
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221035769

Using Decision Trees to Improve Program-Based and Profile-Based Static

Branch Prediction

Conference Paper in Lecture Notes in Computer Science · October 2005

DOI: 10.1007/11572961_27 · Source: DBLP

CITATIONS

5
READS

134

3 authors, including:

Some of the authors of this publication are also working on these related projects:

big data cloud computing machine learning View project

Lieven Eeckhout

Ghent University

332 PUBLICATIONS 7,918 CITATIONS

SEE PROFILE

Koen De Bosschere

Ghent University

255 PUBLICATIONS 3,679 CITATIONS

SEE PROFILE

All content following this page was uploaded by Koen De Bosschere on 16 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221035769_Using_Decision_Trees_to_Improve_Program-Based_and_Profile-Based_Static_Branch_Prediction?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221035769_Using_Decision_Trees_to_Improve_Program-Based_and_Profile-Based_Static_Branch_Prediction?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/big-data-cloud-computing-machine-learning?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lieven-Eeckhout?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lieven-Eeckhout?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lieven-Eeckhout?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koen-De-Bosschere?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koen-De-Bosschere?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koen-De-Bosschere?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koen-De-Bosschere?enrichId=rgreq-5f174dbf31e56a395c4b334b237df3c7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAzNTc2OTtBUzo5NzM2Njk3MTUxODk4MkAxNDAwMjI1NTA0MDA0&el=1_x_10&_esc=publicationCoverPdf

Using Decision Trees to Improve Program-Based
and Profile-Based Static Branch Prediction

Veerle Desmet, Lieven Eeckhout, and Koen De Bosschere

Department of Electronics and Information Systems,
member HiPEAC, Ghent University—UGent, Belgium

{veerle.desmet, lieven.eeckhout, koen.debosschere}@elis.UGent.be

Abstract. Improving static branch prediction accuracy is an impor-
tant problem with various interesting applications. First, several com-
piler optimizations such as code layout, scheduling, predication, etc. rely
on accurate static branch prediction. Second, branches that are stati-
cally accurately predictable can be removed from the dynamic branch
predictor thereby reducing aliasing. Third, for embedded microproces-
sors which lack dynamic branch prediction, static branch prediction is
the only alternative.

This paper builds on previous work done on evidence-based static
branch prediction which uses decision trees to classify branches. We
demonstrate how decision trees can be used to improve the Ball and
Larus heuristics by optimizing the sequence of applying the heuristics
and by discovering two new heuristics, namely one based on the post-
domination relationship between the current basic block and its successor
and one based on the dependency distance between the branch and its
operand defining instruction. Experimental results indicate an increase
in the number of instructions per mispredicted branch by 18.5% on aver-
age for SPECint95 and SPECint2000. In addition, we show that decision
trees can improve profile-based static branch prediction by up to 11.7%
by predicting branches that are unseen in the profile runs.

1 Introduction

Static branch prediction is an important research topic for several reasons. Com-
pilers rely on accurate static branch prediction for applying various compiler
optimizations, such as code layout, instruction scheduling, register allocation,
function inlining, predication, etc. Moreover, in many cases the applicability or
the effectiveness of the compiler optimizations is directly proportional to the
branch prediction accuracy. Second, branches that are highly predictable using
static branch prediction or hard to predict dynamically can be excluded from the
dynamic branch predictor thereby reducing aliasing in the predictor and thus
increasing the predictor’s performance [9]. The IA-64 ISA for example, provides
branch hints to communicate to the hardware whether the branch should be
updated in the dynamic branch predictors. Third, several embedded processors
lack a dynamic branch predictor, e.g. the Philips’ TriMedia and the TI VLIW
family processors. For these microprocessors, static branch prediction is the only
source for reducing the number of branch mispredictions.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 336–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Decision Trees to Improve Program-Based 337

1.1 Background

There exist two approaches to static branch prediction, namely program-based
and profile-based branch prediction. The first approach only uses structural infor-
mation of a computer program. A well known example of program-based branch
prediction are the Ball and Larus heuristics. Ball and Larus [1] present a set
of heuristics that are based on the branch opcode, the branch operands, and
properties of the basic block successors of a branch. Ball and Larus propose to
apply these heuristics in a fixed ordering which means that the first heuristic
that applies to a particular branch will be used to predict the branch direction.
To determine the best ordering they evaluate all possible combinations. Instead
of using a fixed ordering for applying the Ball and Larus heuristics, Wu and
Larus [17] propose using the Dempster-Shafer theory for combining heuristics in
case multiple heuristics apply to a particular branch. The results in [3] however,
indicate that this does not improve the branch prediction accuracy.

A second example of program-based branch prediction is evidence-based
static branch prediction (ESP) proposed by Calder et al. [3]. In evidence-based
branch prediction, machine learning techniques are used to classify branches
based on a large number of branch features. We will use decision trees for classi-
fication since they are equally performing as neural networks while being easier
to interpret [3]. The biggest advantage of this approach is that decision trees are
generated automatically so that they can be specialized for a specific program-
ming language, a specific compiler, a specific ISA, etc. Other program-based
techniques rely on heuristics that are based on intuition and empirical studies
and thus are not easily transformed to another environment.

