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Recall Superblock 
● Superblock Definition: 

A superblock is a linear collection of basic blocks          
with only one entrance and one or more exits.

● Superblock formation steps:
1. Trace Identification -> profiling 
2. Tail duplication -> eliminate side entrance 

to the trace

● Superblock example 
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Introduction: Static Program Analysis 
● Definition:  

Static program analysis uses heuristic to predict the most likely direction of each branch

● Profiling  vs Static Analysis 

Profiling (Dynamic) 

● Disadvantages 

- Time consuming 

- Not applicable to all environments 

- Data is limited to the chosen       
input sets 

● Advantages

- Accuracy 

Static Analysis (Static) 

● Advantages 

- Speed

- Applicable to all environments 

- Independent of input sets

● Disadvantages

- Accuracy 
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Motivation
● The hazard-free paths selected by static analysis tend to be frequently executed.

● Example

Hazard: ambiguous store
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Motivation  (Cont.) 
● Static program analysis may yield comparable or better optimization results despite its inferior 

branch prediction accuracy. 

● Example Profiling Static Program Analysis
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Static Analysis Heuristics in Superblock Formation
● To maximize optimization and scheduling freedom in superblocks, branch heuristics should 

prioritize the following

1.      Don’t want hazards in selected branch

2.     Pick most likely direction in remaining branches
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Hazard
● What is a hazard?

- Instruction(s) whose side effects are unknown at compile time

● They force constraints on optimization and scheduling

- Suboptimal code is generated to ensure correctness
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Two major categories of hazards
● Category 1

- Possible modifications to the program 

state that can’t be determined at compile 

time

- Types 

1. I/O instructions

2. Subroutine calls

3. Synchronization instructions

4. Ambiguous stores

Assembly Code Example – Ambiguous store
…
r3 = load r1
…
store 1, r2 
…
r4 = load r1
…
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Two major categories of hazards (Cont.) 
● Category 2

- Succeeding instructions cannot be easily 

identified

- Types 

5. Subroutine returns 

6. Jumps with indirect target address 

Assembly Code Example – Subroutine Return
…
call func
…
call func
…
func: 

r1 = 1 + 2
return
…
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Path Selection Heuristic 
● Performed on remaining branches after hazard heuristic

● 5 heuristics ranked from high to low priority 
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Path Selection Heuristics (1) 

Assembly Code Example:

bne r1, r2, label3  (taken)

Assembly Code Example:

beq r1, r2, label3  (fall-through)

1. Pointer Heuristic 

● Pointer is not likely to be null ● Pointers are not likely to be equal
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Path Selection Heuristics (2) 
2.    Loop Heuristic 

● Predict the path that enters the loop

Assembly Code Example:

loop:
add r1, -1 

test:
bgtz r1, loop (taken) 
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Path Selection Heuristics (3) 

Assembly Code Example:

fmov r2, 1.0
fmov r3, 2.0
beq r2, r3, loop (fall-through)

3.     Opcode Heuristic 

● Negative numbers are unlikely ● Floating point comparisons are unlikely 

to be equal

Assembly Code Example:

bgtz r1, loop (taken)
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Path Selection Heuristics (4)
4.     Guard Heuristic

● Predict branch direction that uses its src operand.

● Assume the branch condition is a “guard”.

“Guard” Source Code Example:

If (a > 0) {
b = a + 4

}
b = 0

Assembly Code Example:

bne src1, src2, label1 (fall thru)
r4 = src1 + 4
...
label1: r3 = r5+5
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Path Selection Heuristics (5)
5. Branch Direction Heuristic

● Predict a branch taken if it is a backward branch.

● Assume corresponds to loop back edge, thus are likely taken.

Assembly Code Example:

r1 = 40
label1: r2 = r1 + r2
r1 = r1 - 4
...
bge r1, 0, label1 (taken)
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Path Selection Heuristics 

Finishing Step: Related Branches

● Branches with the same operand 

are related.

● Make them consistent based on 

the strongest prediction.
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Static Analysis Based Superblock Formation

● Traditionally superblocks are formed based on profile information.

○ Trace formation

○ Tail duplication

● Profile information helps forming traces forward and backward.

● Static Analysis can’t provide backward direction information.
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Static Analysis Based Superblock Formation
Trace Formation Algorithm 
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Static Analysis Based Superblock Formation

Trace Growing Algorithm
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Experimental Setup
Processor: HP PA-RISC

- Uniform function units assumption

- 64 Integer and 64 floating-point registers

- 1 branch delay slot

Compiler: IMPACT-I

- A prototype optimizing compiler 

designed to generate efficient 

code for VLIW and superscalar 

processor. 
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Experimental Setup
Benchmarks:

- 14 non-numeric programs

- 5 from the SPECint92 suite

- 9 from other commonly used programs
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Results
Prediction Accuracy:

- Using profile-based approach as ground truth 

- 100 % does not imply perfect branch 

prediction.

- 0% means completely different from 

the profile-based approach

- Overall, the proposed branch analyzer agrees 

with profile-based branch prediction ~86% of 

the time.
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Results
Superblock Performance 

- 2-issue processor

- Comparable performance to 

profile-based methods for most 

benchmarks

- Compress, eqntott, and qsort

performed better than profile-

based counterparts.
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Results
Superblock Performance: 4-issue and 8-issue Processors

Out performed
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Conclusion
- Hazardless paths selected by static 

analysis tend to be frequently 

executed.

- Prediction accuracy does not 

necessarily correspond to 

optimization quality.

Prediction 
Accuracy

Superblock 
Performance
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Conclusion
Pros:

- High speed compared to profile-based approaches.

- Feasible in all environments since run-time information is not required.

- Independent of the input sets, allowing 100% coverage of all branches.

Cons:

- Less accurate than profile-based branch predictions (most of the time).
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Future Work
● Implement the method mentioned in this paper as our baseline.

● Explore more advanced heuristics and probably machine learning methods to improve the 

prediction accuracy and superblock formation performance.
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Thank you!

Questions?
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