
Using Code Perforation to Improve
Performance, Reduce Energy
Consumption, and Respond to Failures

Presented by: Aditya Chitta, Andrew Lu, and Junwon Shin (Group 4)

By: Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin Rinard

The Problem

Standard approaches to trade accuracy for performance, robustness, energy
savings, etc. require specific knowledge

● e.g. Optimization heuristics for MP3 audio compression can’t be applied
to other types of compression e.g. image and video

Code Perforation and SpeedPress

❖ Automatically enhances applications to support the management of
performance/accuracy tradeoff

❖ Given a user-specified distortion bound, automatically identifies parts of
the computation that can be skipped without violating this bound

❖ Transformed applications ran two to three times faster while distorting
the output by < 10%

Loop Perforation

Transforming loops to execute a subset of iterations, trading accuracy for
performance.

Applications:
➢ Lossy video/audio encoders

➢ Machine learning algorithms

➢ Monte-Carlo simulations

➢ Information retrieval

➢ Scientific/economics computations

Loop Perforation Overview
Step 1: Induction variable transformation
● Transforms induction variable to following form:

for (i = 0; i < maxVal; i++) {/* … */}

Step 2: Loop perforation
● Given perforation rate (PR) and perforation

strategy, transform loops to following form:

for (i = 0; i < maxVal; i++) {
if (doPerforate(i, PR)) continue
// …

}

Perforation Strategies

1) Modulo Perforation: skip
every n-th iteration

doPerforate(i, PR) {
n = 1 / PR
return i % n == 0

}

Acceptability Model
To measure the effect of loop perforation, SpeedPress requires a user-provided
acceptability model for the program output with 2 components:

Output Abstraction Distortion Metric

Mapping from program’s specific

output to numeric value(s)

● e.g. bitrate for a video encoder
● Requires a basic understanding

of application

Assume that abstraction model
produces outputs in form o

1
...o

m

Step 1: Identify Candidate Loops
Captures:
● # of loop iterations
● # of loop invocations
● # of basic block accesses within

loop

Based on profile data

Prioritize loops that execute the most
instructions

Filter out loops that cause program to:
● Terminate unexpectedly after perforation
● Become unresponsive

Prioritize loops that maximize performance or
maximize accuracy

Step 2: Individual Loop Performance and Distortion

Step 3: Discover Loop Sets

Observe joint perforation effects
on program accuracy and
performance for each input

Step 4: Select Best Performing Loop Set

Score for each loop set is derived
as a statistic of the scores for all
inputs (i.e. mean or minimum)

Evaluation

x264

H.264 Encoding on Video
Stream

streamcluster

Data Mining Application
for Online Clustering

swaptions

Pricing a Portfolio of
Swaptions

canneal

Simulated Annealing of
Routing Cost of Microchip

Design

blackscholes

Pricing a Portfolio of
European Options

bodytrack

CV Application to Track
Human Movement

Benchmarks

Results

Distortion Bound

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

R
ec

o
rd

ed
 D

is
to

rt
io

n

x264

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

R
ec

o
rd

ed
 D

is
to

rt
io

n

Distortion Bound

bodytrack

Results - General Trends

● Both performance and distortion increase as the acceptable
distortion bound increases

● For all benchmarks, SpeedPress provided at least 2x speedup
for a maximum distortion bound of 15%

● Several benchmarks can achieve 3x speedup or more

Strengths vs Weaknesses

● Works well on a wide range of
application types

● Achieves high speedup
benefits for a relatively low
distortion

● SpeedPress allow applications
to automatically scale
speedup while keeping
distortion within acceptable
bounds

● Not appropriate for
applications that require
accuracy

● Speedup sometimes does not
scale linearly - which requires
various bounds to be tried to
find optimal balance between
distortion and speedup

● Algorithm doesn’t explore
optimizing perforation rates

Strengths Weaknesses

Summary

● SpeedPress is a LLVM compiler that exploits code perforation to
trade accuracy for performance

● Not applicable for applications that have hard logical correctness
requirements

● Performs extremely well across a wide variety of applications
that have challenging performance, failure, and accuracy
requirements