The profile-based branch prediction approach uses information obtained from
previous runs of the same program with different inputs. According to Fisher
and Freudenberger [7], branches go in one direction most of the time; as such,
one can predict the direction of a branch well using previous runs of the same
program. Profile-based static branch prediction is widely recognized as being
more accurate than program-based prediction [3,7]. However, profile-based static
branch prediction has several disadvantages. First, gathering profile data is a
time-consuming process that programmers are not always willing to do. Second,
profiling is not always practical, e.g. for an operating system kernel, or even
infeasible for real-time applications. Third, the selection of representative inputs
might be difficult.

In this paper, we consider both static branch prediction approaches since
both come with their advantages. Program-based branch prediction has a lower
cost and profile-based branch prediction has a higher accuracy.

1.2 Contributions and Outline

This paper makes the following contributions. First, we demonstrate that deci-
sion trees can be used to improve the Ball and Larus heuristics by automati-
cally optimizing the sequence of applying these heuristics. Second, we increase
the number of instructions per mispredicted branch by 18.5% over the Ball

338 V. Desmet, L. Eeckhout, and K. De Bosschere

and Larus heuristics by proposing two new heuristics, one based on the post-
dominator relationship of the current block and its successor and one based
on the dependency distance between the branch and its operand defining in-
struction. Third, we show that decision trees can also be used to improve the
accuracy of profile-based static branch prediction by up to 11.7%. In particular,
for branches that are unseen in the profile runs, we propose using decision trees.
The experimental results are obtained using the SPECint95 and SPECint2000
benchmarks.

This paper is organized as follows. After detailing the experimental setup in
section 2, we will discuss in section 3 how evidence-based branch prediction can
be improved by adding new static branch features. In section 4, we discuss the
Ball and Larus heuristics and show how decision trees can be used to improve
their performance. In section 5 we demonstrate that profile-based branch pre-
diction can also benefit from decision trees when used in conjunction. Finally,
we discuss related work in section 6 and conclude in section 7.

2 Experimental Setup

The experimental results in this paper are obtained for the SPECint95 and
the SPECint2000 benchmarks. We did not include gcc, perl and vortex from
SPECint95 because our evaluation methodology uses cross-validation which

Table 1. Benchmarks, their inputs and some branch statistics. ‘Stat.’ is the number
of static branches executed; ‘Dyn.’ is the number of dynamic branches executed in
millions; ‘Best’ is the upper limit for IPM for static branch prediction. Inputs with an
asterix* are only used in Section 5 and are excluded from the average.

Program Input Stat. Dyn. Best Program Input Stat. Dyn. Best
gzip graphic* 830 7,939 102.14 vpr place* 1,584 292 75.29

log* 833 3,861 129.01 route 2,463 7,671 128.59
program* 832 8,031 129.39 mcf ref 844 10,758 50.08
random 777 6,748 241.05 crafty ref 2,677 15,990 67.93
source* 851 9,351 104.94 gap ref 4,757 21,975 169.42

gcc 166* 18,588 4,136 358.23 vortex lendian1* 5,930 12,966 1037.62
200* 17,581 12,011 122.58 lendian2 5,940 13,779 730.65
expr* 17,904 1,243 146.16 lendian3* 5,923 14,500 1092.65
integrate* 16,720 1,281 229.12 bzip2 graphic* 854 12,697 140.25
scilab 17,771 6,516 113.30 program 854 11,612 106.70

parser ref 2,624 60,851 64.02 source* 853 9,862 102.14
perlbmk splitmail 850* 6,146 12,309 440.06 twolf ref 2,976 34,249 63.44

splitmail 704* 6,147 6,508 402.49 compress bigtest 426 5,004 72.66
splitmail 535 6,146 6,072 421.05 go 5stone21 4,963 3,872 39.00
splitmail 957* 6,148 10,822 402.55 ijpeg penguin 1455 1,485 134.80
makerand* 2,029 177 318.10 li ref 918 8,532 50.98
diffmail* 5,598 3,774 154.18 m88ksim ctl.raw.lit 1,113 1,969 202.79

average 115.94

Using Decision Trees to Improve Program-Based 339

means that the program being evaluated is not included in the train set; in-
cluding these three benchmarks would have been unfair as they appear in both
SPECint95 and SPECint2000. We did not include eon since it is the only
SPECint2000 benchmark written in C++ whereas the other benchmarks are
all written in C. Indeed, Calder et al. [3] showed that ESP is sensitive to the
programming language in which the benchmarks are written and that there-
fore separate decision trees should be considered for different programming lan-
guages. All the benchmarks are compiled with the Compaq C compiler version
V6.3-025 with optimization flags -arch ev6 -fast -O4. An overview of the
benchmarks and their inputs is listed in Table 1. All the inputs are reference
inputs and all the benchmarks were run to completion. In Table 1, for each
benchmark-input pair the lower limit in branch misprediction rate is shown for
static branch prediction. This lower limit is defined by the most likely direction
for each branch. For example, for a branch that is executed 100 times of which
80 times taken, the best possible static branch prediction achieves a prediction
accuracy of 80%. All the averages reported in this paper are geometric averages
over all the benchmarks. Our primary metric for measuring the performance
of the proposed branch prediction techniques is the number of instructions per
mispredicted branch (IPM) which is a better metric than misprediction rate be-
cause IPM also captures the density of conditional branches in a program [7].
Detecting basic blocks and loops in the binaries was done using Squeeze [5], a bi-
nary rewriting tool for the Alpha architecture. Squeeze reads in statically linked
binaries and builds a control flow graph from it. Computing the static branch
features that will serve as input for the decision trees is done using a modified
version of Squeeze.

