leaf Figure 2
motivation-trunk Figure 3

V. RESULTS

We implemented Super-Node SLP on the latest LLVM
trunk, and we modified the existing implementation of the
SLP Vectorizer (SLPVectorizer.cpp).

We evaluated the following configurations: (i.) O3, with
all vectorizers disabled, (ii.) LSLP, which is vanilla SLP +
the Multi-Node support from [9], and (iii.) SN-SLP which
implements the full Super-Node. We compiled all benchmarks
using clang or clang++, and we used the following
compilation flags: -O3 -ffast-math -march=native
-mtune=native. We have also enabled the horizontal re-
ductions support (-slp-vectorize-hor) for both LSLP
and SN-SLP. The target system is an Intel® Core™i5-6440HQ
CPU @ 2.60GHz base, up to 3.50GHz.

For the evaluation we compiled and executed the unmodified
C/C++ benchmarks from the SPEC CPU2006 [13] suite.
Super-Node SLP was activated in a numerous functions. A
small number of these functions were extracted as kernels
(Table I) to help us focus the evaluation on code that triggers
Super-Node SLP. We also included the motivating examples
of Section III to the list of kernels for completeness. For
all performance and compilation time results, we report the
average of 10 executions, after skipping the first warm-up run.
The error bars show the standard deviation.

The node structures of both LSLP and SN-SLP support
integer and floating point additions and floating point multipli-
cations. On top of these, SN-SLP also supports their inverse
elements, that is integer and floating point subtractions and
floating point divisions.

A. Performance on the Kernels

The normalized speedup over O3 for the kernels is shown
in Figure 5. The first thing to note is that LSLP is on average
the same as O3. In a few tests it performs worse than O3.
This is expected because the cost model’s static predictions
about the performance of scalar code versus the equivalent
vector code is not guaranteed to be correct. It is usually more
accurate when comparing relative cost between vector variants,
like LSLP versus SN-SLP. As expected, SN-SLP improves,
with statistical significance, upon the LSLP, in most cases.
This figure also includes the measurements of the code of the
motivating examples of Section III. Since this code is just a
simple loop, the speedup is very significant.

212

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

0.80x

0.85x

0.90x

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x

1.30x

433-mult-su3-mat-hwvec

433-mult-su3-mat-vec

433-mult-su3-nn

453-minvers

454-solveSparseColumns

454-solveDenseSubColumns

motivation-leaf

motivation-trunk

GMean

O3 LSLP SNSLP

2.0x 2.0x

Fig. 5. Execution speedup, normalized to O3

 0

 4

 8

12

16

20

24

28

32

433-mult-su3-mat-hwvec

433-mult-su3-mat-vec

433-mult-su3-nn

453-minvers

454-solveSparseColumns

454-solveDenseSubColumns

motivation-leaf

motivation-trunk

avg

LSLP SNSLP

Fig. 6. Total Multi/Super-Node size.

This work introduces the concept of the Super-Node, which
is an generalized Multi-Node [9]. In order to evaluate the
effectiveness of each node type, we measured the total ag-
gregate node size (depth) of each case (Figure 6), across all
successfully vectorized code. Super-Node is clearly a more
effective node structure, achieving much greater aggregate
size compared to LSLP’s Multi-Node. This can be attributed
not only to the larger size of each individual node per SLP-
graph (shown in Figure 7), but also to the fact that this more
effective structure allows us to successfully vectorize more
often. The average node size is about 2.2 instructions deep,
which is intuitive because: (i) 2 is the minimum legal size for
a Multi/Super-Node, and (ii) shorter chains are much more
likely to be isomorphic than longer ones.

B. Performance on Benchmarks

We measured the performance across all C/C++ SPEC
CPU2006 full benchmarks. Super-Node SLP activates only in
six of them, the ones shown in Figure 5. Since Super-Node
SLP is a generic optimization, not one that targets specific
hot loops, the performance improvements across whole bench-
marks were not expected to be significant. However, as it turns
out, 433.milc achieves 2% speedup over LSLP, which is a very
significant improvement. The rest of the benchmarks have no
statistical difference between the two versions.

We measured the aggregate node size for the full bench-
marks as well, and we present the results in Figure 9. As

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

433-mult-su3-mat-hwvec

433-mult-su3-mat-vec

433-mult-su3-nn

453-minvers

454-solveSparseColumns

454-solveDenseSubColumns

motivation-leaf

motivation-trunk

avg

LSLP SNSLP

Fig. 7. Average Multi/Super-Node size.

