Superblock Formation Using Static Program
Analysis

Authors: Richard E. Hand, Scott A. Mahlke, Roger A. Bringmann,
John C. Gyllehhall, Wen-mei W. Hwu
| I
Presenters Group 22: Zuoyi Li, Songlin Liu,
Bingzhao Shan, Zian Wang

Outline

Introduction + Motivation
Hazard Heuristics

Path Selection Heuristics
Superblock Formation

Results + Future Work

Group 22
D

Recall Superblock

| |
e ey 1 1
e Superblock Deflnltfon. | | . e e
A superblock is a linear collection of basic blocks s B
with only one entrance and one or more exits. ~ L
e Superblock formation steps:
1. Trace Identification -> profiling
2. Tail duplication -> eliminate side entrance \
to the trace
il E .
o0 P30
e Superblock example i m
\j Y
a) b)

Figure 1: Superblock formation: a) trace selection, b)
tail duplication.

Group 22

Introduction: Static Program Analysis

e Definition:
Static program analysis uses heuristic to predict the most likely direction of each branch
e Profiling vs Static Analysis

Profiling (Dynamic) Static Analysis (Static)
® Disadvantages ® Advantages
- Time consuming - Speed
- Not applicable to all environments - Applicable to all environments
- Data s limited to the chosen - Independent of input sets
input sets

® Disadvantages

® Advantages
- Accuracy

- Accuracy

Group 22
D

Motivation

® The hazard-free paths selected by static analysis tend to be frequently executed.

® Example

| Ia—

i B 100
i | 1drlm[label] %}

/Hazard: ambiguous store

100 70 30
ll a —I:
a) b)

Figure 2: Profile information selects hazard free path
a) superblock formation, b) optimization.

Group 22

Motivation (Cont.)

® Static program analysis may yield comparable or better optimization results despite its inferior
branch prediction accuracy.

® Example Profiling Static Program Analysis

A A A Q
1 L

b e e
B oo | i B0 | T B w0 |: ilB o |
| 1L mfiaber) | 1 rtmitaber Q\ § | 1delm{label] (| unmlissaT)
Do C oo |
stzm(?] | | 30 i | strzmi?)
N [(E
3 i E i -
>§ \ 7039 | L?_o
= ;
a) L a) b)

Figure 3: Profile information selects path with hazard:

a) superblock formation, b) optimization. Figure 3: Profile information selects path with hazard:

a) superblock formation, b) optimization.

Group 22

Outline

Introduction + Motivation
Hazard Heuristics

Path Selection Heuristics
Superblock Formation

Results + Future Work

Group 22
D

Static Analysis Heuristics in Superblock Formation

® To maximize optimization and scheduling freedom in superblocks, branch heuristics should
prioritize the following

1. Don’t want hazards in selected branch

2. Pick most likely direction in remaining branches

Group 22
D

Hazard

® Whatis a hazard?
- Instruction(s) whose side effects are unknown at compile time

® They force constraints on optimization and scheduling
- Suboptimal code is generated to ensure correctness

Group 22
D

Two major categories of hazards

® (ategory1l
- Possible modifications to the program Assembly Code Example — Ambiguous store
state that can’t be determined at compile
. r3=loadrl
time
store 1, r2
- Types
r4 =loadrl
1. 1/0 instructions

2. Subroutine calls
3. Synchronization instructions
4. Ambiguous stores

Group 22

Two major categories of hazards (Cont.)

® (Category 2

- Succeeding instructions cannot be easily Assembly Code Example — Subroutine Return
identified
call func
- Types call func
5. Subroutine returns func:
6. Jumps with indirect target address r1=1+2
return

Group 22
D

Outline

Introduction + Motivation
Hazard Heuristics

Path Selection Heuristics
Superblock Formation

Results + Future Work

Group 22
D

Path Selection Heuristic

® Performed on remaining branches after hazard heuristic

® 5 heuristics ranked from high to low priority

Group 22
D

Path Selection Heuristics (1)

1. Pointer Heuristic

e Pointer is not likely to be null e Pointers are not likely to be equal

Assembly Code Example: Assembly Code Example:

bne rl, r2, label3 (taken) beqrl, r2, label3 (fall-through)

Group 22
D

Path Selection Heuristics (2)

2. Loop Heuristic

e Predict the path that enters the loop

Assembly Code Example:

loop:
addri, -1
test:
bgtz r1, loop (taken)

Group 22
D

Path Selection Heuristics (3)

3. Opcode Heuristic

e Negative numbers are unlikely e Floating point comparisons are unlikely

to be equal
Assembly Code Example: Assembly Code Example:
bgtz r1, loop (taken) fmovr2, 1.0
fmov r3, 2.0
beq r2, r3, loop (fall-through)

Group 22
D

Path Selection Heuristics (4)

4. Guard Heuristic

e Predict branch direction that uses its src operand.
e Assume the branch condition is a “guard”.

“Guard” Source Code Example: Assembly Code Example:

If (a>0){ bne srcl, src2, labell (fall thru)
b=a+4 rd=srcl+4

}

b=0 labell: r3 =r5+5

Group 22

Path Selection Heuristics (5)

5. Branch Direction Heuristic

e Predict a branch taken if it is a backward branch.
® Assume corresponds to loop back edge, thus are likely taken.