3 Evidence-Based Prediction

This section presents a background on evidence-based branch prediction (ESP)
using decision trees. We also show how ESP can be improved by stopping the
growth during decision tree learning and by adding a set of newly proposed
branch features.

3.1 Decision Trees

Decision trees consider static branch prediction as a classification problem:
branches are classified into ‘taken’ and ‘not-taken’ classes based on a number of
static branch features. A decision tree consists of a number of internal nodes in
which each node discriminates on a given branch feature, and in which the leafs
represent the branch classes ‘taken’ and ‘not-taken’. A decision tree can thus be
viewed as a hierarchical step-wise decision procedure.

In our experiments, the decision trees are generated using C4.5 [11]. Devel-
oped by J. Ross Quinlan in 1992, C4.5 is a widely used tool for constructing
decision trees; C4.5 was also used by Calder et al. [3]. Our slightly modified
version of C4.5 takes into account the branches’ execution frequencies giving a

340 V. Desmet, L. Eeckhout, and K. De Bosschere

0

10

20

30

40

50

60

70

80

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

c
o
m

p
re

s
s

g
o

ij
p
e
g li

m
8
8
k
s
im

a
v
e
ra

g
e

in
s
tr

u
c
ti
o
n
s

p
e
r

m
is

p
re

d
ic

te
d

b
ra

n
c
h

Calder's feature set

m=2

Calder's feature set

m=175

Our extended

feature set m=2

Our extended

feature set m=275

Fig. 1. Number of instructions per mispredicted branch for evidence-based branch
prediction using decision trees

higher weight to more frequently executed branches; this is done by adding an
extra attribute to the input of C4.5 for each static branch. To achieve the same
result, Calder et al. [3] duplicates static branches proportional to their execution
frequency. As done in [3], the execution frequencies were rescaled by multiply-
ing the normalized frequencies by a factor 1,000; branches with a rescaled value
smaller than 1 were excluded from the training set. This eliminates a number of
low-frequency branches and allows C4.5 to focus on the important frequently ex-
ecuted branches. An additional advantage of eliminating low-frequency branches
is that it seriously reduces the time to construct the decision trees. Further, the
default C4.5 training and pruning settings are used.

All the results in this paper are obtained by performing a cross-validation
study, meaning that the benchmark under evaluation is excluded from the train-
ing set. Cross-validation was done to provide fair results, since the predicted
program is not seen during the construction of the decision tree.

3.2 Branch Features

We have applied decision tree prediction on the SPECint95 and SPECint2000
benchmarks in a cross-validation study using the feature set from Calder et al. [3].
The first bar in Figure 1 show the average number of instructions between two
mispredicted branches equals 28.4.

3.3 Stopping the Growth of the Decision Tree

In his book on machine learning [8], Tom Mitchell describes approaches to avoid
overfitting in decision tree learning. The first group of techniques allow the tree
to overfit the data, and then post-prune the tree in a second phase. Pruning
is the process of consecutively removing subtrees, making them leaf nodes, and
assigning them the most common decision class of the training examples. Nodes

Using Decision Trees to Improve Program-Based 341

are pruned iteratively, at each step choosing the node whose removal affects the
estimated classification accuracy the least. This post-pruning approach is the
default strategy for C4.5.

An alternative to post-pruning is stopping the growth of the tree before it
reaches the point of overfitting the data. In C4.5, this technique can be forced
by setting parameter m to indicate the minimal number of examples in at least
two subtrees when splitting a node. The default value in C4.5 for m equals 2. By
setting this m, we directly tune the generalization degree to the training data. As
m increases the tree concentrates only on splits with sufficient examples in the
subtrees. and thus the prediction strategy becomes more general. To determine a
good m, we evaluate program 1 (P1) based on data from P2 to P16 while varying
m from 25 to 1000 with a step size of 25 and we repeat this experiment for P2
to P16 (cross-validation). If we would optimize the IPM as a function of m for
each benchmark, we would systematically bias our results to better performance.
To prevent the latter, for a program P1 we determine the average IPM for P2
to P16 for each m, and optimize for m. This technique potentially results in
16 different m values; however, for all except one the value equals m = 175. In
addition, we observed that m-values within the same order of magnitude do not
affect the results significantly. In Figure 1, the second bar displays the IPM when
applying this growth stopping mechanism using the feature set by Calder et al.
This graph shows that IPM is increased from 28.4 to 31.4 which is an increase
by 10.6%. Most programs benefit substantially from stopping the growth of the
tree; however, there are a few benchmarks that benefit from a specialized tree,
the most notable example being vpr.

3.4 Additional Branch Features

In the next set of experiments we have extended the number of static branch
features with the ones given in Table 2. Half of the additional features are static
properties of the branch’s basic block. The other half relates to the successor
basic blocks. The experimental results given in Figure 1 indicate the extended
set decreases the average IPM over the original feature set for the default m = 2.
However, when the growth stopping mechanism is enabled, the average IPM
increases to 32.3 which is 2.9% larger than the original set. From a detailed
analysis we observed that the ‘number of incoming edges to the taken successor’
from Table 2 was particularly valuable. Moreover, most (11 out of 16) programs
benefit from the combination of an extended feature set and a setup that stops
the growth of the tree. On average, the IPM increases by 18.5% over the previous
work done by Calder et al. [3].