0.88x

0.90x

0.92x

0.94x

0.96x

0.98x

1.00x

1.02x

1.04x

433.milc
464.h264ref

435.gromacs

447.dealII

453.povray

454.calculix

GMean

LSLP SNSLP

Fig. 8. Execution speedup normalized to LSLP.

expected, Super-Node SLP creates more and nodes, but not
always larger on average (Figure 10). Since Super-Node SLP
gets activated more times than LSLP, it is not impossible that
these frequent activations can pull the average down, towards
the most common node sizes. Just like in the kernels, the
average node size is close to 2.5 instructions.

 0

40

80

120

160

200

240

280

320

433.milc
464.h264ref

435.gromacs

447.dealII

453.povray

454.calculix

avg

LSLP SNSLP

Fig. 9. Total Multi/Super-Node size.

C. Compilation Time

In compilers it is important to balance the generated code’s
performance and the time spent compiling. Since we are intro-
ducing a new design for the SLP algorithm, we also need to
evaluate its execution time. We measured the wall compilation

213

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

433.milc
464.h264ref

435.gromacs

447.dealII

453.povray

454.calculix

avg

LSLP SNSLP

Fig. 10. Average Multi/Super-Node size.

time for all kernels (10 runs + 1 warm-up) and we show the
normalized results in Figure 11. The figure shows that Super-
Node SLP does not introduce any significant compilation-time
overhead, which is expected, as we have not introduced any
compilation-time intensive component. Moreover, when there
is a significant code size reduction due to vectorized code (for
example in the motivation kernels) we see a large reduction in
wall time since there is less code to process for the remaining
compiler passes.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

433-mult-su3-mat-hwvec

433-mult-su3-mat-vec

433-mult-su3-nn

453-minvers

454-solveSparseColumns

454-solveDenseSubColumns

motivation-leaf

motivation-trunk

GMean

O3 LSLP SNSLP

Fig. 11. Compilation time normalized to O3.

VI. RELATED WORK

Traditionally, vector machines were the choice of prefer-
ence for supercomputers [14], with scientific workloads being
accelerated by both commercial [15], [16] and experimen-
tal [15], [16], [17] vector machines. Modern graphics proces-
sors (GPUs) implement similar types of wide vector execution,
where computation is performed in groups of 32 (on Nvidia),
64 (on AMD) or any of 8/16/32 (on Intel [18]) adjacent
threads executing in lock-step. Wide parallel computation
on GPUs is possible thanks to data-parallel graphics APIs
(e.g., OpenGL [19], DirectX [20]) or General Purpose GPU
(GPGPU) languages such as CUDA [21] or OpenCL [22],
where the programmer explicitly exposes the available paral-
lelism.

General purpose CPUs have been supporting short
SIMD vector ISAs for several decades (e.g, AVX* [23],
3DNow! [24], VMX/AltiVec [25], NEON [26]).

A. Loop Auto-Vectorization

Auto-vectorization techniques have traditionally focused on
vectorizing loops [27]. These loop-based algorithms work by
fusing consecutive loop iterations into a single vectorized itera-
tion in a strip-mining fashion, widening each scalar instruction
in the loop body to work on vector elements. Early works of
Allen and Kennedy on the Parallel Fortran Converter [2], [3],
the works of Kuck et al. [28], Wolfe [29], and Davies et al. [30]
solve many of the fundamental problems of loop vectorizers.
Since then, numerous other improvements have been proposed
in the literature and implemented in production compilers [31],
[32], [10], [11], [33]. Nuzman et al. [10] describe a technique
to overcome non-contiguous memory accesses and a method
to vectorize outer loops without requiring loop rotation in
advance [11]. The overall effectiveness of loop vectorizing
compilers has been studied by Maleki et al. [34]. Whole func-
tion vectorization has been the focus of Karrenberg et al. [35],
[36], while recent improvements on control-flow linearization
were presented by Moll et al. [37]. Finally, Masten et al. [38]
proposes a loop vectorization-based technique for whole func-
tion vectorization.

B. SLP Auto-Vectorization

The SLP Vectorization was first proposed by Larsen and
Amarasinghe [4]. It is a complementary technique to loop
vectorization which focuses on vectorizing straight-line code
instead of loops. Bottom-up Variants of this straight-line code
vectorization algorithm have been implemented in compilers
such as GCC [7] (Rosen et al. [5]) and LLVM [8] (Rotem et al.
[6]). This bottom-up algorithm is widely adopted due to its
low run-time overhead while still providing good vectorization
coverage. In this paper, we use LLVM’s bottom-up SLP
algorithm as the baseline, after we extended it with support
for Multi-Nodes, as described in [9].

