
Superblock Formation Using Static Program
Analysis

Authors: Richard E. Hand, Scott A. Mahlke, Roger A. Bringmann,
John C. Gyllehhall, Wen-mei W. Hwu

Presenters Group 22: Zuoyi Li, Songlin Liu,
Bingzhao Shan, Zian Wang

Outline

- Introduction + Motivation

- Hazard Heuristics

- Path Selection Heuristics

- Superblock Formation

- Results + Future Work

Group 22

Recall Superblock
● Superblock Definition:

A superblock is a linear collection of basic blocks
with only one entrance and one or more exits.

● Superblock formation steps:
1. Trace Identification -> profiling
2. Tail duplication -> eliminate side entrance

to the trace

● Superblock example

Group 22

Introduction: Static Program Analysis
● Definition:

Static program analysis uses heuristic to predict the most likely direction of each branch

● Profiling vs Static Analysis

Profiling (Dynamic)

● Disadvantages

- Time consuming

- Not applicable to all environments

- Data is limited to the chosen
input sets

● Advantages

- Accuracy

Static Analysis (Static)

● Advantages

- Speed

- Applicable to all environments

- Independent of input sets

● Disadvantages

- Accuracy

Group 22

Motivation
● The hazard-free paths selected by static analysis tend to be frequently executed.

● Example

Hazard: ambiguous store

Group 22

Motivation (Cont.)
● Static program analysis may yield comparable or better optimization results despite its inferior

branch prediction accuracy.

● Example Profiling Static Program Analysis

Group 22

Outline

- Introduction + Motivation

- Hazard Heuristics

- Path Selection Heuristics

- Superblock Formation

- Results + Future Work

Group 22

Static Analysis Heuristics in Superblock Formation
● To maximize optimization and scheduling freedom in superblocks, branch heuristics should

prioritize the following

1. Don’t want hazards in selected branch

2. Pick most likely direction in remaining branches

Group 22

Hazard
● What is a hazard?

- Instruction(s) whose side effects are unknown at compile time

● They force constraints on optimization and scheduling

- Suboptimal code is generated to ensure correctness

Group 22

Two major categories of hazards
● Category 1

- Possible modifications to the program

state that can’t be determined at compile

time

- Types

1. I/O instructions

2. Subroutine calls

3. Synchronization instructions

4. Ambiguous stores

Assembly Code Example – Ambiguous store
…
r3 = load r1
…
store 1, r2
…
r4 = load r1
…

Group 22

Two major categories of hazards (Cont.)
● Category 2

- Succeeding instructions cannot be easily

identified

- Types

5. Subroutine returns

6. Jumps with indirect target address

Assembly Code Example – Subroutine Return
…
call func
…
call func
…
func:

r1 = 1 + 2
return
…

Group 22

Outline

- Introduction + Motivation

- Hazard Heuristics

- Path Selection Heuristics

- Superblock Formation

- Results + Future Work

Group 22

Path Selection Heuristic
● Performed on remaining branches after hazard heuristic

● 5 heuristics ranked from high to low priority

Group 22

Path Selection Heuristics (1)

Assembly Code Example:

bne r1, r2, label3 (taken)

Assembly Code Example:

beq r1, r2, label3 (fall-through)

1. Pointer Heuristic

● Pointer is not likely to be null ● Pointers are not likely to be equal

Group 22

Path Selection Heuristics (2)
2. Loop Heuristic

● Predict the path that enters the loop

Assembly Code Example:

loop:
add r1, -1

test:
bgtz r1, loop (taken)

Group 22

Path Selection Heuristics (3)

Assembly Code Example:

fmov r2, 1.0
fmov r3, 2.0
beq r2, r3, loop (fall-through)

3. Opcode Heuristic

● Negative numbers are unlikely ● Floating point comparisons are unlikely

to be equal

Assembly Code Example:

bgtz r1, loop (taken)

Group 22

Path Selection Heuristics (4)
4. Guard Heuristic

● Predict branch direction that uses its src operand.

● Assume the branch condition is a “guard”.

“Guard” Source Code Example:

If (a > 0) {
b = a + 4

}
b = 0

Assembly Code Example:

bne src1, src2, label1 (fall thru)
r4 = src1 + 4
...
label1: r3 = r5+5

Group 22

Path Selection Heuristics (5)
5. Branch Direction Heuristic

● Predict a branch taken if it is a backward branch.

● Assume corresponds to loop back edge, thus are likely taken.

Assembly Code Example:

r1 = 40
label1: r2 = r1 + r2
r1 = r1 - 4
...
bge r1, 0, label1 (taken)

Group 22

Path Selection Heuristics

Finishing Step: Related Branches

● Branches with the same operand

are related.

● Make them consistent based on

the strongest prediction.

Group 22

Outline

- Introduction + Motivation

- Hazard Heuristics

- Path Selection Heuristics

- Superblock Formation

- Results + Future Work

Group 22

Static Analysis Based Superblock Formation

● Traditionally superblocks are formed based on profile information.

○ Trace formation

○ Tail duplication

● Profile information helps forming traces forward and backward.

● Static Analysis can’t provide backward direction information.

Group 22

Static Analysis Based Superblock Formation
Trace Formation Algorithm

Group 22

Static Analysis Based Superblock Formation

Trace Growing Algorithm

Group 22

Outline

- Introduction + Motivation

- Hazard Heuristics

- Path Selection Heuristics

- Superblock Formation

- Results + Future Work

Group 22

Experimental Setup
Processor: HP PA-RISC

- Uniform function units assumption

- 64 Integer and 64 floating-point registers

- 1 branch delay slot

Compiler: IMPACT-I

- A prototype optimizing compiler

designed to generate efficient

code for VLIW and superscalar

processor.

Group 22

Experimental Setup
Benchmarks:

- 14 non-numeric programs

- 5 from the SPECint92 suite

- 9 from other commonly used programs

Group 22

Results
Prediction Accuracy:

- Using profile-based approach as ground truth

- 100 % does not imply perfect branch

prediction.

- 0% means completely different from

the profile-based approach

- Overall, the proposed branch analyzer agrees

with profile-based branch prediction ~86% of

the time.

Group 22

Results
Superblock Performance

- 2-issue processor

- Comparable performance to

profile-based methods for most

benchmarks

- Compress, eqntott, and qsort

performed better than profile-

based counterparts.

Group 22

Results
Superblock Performance: 4-issue and 8-issue Processors

Out performed

Group 22

Conclusion
- Hazardless paths selected by static

analysis tend to be frequently

executed.

- Prediction accuracy does not

necessarily correspond to

optimization quality.

Prediction
Accuracy

Superblock
Performance

Group 22

Conclusion
Pros:

- High speed compared to profile-based approaches.

- Feasible in all environments since run-time information is not required.

- Independent of the input sets, allowing 100% coverage of all branches.

Cons:

- Less accurate than profile-based branch predictions (most of the time).

Group 22

Future Work
● Implement the method mentioned in this paper as our baseline.

● Explore more advanced heuristics and probably machine learning methods to improve the

prediction accuracy and superblock formation performance.

Group 22

Thank you!

Questions?

Group 22