3.5 Comparing with Previous ESP Work

During this analysis of ESP, we observed that our results showed a higher av-
erage misprediction rates—38%—than the 25% reported by Calder et al. There
are three possible reasons for this. First, we used different benchmarks than
Calder et al. did. They used SPECint92 plus a set of Unix utilities which we

342 V. Desmet, L. Eeckhout, and K. De Bosschere

Table 2. Additional static features

Feature Description
Register Register number used in branch instruction
Loop level Loop level of the branch instruction (start with zero in non-loop

part, increase the number for each nested loop)
Basic Block Size Size in number of instructions
Distance Distance between register defining instruction and the branch that

uses it
RA Register Register number for RA
RA Distance Distance between both register defining instructions
RB Register Register number for RB
RB Distance Distance between both register defining instructions
Register definition The register in the branch instruction was defined in that basic

block, or not
Pointer The pointer heuristic is applicable
Opcode Opcode heuristic is applicable
Incoming Edges Number of possible ways to enter basic block

Features of the Taken and Not Taken Successor
Basic Block Size Size of successor basic block
Incoming Edges Number of possible ways to enter successor basic block
Pre-return Successor contains a return or unconditionally passes control to a

return
Pre-store Successor contains a store instruction or unconditionally passes con-

trol to a block with a store instruction
Direct call Successor contains a call
Loop Sequence Only applicable if loop exit edge: successor is also a loop at the

same level, or not

believe are much less complex than SPECint95 and SPECint2000. For several
SPEC benchmarks, Calder et al. report a misprediction rate around 30% (32%
for gcc), which is comparable to our results. Next to these benchmarks, Calder’s
study also includes several C-benchmarks (alvinn, ear and eqntott) with ex-
tremely low miss rates pulling down the average miss rate to 25%. A second
possible explanation is the fact that the lower compiler optimization level used
by Calder et al. (-O) results in better predictable branch behavior than when
using a higher optimization level (-O4 in our study). During investigation of how
much the branch predictability is affected by the chosen compiler optimization
level we found that the use of a lower optimization level in Calder’s paper indeed
results in better predictable branch behavior. Less optimization makes the pro-
gram structure more generic so that branches are easier to predict. The latter
drops the average misprediction rate by 10% between -O4 and -O1, and by 3%
between -O4 and -O. A third explanation could be the use of a different and
more recent compiler. We do not believe the difference in reported misprediction
rates between this paper and Calder’s work comes from the fact that we use a
(slightly) smaller number of benchmarks in our analysis, namely 16 versus 23 C

Using Decision Trees to Improve Program-Based 343

programs and 20 Fortran programs used by Calder et al. 1, because the number
of static branches in our analysis is 2 times higher than the number of static
branches by Calder et al.

4 Heuristic-Based Prediction

In this section, we show how decision trees improve the Ball and Larus heuristics’
accuracy and usability. Before going into detail on how this is done, we first give
a brief discussion on the Ball and Larus heuristics as proposed in [1].

The Ball and Larus heuristics start by classifying branches as loop and non-
loop branches. A branch is a loop branch if either of its outgoing edges is an
exit edge or a loop backedge. A branch then is a non-loop branch if neither of
its outgoing edges is an exit or a backedge. Loop branches can be predicted very
accurately by the loop heuristic which predicts that the edge back to the loop’s
head is taken and that the edge exiting the loop is not taken. In our analysis
these loop branches account for 35% of the dynamic branches and for 11% of
the static branches. The rest of the heuristics concern non-loop branches:

– The pointer heuristic will predict that pointers are mostly non-null, and
that pointers are typically not equal, i.e. comparing two pointers typically
results in non-equality.

– The opcode heuristic will predict that comparisons of integers for less than
zero, or less than or equal to zero will evaluate false, and that comparisons
for greater than zero, or greater than or equal to zero will be true. This
heuristic is based on the notion that many programs use negative numbers
to denote error values.

– The guard heuristic applies if the register used in the branch instruction is
used in the successor basic block before being defined, and the successor block
does not postdominate the branch. If the heuristics applies, the successor
with the property is predicted to be the next executed block. The intuition
is that guards usually catch exceptional conditions.

– The loop header heuristic will predict the successor that is a loop header
or pre-header and which does not postdominate the branch. This heuristic
will predict that loops are executed rather than avoided.

– The call heuristic will predict the successor that contains a call and does
not postdominate the branch as not taken. This heuristics predicts that a
branch avoids executing the function call.

– The store heuristic will predict the successor containing a store instruction
and does not postdominate the branch as not taken.

– The return heuristic will predict that a successor with a return will be not
taken.

Coverage—measured as the number of static branches to which the heuristic
applies—and misprediction rate of the individual heuristics are listed in Table 3
1 Note that Calder et al. did a separate analysis for C programs and Fortran programs;

he did not consider them together in one analysis.

344 V. Desmet, L. Eeckhout, and K. De Bosschere

Table 3. Coverage and misprediction rates for the Ball and Larus heuristics

Heuristic Coverage Misprediction rate Perfect
Loop 35% 19% 12%
Pointer 21% 39% 9%
Opcode 9% 27% 11%
Guard 13% 37% 12%
Loop Header 26% 25% 10%
Call 22% 33% 8%
Store 25% 48% 9%
Return 22% 29% 12%

for the SPECint95 and SPECint2000 benchmarks given in section 2. The mea-
sured misprediction rates correspond to those presented by Wu and Larus [17],
except for the opcode heuristic where we reach a higher misprediction rate. The
reason is that we use an Alpha architecture which does not allow us to imple-
ment the opcode heuristic as originally stated: conditional branches in the Alpha
ISA compare a register to zero, rather than comparing two registers as is the
case in the MIPS ISA (for which the Ball and Larus heuristics were developed).
The opcode heuristic was implemented by applying the heuristic to the compare
instruction (cmp) that defines the branch’s operand. Calder et al. [3] also obtain
a higher misprediction rate for the opcode heuristic for the Alpha ISA than for
the MIPS ISA.