Since its conception, several improvements have been pro-
posed for the SLP vectorizer and straight-line-code vector-
ization in general. Shin et al. [39] propose a framework that
makes use of predicated execution to convert the control flow
into data-flow dependence, which enables a straight-line-code
vectorizer to analyze and transform the predicated scalar code
to vector code. Liu et al. [40] present a framework for a holistic
SLP vectorizer that uses an iterative grouping mechanism to
explore groups of vectorizable instructions and then forming
vectors out of the most profitable ones. [41] improves upon this
algorithm with an ILP solver to better explore the optimization
space, which results in better performance, but at the cost
of impractically long compilation times. Huh and Tuck [42]
propose a different approach for identifying isomorphism in
SLP vectorization based on growing the vectorizable graph
from small predefined patterns. The Park et al. [43] approach
succeeds in reducing the overheads associated with vectoriza-
tion such as data shuffling and inserting/extracting elements
from the vectors.

The widely used bottom-up SLP algorithm has been im-
proved in several ways. Porpodas et al. [12] propose PSLP, a
technique that converts non isomorphic instruction sequences

214

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

into isomorphic ones through instruction padding. In [44], the
SLP region is pruned to scalarize groups of instructions that
harm the vectorization cost, while in [45] a larger unified
SLP region is used, that overcomes limitations associated with
the inter-region communication and unreachable instructions.
Zhou et al. [46] present a vectorization technique that reduces
the data re-organization overhead by considering both intra-
and inter-loop parallelism, that improves upon the loop-aware
SLP approach of [5], while in [47] vectorization is enabled for
SIMD widths that are not supported by the target hardware.
Variable-Width SLP [48] adjusts the SIMD width and performs
the necessary shuffles to allow SLP to vectorize more code.

Look-Ahead SLP (LSLP) [9] focuses on improving vector-
ization of commutative operations. It introduces the concept
of the Multi-Node, which is limited to commutative operations
only. It also introduces the Look-Ahead operand reorder-
ing methodology, uses knowledge from instructions beyond
the immediate predecessors, to improve the effectiveness of
operand reordering. LSLP is our baseline comparison for our
work. Super-Node SLP introduces the Super-Node, which
Multi-Node which includes both commutative operations and
their corresponding inverse elements. This allows the algo-
rithm to perform more effective code massaging, leading to
improved vectorization.

VII. CONCLUSION

We presented Super-Node SLP (SN-SLP), an SLP-based
auto-vectorization algorithm capable of optimizing expres-
sions of commutative operations and their inverse elements
(for example additions and subtractions). SN-SLP performs
aggressive code motion across such expressions to expose
the underlying isomorphism. Our SN-SLP implementation in
LLVM shows considerable performance improvements over
the state-of-the-art on real benchmark code, without any
significant change in compilation time.

ACKNOWLEDGMENT

Rodrigo C. O. Rocha is supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) under grant
EP/L01503X/1.

REFERENCES

[1] OpenMP Architecture Review Board, “OpenMP Application Program
Inteface,” https://www.openmp.org/specifications/.

[2] J. Allen and K. Kennedy, “PFC: A program to convert fortran to parallel
form,” Department of Mathematical Sciences, Rice University, Tech.
Rep., 1982.

[3] J. R. Allen and K. Kennedy, “Automatic translation of Fortran programs
to vector form,” Tranactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 4, 1987.

[4] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets,” in Proceedings of the Conference on
Programming Language Design and Implementation (PLDI), 2000.

[5] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware SLP in GCC,” in GCC
Developers Summit, 2007.

[6] N. Rotem and A. Schwaighofer, “Vectorization in LLVM
https://llvm.org/devmtg/2013-11/slides/Rotem-Vectorization.pdf,”
LLVM Developer’s meeting, 2013.

[7] Free Software Foundation, “GCC: GNU compiler collection,”
http://gcc.gnu.org, 2015.

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO), 2004.

[9] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes, “Look-ahead SLP:
Auto-vectorization in the Presence of Commutative Operations,” in
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, ser. CGO 2018. New York, NY, USA: ACM, 2018,
pp. 163–174.

[10] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for SIMD,” in Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), 2006.

[11] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited for short
SIMD architectures,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2008.

[12] V. Porpodas, A. Magni, and T. M. Jones, “PSLP: Padded SLP automatic
vectorization,” in Proceedings of the International Symposium on Code
Generation and Optimization (CGO), 2015.

[13] SPEC, “Standard Performance Evaluation Corp Benchmarks,”
http://www.spec.org, 2014.

[14] R. Espasa, M. Valero, and J. E. Smith, “Vector architectures: Past,
present and future,” in Proceedings of the 12th International Conference
on Supercomputing, ser. ICS ’98. New York, NY, USA: ACM, 1998,
pp. 425–432. [Online]. Available: http://doi.acm.org/10.1145/277830.
277935

[15] R. M. Russell, “The CRAY-1 computer system,” Communications of the
ACM, vol. 21, no. 1, 1978.

[16] W. Oed, “Cray Y-MP C90: System features and early benchmark
results,” Parallel Computing, vol. 18, no. 8, 1992.