Assembly Code Example:

rl =40
labell:r2=r1+1r2
ril=rl-4

bge rl, 0, labell (taken)

Group 22

Path Selection Heuristics

L 1) bune rl,x2labell - Select fall thru (Guard Heuristic)
Finishing Step: Related Branches :

2) beq rl,x2 label2 - Select taken (Store Heuristic)

® Branches with the same operand : 1 o o
3) bune rl,r2label3 - Select taken (Pointer Heuristic)

are related.

e Make them consistent based on IPigure 5: Set of branches with related operands before

the strongest prediction. correction.

1) bne rl,r2 labell - taken
2) beq rl,r2,label2 - fall thru

3) bune rl,r2 label3 - taken

IPigure 6: Sel of branches with related operands alter

correctlon.

Group 22

Outline

Introduction + Motivation
Hazard Heuristics

Path Selection Heuristics
Superblock Formation

Results + Future Work

Group 22
D

Static Analysis Based Superblock Formation

e Traditionally superblocks are formed based on profile information.
O Trace formation
O Tail duplication

e Profile information helps forming traces forward and backward.

e Static Analysis can’t provide backward direction information.

Group 22
D

Group 22

Static Analysis Based Superblock Formation

Trace Formation Algorithm

e Find innermost loop. «—

{

trace_formation()

—

perform loop detection
sort by loop nesting level

e Grow trace for all blocks in loops. <

e Grow trace for remaining blocks. \

for each loop {
create breadth first list of loop blocks
for each unvisited block {
grow_trace(block)

}
}

N\

create breadth first list of function blocks
for each unvisited block
grow_trace(block)

Static Analysis Based Superblock Formation

Trace Growing Algorithm

e Initial setup, loop header as seed.

e Detect hazardous conditions. < |

¢ Find next target block. €——___ |

¢ Preventloopsin trace. S—
¢ Grow trace and iterate.\

{

grow_trace(seed_block)

trace = { seed_block }

current_block = seed_block
while (1) {

/

mark current_block visited

if current_block contains indirect jump
break;

if current_block contains subroutine return
break;

= predicted target
if visited

break;

/* loop back-edge */

if _ dominates current_block

break;

trace =trace U
current_block =

Group 22

Outline

Introduction + Motivation
Hazard Heuristics

Path Selection Heuristics
Superblock Formation

Results + Future Work

Group 22
D

Experimental Setup

Compiler: IMPACT-] Processor: HP PA-RISC

_ A prototype optimizing compiler Uniform function units assumption

designed to generate efficient 64 Integer and 64 floating-point registers

code for VLIW and superscalar 1 branch delay slot

processor.
Function Latency Function Latency
Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide(SGL) 8
branch 1/ 1slot FP divide(DBL) 15

Table 2: Instruction latencies.

Group 22
D

Experimental Setup

Benchmarks:

Group 22

14 non-numeric programs
5 from the SPECint92 suite
9 from other commonly used programs

Benchmark Benchmark Description
ccep GNU C preprocessor

cmp compare files

compress compress files

eqn format math formulas for troff
eqntott boolean equation minimization
espresso truth table minimization

grep string search

lex lexical analyzer generator

i lisp interpreter

gsort quick sort

tbl format tables for troff

sC spreadsheet

wce word count

yacc parser generator

Table 1: Benchmarks.

Results

Prediction Accuracy:

- Using profile-based approach as ground truth

- 100 % does not imply perfect branch

prediction.
- 0% means completely different from
the profile-based approach

- Overall, the proposed branch analyzer agrees § 2 q‘é; 3 @ ol B = §~ 8 3 32 §
iy 4t
with profile-based branch prediction ~86% of ¢ 2 & % i >
the time. v
Benchmark

Figure 9: Branch Prediction Accuracy

Group 22

Results E

7 W asic mlock
6 O static
Superblock Performance 5 O e
- 2-issue processor 8 : M

- Comparable performance to

profile-based methods for most ’
benchmarks o _ ﬂ:

- Compress, eqntott, and qsort s sl s]sle & & -
performed better than profile- : g ¢l &
based counterparts. Benchmark

Figure 10: 2-issue speedup for basic block scheduling,
static analysis based superblock formation, and profile
based superblock formation

Group 22

Results

Superblock Performance: 4-issue and 8-issue Processors

Speedup
"~

eqn

ccep
cmp
grep
Jee
i

yace

equtott

espresso

compress

Bepchmark / Benchmark
— Out performed

Figure 11: 4-issue speedup for basic block scheduling, Figure 12: 8-issue speedup for basic block scheduling,
static analysis based superblock formation, and profile static analysis based superblock formation, and profile

based superblock formation based superblock formation
r 22

Conclusi
onclusion .
4
§° Prediction
- Hazardless paths selected by static 3" Accuracy
analysis tend to be frequently 4
ﬁ .
executed. .
g2 o2 o5 gz oglagly = g
PR LB Ty
- Prediction accuracy does not S :
. 1
necessarily correspond to 7 — ey I
optimization quality. ‘ - —
gﬁ | : Profile -
T . ; Superblock
’ _ B Performance
T p g o o4 ogtgla ot g owoa ooy
L T A IR ’ :

Grou p 22 Benchmark

Conclusion

Pros:

- High speed compared to profile-based approaches.
- Feasible in all environments since run-time information is not required.
- Independent of the input sets, allowing 100% coverage of all branches.

Cons:

- Less accurate than profile-based branch predictions (most of the time).

Group 22
D

Future Work

e Implement the method mentioned in this paper as our baseline.

e Explore more advanced heuristics and probably machine learning methods to improve the
prediction accuracy and superblock formation performance.

Group 22
D

Thank you!

Questions?

Group 22
D