4.1 Optimal Heuristic Ordering

As already pointed out by Ball and Larus [1], the ordering of the heuristics
can have an important impact on the overall misprediction rate. Ball and Larus
came up with a fixed ordering for applying their heuristics, which is: Loop →
Pointer → Call → Opcode → Return → Store → LoopHeader → Guard. As
soon as one heuristic applies, the branch is predicted along that heuristic and all
other heuristics possibly applying are ignored. If no heuristic applies a Random
prediction is made. For the above ordering of heuristics, we measure an average
IPM of 31.3, see Figure 2. The coverage for each heuristic in this ordering is
35%, 13%, 13%, 4.5%, 7%, 8%, 1.5%, 1%, respectively. This sums to a heuristic
coverage of 83%, the remainder is randomly predicted.

To identify the optimal ordering, Ball and Larus evaluated all possible com-
binations. Note that the total number of orderings grows quickly as a function
of the number of heuristics—more in particular, for n heuristics, there exist n!
orderings. As such, evaluating all possible combinations quickly becomes infea-
sible as the number of heuristics increases (as will be the case in the next sub-
section). In addition, determining the optimal ordering for one particular ISA,
programming language, and compiler (optimization level), does not guarantee a
well performing ordering under different circumstances embodying another ISA,
compiler or programming language. Therefore, it is important to have an au-

Using Decision Trees to Improve Program-Based 345

0

10

20

30

40

50

60

70

80

90

100

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

c
o
m

p
re

s
s

g
o

ij
p
e
g li

m
8
8
k
s
im

a
v
e
ra

g
e

in
s
tr

u
c
ti
o
n
s

p
e
r

m
is

p
re

d
ic

te
d

b
ra

n
c
h

Ball & Larus order

Optimal heuristic

order

B&L +

Postdominator

B&L +

Postdominator +

Dependency

Distance

Fig. 2. The number of instructions per mispredicted branch for heuristic-based branch
prediction

tomated and efficient way of finding a well performing ordering. This section
proposes decision trees for this purpose.

As input during decision tree learning, we provide the evaluation of each
heuristic for every static branch together with its most taken direction. We then
applied our decision tree learning tool C4.5 on this data set in a cross-validation
setup, i.e. for each benchmark under evaluation we build a separate tree using the
information for the remaining 15 benchmarks. As such, we obtain 16 decision
trees. Inspection of the trees however, revealed that most of them were quite
similar to each other. The ordering obtained from this analysis is the following:
Loop → Opcode → Call → Return → LoopHeader → Store → Pointer.
When no heuristics can be applied it chooses the NotTaken decision. The overall
average IPM for this new ordering now is 32.1 which is slightly better (2.5%)
than the ordering proposed by Ball and Larus. For the coverage of the heuristics
we now get 35%, 5.5%, 16.5%, 9%, 4%, 8%, 4% respectively, summing up to 82%.
By moving the Pointer heuristic to the end of the chain, the other heuristics
predict a larger part more accurately, and finally the uncovered branches are
mostly not taken. Note that the Guard heuristic, which has the lowest priority
in the Ball and Larus order, is completely ignored by the decision tree. Although
C4.5 is not forced to do so, the tree clearly identifies an ordering for applying the
heuristics. Indeed, the decision tree could have been a ‘real’ tree with multiple
paths from the root node to the leafs instead of a tree with one single path which
is an ordering.

4.2 Adding Heuristics

Given the fact that we now have an automated way for ordering heuristics, it be-
comes feasible to investigate whether additional heuristics would help improving
the prediction accuracy of heuristic-based static branch prediction. The question
however remains to determine which heuristics should be added. To answer this

346 V. Desmet, L. Eeckhout, and K. De Bosschere

Loop

Call

Return

LoopHeader

Opcode

Store

PostDom

DepDist

not−taken

taken

follow heuristic

follow heuristic

follow heuristic

follow heuristic

NA

NA

NA

NA

NA

NA

True False

taken

<3 (short)NA or >=3

not−taken

not−taken

Fig. 3. Decision tree for the extended set of heuristics

question, we have done the following experiment. We have added the static fea-
tures from Calder et al. [3] and Table 2 one by one to the set of Ball and Larus
heuristics. Using this set of heuristics we have built up a decision tree using C4.5
and we have measured the resulting static branch prediction accuracy2. For each
of the static features we thus have a prediction accuracy when added to the set
of Ball and Larus. Subsequently, the static feature for which the extended set of
heuristics achieved the highest prediction accuracy was selected for permanent
inclusion in the extended set. Using this extended set we then iterate this al-
gorithm using the remaining static features until the static prediction accuracy
does no longer improve.