[17] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. Yelick, “Scalable processors in the billion-transistor
era: IRAM,” Computer, vol. 30, no. 9, 1997.

[18] Intel Corporation, “The Compute Architecture of Intel Processor Graph-
ics Gen9,” https://software.intel.com, 2015.

[19] D. Shreiner, OpenGL reference manual: The official reference document
to OpenGL, version 1.2. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[20] K. Gray, Microsoft DirectX 9 programmable graphics pipeline. Mi-
crosoft Press, 2003.

[21] Nvidia, “Compute unified device architecture programming guide,”
2007.

[22] Khronos OpenCL Working Group, “The OpenCL Specification,”
https://www.khronos.org/opencl/.

[23] Intel Corporation, “IA-32 Architectures Optimization Reference Man-
ual,” 2007.

[24] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technology:
Architecture and implementations,” IEEE Micro, vol. 19, no. 2, 1999.

[25] IBM PowerPC Microprocessor Family, “Vector/SIMD Multimedia Ex-
tension Technology Programming Environments Manual,” 2005.

[26] ARM Ltd, “ARM NEON,” https://developer.arm.com/technologies/neon,
2014.

[27] M. J. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1995.

[28] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
“Dependence graphs and compiler optimizations,” in Proceedings of the
Symposium on Principles of Programming Languages, 1981.

[29] M. Wolfe, “Vector optimization vs. vectorization,” in Supercomputing.
Springer, 1988.

[30] J. Davies, C. Huson, T. Macke, B. Leasure, and M. Wolfe, “The
KAP/S-1- an advanced source-to-source vectorizer for the S-1 Mark
IIa supercomputer,” in Proceedings of the International Conference on
Parallel Processing, 1986.

[31] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for SIMD
architectures with alignment constraints,” in Proceedings of the Confer-
ence on Programming Language Design and Implementation (PLDI),
2004.

[32] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations for SIMD
devices,” in Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), 2006.

[33] A. Anderson, A. Malik, and D. Gregg, “Automatic vectorization of
interleaved data revisited,” ACM Trans. Archit. Code Optim., vol. 12,
no. 4, pp. 50:1–50:25, Dec. 2015.

215

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

[34] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An
evaluation of vectorizing compilers,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2011.

[35] R. Karrenberg and S. Hack, “Whole-function vectorization,” in Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. IEEE Computer Society, 2011, pp. 141–
150.

[36] R. Karrenberg and S. Hack, “Improving performance of opencl on cpus,”
in International Conference on Compiler Construction. Springer, 2012,
pp. 1–20.

[37] S. Moll and S. Hack, “Partial control-flow linearization,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2018, pp. 543–556.

[38] M. Masten, E. Tyurin, K. Mitropoulou, H. Saito, and E. Garcia,
“Function/Kernel Vectorization via Loop Vectorizer,” Proceedings of
the 5th Workshop on The LLVM Compiler Infrsatructure in HPC (LLV-
HPC), 2018.

[39] J. Shin, M. Hall, and J. Chame, “Superword-level parallelism in the
presence of control flow,” in Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2005.

[40] J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir, “A compiler
framework for extracting superword level parallelism,” in Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI), 2012.

[41] C. Mendis and S. Amarasinghe, “goSLP: Globally Optimized Superword

Level Parallelism Framework,” arXiv preprint arXiv:1804.08733, 2018.
[42] J. Huh and J. Tuck, “Improving the effectiveness of searching for

isomorphic chains in superword level parallelism,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 718–729.

[43] Y. Park, S. Seo, H. Park, H. Cho, and S. Mahlke, “SIMD defragmenter:
Efficient ILP realization on data-parallel architectures,” in Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2012.

[44] V. Porpodas and T. M. Jones, “Throttling automatic vectorization: When
less is more,” in 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE, 2015, pp. 432–444.

[45] V. Porpodas, “SuperGraph-SLP Auto-Vectorization,” in 2017 Interna-
tional Conference on Parallel Architecture and Compilation (PACT).
IEEE, 2017, pp. 330–342.

[46] H. Zhou and J. Xue, “Exploiting mixed SIMD parallelism by reducing
data reorganization overhead,” in Proceedings of the 2016 International
Symposium on Code Generation and Optimization. ACM, 2016, pp.
59–69.

[47] H. Zhou and J. Xue, “A compiler approach for exploiting partial SIMD
parallelism,” ACM Transactions on Architecture and Code Optimization
(TACO), 2016.

[48] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes, “VW-SLP: Auto-
vectorization with Adaptive Vector Width,” in 2018 International Con-
ference on Parallel Architecture and Compilation (PACT), ser. PACT
2018.

216

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 01:52:33 UTC from IEEE Xplore. Restrictions apply.