This experiment revealed two heuristics that when added to the set of Ball
and Larus improve the overall prediction accuracy. The first one concerns the
postdominator relationship between the successor and the current basic block.
This heuristic states that if a branch has two successors of which one postdom-
inates the current basic block, the successor that does not postdominate the
current block should be predicted taken. The simplest example to which this
predict-non-postdominating-successor heuristic applies is an if-statement (with-
out else-block); the heuristic will then predict the if-block to be taken. The
second heuristic is based on the dependency distance between the branch and
its operand defining instruction, i.e. the number of instructions between pro-
ducing a register value and consuming it by the branch. If the operand defining
instruction is not part of the branch’s basic block, the dependency distance is
left undefined. This newly proposed dependency distance heuristic states that a
2 Note that in this experiment we also use cross-validation. Further, we assume m =

300.

Using Decision Trees to Improve Program-Based 347

branch with an undefined dependency distance or a dependency distance larger
than 3 should be predicted not-taken. The threshold on distance 3 was found
empirically, but changing it to 2 or 4 does not significantly affect the results.

Figure 3 shows the decision tree provided by C4.5 for the extended set
of heuristics, i.e. the set of Ball and Larus heuristics plus the predict-non-
postdominating-successor and the dependency distance heuristics. This tree
shows that the Pointer heuristic is replaced with our heuristic extensions. Re-
placing the Pointer heuristic by the postdominator heuristic results in a coverage
increase of 2% together with a significant misprediction rate reduction for that
specific class.

The number of instructions per mispredicted branch (IPM) is shown in
Figure 2 with the extended set of heuristics. Adding the predict-non-
postdominating-successor heuristic improves the IPM from 31.3 to 34.7; the
dependency distance heuristic further improves the IPM to 37.1 which is an
increase by 18.5% over the Ball and Larus heuristics. To conclude, the extended
set of heuristics covers all branches because the remaining 16% are predicted by
their dependency distance.

5 Profile-Based Prediction

As stated earlier in this paper, profile-based static branch prediction is more ac-
curate than program-based branch prediction. There are however two important
issues that need to be dealt with. The first issue is the selection and/or combi-
nation of profile inputs. The second issue is the prediction of branches that are
unseen during profiling. The following two subsections show how decision trees
can be used to address both issues. In these experiments we consider the test
and train inputs as our profile inputs.

5.1 Comparing Decision Trees Versus Address-Based Prediction

The easiest way for selecting a profile input is by picking a randomly chosen
input (in our settings, we randomly choose the test or train input) and to assign
the most likely direction to each branch based on the observed behavior of the
chosen profile input. The branch prediction accuracy for this approach is shown
in the first column of Table 4 for all SPECint2000 benchmarks.

Previous work however has shown that if multiple profiling inputs are avail-
able, combining those can significantly improve prediction accuracy. Fisher and
Freudenberger [7] propose three methods for combining multiple profiles: (i)
polling gives each profile input one vote to predict the direction of a branch,
decision by majority or taken in case of a tie; (ii) unscaled adds the taken (not
taken) counts for the different profiles, majority direction is predicted; (iii) scaled
also adds the taken (not taken) counts for the different profiles but scales these
counts by the branch execution frequencies in each profile. The results in Table 4
clearly indicate that unscaled and scaled profile combining methods perform bet-
ter than random selection. More in particular, the unscaled and scaled methods

348 V. Desmet, L. Eeckhout, and K. De Bosschere

Table 4. Number of instructions per mispredicted branch (IPM) for profile-based
branch prediction: (from left to right) random, polling, unscaled, scaled, ‘orig’ decision
trees using Calder’s features [3] and ‘extd’ decision trees additionally using the features
in 2, combining the extended decision trees with unscaled, combining the extended
decision trees with scaled

benchmark input random polling unscaled scaled orig extd unscld+extd scld+extd
gzip graphic 94.22 31.90 93.32 93.33 53.31 61.82 93.32 93.33

log 63.74 23.21 115.63 115.64 27.62 72.91 115.63 115.64
program 68.83 40.11 79.97 79.97 50.89 67.93 79.97 79.96
random 212.26 32.03 190.87 190.87 79.47 80.11 190.87 190.87
source 44.34 21.31 97.00 97.00 26.23 72.88 97.00 97.00

vpr place 29.49 25.96 29.49 29.49 35.50 35.98 36.76 36.76
route 128.41 18.75 129.37 127.54 46.33 76.29 129.37 127.54

gcc 166 330.56 49.81 343.10 342.95 118.49 149.30 343.20 343.05
200 103.41 24.64 108.07 106.78 52.48 67.32 108.33 107.03
expr 141.88 27.17 142.57 142.55 70.57 89.41 142.57 142.55
integrate 222.56 35.47 223.96 223.89 95.62 114.94 223.96 223.89
scilab 104.86 25.14 106.61 106.56 57.26 71.44 106.86 106.81

mcf ref 44.99 14.37 49.94 49.91 47.96 49.54 49.94 49.91
crafty ref 62.19 28.02 61.71 64.89 53.05 58.09 61.72 64.90
parser ref 61.58 17.57 63.91 63.77 50.82 62.60 63.91 63.77
perlbmk splitmail 850 32.64 20.58 32.62 34.41 65.91 44.70 37.93 40.37

splitmail 704 33.80 20.97 33.32 36.93 16.79 11.48 37.87 42.60
splitmail 535 33.18 20.68 33.12 35.29 30.69 20.47 38.20 41.11
splitmail 957 33.57 30.96 32.96 36.67 32.47 21.72 37.53 42.41
makerand 58.83 42.56 63.63 63.63 63.16 19.82 63.63 63.63
diffmail 39.70 23.69 42.89 43.92 34.38 22.63 42.89 43.92

gap ref 89.65 24.37 94.11 87.43 73.02 72.74 94.05 87.39
vortex lendian1 1016.59 16.14 1014.40 1018.95 121.13 249.08 1014.40 1018.95

lendian2 724.35 17.80 726.31 725.93 105.97 203.37 726.31 725.93
lendian3 1047.88 16.32 1045.09 1050.87 121.71 253.67 1045.09 1050.87

bzip2 graphic 133.99 27.83 133.43 134.71 90.73 55.98 133.43 134.71
program 90.40 27.13 103.39 101.14 70.26 52.33 103.39 101.14
source 63.73 28.26 80.18 78.81 54.08 45.46 80.19 78.82

twolf ref 43.14 19.24 61.92 63.07 40.49 44.14 61.92 63.07
average 85.34 22.46 93.39 93.68 55.40 62.03 95.13 95.50

outperform polling and random selection. These four methods all assign branch
predictions on a per-branch basis; we will therefore refer to them as address-
based prediction techniques.

We now study how decision trees can be used to combine multiple profile
inputs. For this purpose, we use the sets of static branch features from Calder
and from Table 2 and build a decision tree based on the test and train inputs
of the corresponding benchmark. 3 The accuracy of the decision tree is then
evaluated for the available reference inputs, which were unseen during decision
tree learning. The ’orig’ column in Table 4 gives the IPM when using the feature
set proposed by Calder et al. [3]; the ’extd’ column gives the IPM using the
extended set of static features (Calder’s features and 2 together). These data
illustrate that the extended set of features yields more accurate predictions than
the original set by Calder et al. In addition, the decision trees perform better than
polling. The comparison between unscaled/scaled and orig/extd also illustrate

3 For these experiments m=2 (default) for providing maximum flexibility to the deci-
sion trees in order to approximate profile-based techniques.

Using Decision Trees to Improve Program-Based 349

the discrepancy between program-based and profile-based prediction. An impor-
tant advantage decision trees have over address-based prediction techniques is
that the decision trees can be interpreted so that programmers or compiler writ-
ers can learn more about their software’s branching behavior. This information
could be valuable for optimizing their software.

5.2 Combining Address-Based and Decision Tree Prediction

As stated earlier, an important problem with profile-based branch prediction
is that it does not provide information about branches that are unseen in the
profile runs. In our experiments, for seven inputs, i.e. one input for vpr and all
for perlbmk, the profile runs did not cover all executed branches. For vpr–place,
14% static branches that account for 65% dynamic branches are uncovered; for
perlbmk, 33% static branches accounting for 51% of the dynamic branches are
uncovered. For the other benchmarks, the percentage dynamic branches that
were uncovered by the profile runs was less than 1%.

We propose to use decision trees for unseen branches instead of randomly
assigning a branch direction—in our experiments we assigned taken. For the
other branches, that are seen in the profile runs, we use the unscaled profile
combining approach by Fisher and Freudenberger [7]. Similar results for the
scaled combination are shown in the rightmost column in Table 4. This approach
increases IPM by 11.7% and 10.5% for vpr and perlbmk, respectively. As such,
we conclude that decision trees can be successfully used in profile-based branch
prediction for branches that are unseen in the profile runs.

6 Related Work

The first subsection on related work focuses on static branch prediction for
which the primary goal is to guide compiler optimizations. The second subsection
illustrates other applications of machine learning techniques.

6.1 Static Branch Prediction

Program-based static branch prediction. One of the simplest program-
based heuristics is ’backward-taken/forward-not-taken’ (BTFNT). This heuristic
is based on the observation that loop branches are typically backward branches
and as such are likely to be taken. Although simple, this heuristics was proven
to be successful. Smith [13] discussed several static prediction strategies based
on instruction opcodes. Bandyopadhyay et al. [2] used a table lookup using
the branch opcode and operand types to determine the direction for non-loop
branches. Wall [15] evaluated several heuristics for predicting basic block fre-
quencies: the basic block loop nesting depth, a combination of the loop nesting
depth and the distance to the call graph leaf, and two combinations of the loop
nesting depth and the number of direct calls to the block’s procedure.

350 V. Desmet, L. Eeckhout, and K. De Bosschere

Deitrich et al. [6] extended the Ball and Larus heuristics by incorporating
source-level information available in a compiler when performing static branch
prediction. The source-level information they used concerns I/O buffering, exit-
ing, error processing, memory allocation and printing.

Wong [16] also investigated in source-level prediction by introducing the use
of names (macro, function, variable) for static branch prediction.

Patterson [10] used value range propagation which tracks value ranges of
variables through a program. Branch prediction is then done by consulting the
value range of the appropriate variable.

Profile-based static branch prediction. Savari and Young [12] developed
a technique for combining profiles using information theory, with the notion of
entropy. Although this approach attained good prediction accuracies, extending
this approach to more than two profiles is not straightforward.

Young and Smith [18] proposed profile-based code transformations that ex-
ploit branch correlation to improve the accuracy of static branch prediction. If
a branch exhibited a different behavior on different paths, they duplicated the
code and provided different static predictions along the different paths.

6.2 Machine Learning

As in this work, Calder et al. [3] utilized decision trees, cfr. section 3.1. However,
they did neither discuss the structure of the decision trees learned nor identified
the applicability of decision trees for heuristic-based branch prediction.

Cavazos et al. [4] applied supervised learning techniques for inducing heuris-
tics to predict which blocks of code would benefit from scheduling. The static
features they used are the number of instructions in the block and the frac-
tion of instructions of a certain category. They showed that rule induction can
successfully use these features to determine whether to schedule or not.

Stephenson et al. [14] employed genetic programming to automatically search
for effective heuristic priority functions in various compiler optimizations. Given
a set of heuristics they tuned the priority function by evolving it over several
benchmarks.

7 Conclusion

Static branch prediction is an important issue with several important applica-
tions ranging from compiler optimizations, to improving dynamic branch pre-
dictors, to improving performance of embedded microprocessors lacking a dy-
namic branch predictor. There are two well known static branch prediction tech-
niques, namely program-based and profile-based branch prediction. The benefit
of program-based prediction is its low cost, whereas profile-based is more accu-
rate. This paper showed how decision trees, previously proposed in the context
of evidence-based branch prediction, can be used to improve both static branch
prediction approaches.

Using Decision Trees to Improve Program-Based 351

It is important to emphasize that the biggest advantage of using decision
trees is the fact that they can be used to automatically generate static branch
predictors. In other words, they are optimized (by construction) for a given
compiler, the given programming language in which the benchmarks are written
and the given ISA. As such, we are aware of the fact that the experimental
results that are obtained in this paper are sensitive to the chosen compiler,
benchmarks and ISA. However, we strongly believe that the major contribution
of this paper—showing how decision trees can be used to improve static branch
prediction—will be applicable under different setups.

We have presented a set of static branch features that when added to the pre-
viously proposed set by Calder et al. also increases accuracy. We have shown that
the use of decision trees improves the Ball and Larus heuristics for two reasons:
(i) by automatically finding a well performing ordering for applying the heuris-
tics, and (ii) by automatically finding additional heuristics. Our experimental
results on SPECint95 and SPECint2000 show that these two contributions in-
crease the IPM by 18.5%. The two additional heuristics identified in this paper
are related to the postdomination relationship between the successor and the cur-
rent basic block—the non-postdominating successor is predicted taken—and the
dependency distance between the branch’s operand and its defining instruction—
short distances result in more likely taken branches. Finally, we have also shown
that decision trees improve the accuracy of address-based techniques up to 11.7%
when used in combination. Decision trees prove to be effective for branches that
are unseen during profiling.

Acknowledgments

Veerle Desmet is supported by a grant from the Flemish Institute for the Promo-
tion of the Scientific-Technological Research in the Industry (IWT). Lieven Eeck-
hout is a postdoctoral researcher of the Fund for Scientific Research-Flanders
(FWO). This research was also funded by Ghent University and HiPEAC. We
are indebted to Bruno De Bus for his support and modifications to Squeeze.

References

1. T. Ball and J. R. Larus. Branch prediction for free. In PLDI, pages 300–313, June
1993.

2. S. Bandyopadhyay, V. S. Begwani, and R. B. Murray. Compiling for the CRISP
microprocessor. In Proc. of the Spring 1987 COMPCON, pages 96–100, Feb. 1987.

3. B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn.
Evidence-based static branch prediction using machine learning. ACM Transac-
tions on Programming Languages and Systems, 19(1):188–222, Jan. 1997.

4. J. Cavazos and J. E. B. Moss. Inducing heuristics to decide whether to schedule.
In PLDI, pages 183–194, June 2004.

5. S. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code
compaction. ACM ToPLaS, 22(2):378–415, Mar. 2000.

352 V. Desmet, L. Eeckhout, and K. De Bosschere

6. B. L. Deitrich, B.-C. Cheng, and W. mei W. Hwu. Improving static branch pre-
diction in a compiler. In PACT, pages 214–221, Oct. 1998.

7. J. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions
from previous runs of a program. In 5th ASPLOS, pages 85–95, Oct. 1992.

8. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
9. H. Patil and J. Emer. Combining static and dynamic branch prediction to reduce

destructive aliasing. In HPCA, pages 251–262, Jan. 2000.
10. J. R. C. Patterson. Accurate static branch prediction by value range propagation.

In PLDI, pages 67–78, June 1995.
11. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
12. S. Savari and C. Young. Comparing and combining profiles. JILP, 2, Apr. 2000.
13. J. E. Smith. A study of branch prediction strategies. In ISCA, pages 135–148,

May 1981.
14. M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta optimiza-

tion: improving compiler heuristics with machine learning. In PLDI, pages 77–90,
June 2003.

15. D. W. Wall. Predicting program behavior using real or estimated profiles. In PLDI,
pages 59–70, June 1991.

16. W. F. Wong. Source level static branch prediction. The Computer Journal,
42(2):142–149, 1999.

17. Y. Wu and J. R. Larus. Static branch frequency and program profile analysis. In
27th MICRO, pages 1–11, Nov. 1994.

18. C. Young and M. D. Smith. Improving the accuracy of static branch prediction
using branch correlation. In 6th ASPLOS, pages 232–241, Oct. 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/221035769

	Introduction
	Background
	Contributions and Outline

	Experimental Setup
	Evidence-Based Prediction
	Decision Trees
	Branch Features
	Stopping the Growth of the Decision Tree
	Additional Branch Features
	Comparing with Previous ESP Work

	Heuristic-Based Prediction
	Optimal Heuristic Ordering
	Adding Heuristics

	Profile-Based Prediction
	Comparing Decision Trees Versus Address-Based Prediction
	Combining Address-Based and Decision Tree Prediction

	Related Work
	Static Branch Prediction
	Machine Learning

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

