Using Code Perforation to Improve
Performance, Reduce Energy
Consumption, and Respond to Failures

By: Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin Rinard

Presented by: Aditya Chitta, Andrew Lu, and Junwon Shin (Group 4)

The Problem

Standard approaches to trade accuracy for performance, robustness, energy
savings, etc. require specific knowledge

® e.g. Optimization heuristics for MP3 audio compression can’t be applied
to other types of compression e.g. image and video

/7
£ %4

£ %4

G

Code Perforation and SpeedPress

Automatically enhances applications to support the management of
performance/accuracy tradeoff

Given a user-specified distortion bound, automatically identifies parts of
the computation that can be skipped without violating this bound

Transformed applications ran two to three times faster while distorting
the output by < 10%

Loop Perforation

Transforming loops to execute a subset of iterations, trading accuracy for
performance.

Applications:
> Lossy video/audio encoders

Machine learning algorithms
Monte-Carlo simulations

Information retrieval

v vV Y Y

Scientific/economics computations

Loop Perforation Overview

Perforation Strategies

Step 1: Induction variable transformation

e Transforms induction variable to following form: 1) Modulo Perforation: skip

every n-th iteration
for (i = 0; i < maxVal; i++) {/* ... */}

doPerforate(i, PR) {
n=1/PR
returni % n==0

Step 2: Loop perforation
® Given perforation rate (PR) and perforation
strategy, transform loops to following form: }

for (i = 0; i < maxVal; i++) {
if (doPerforate(i, PR)) continue

/...

Acceptability Model

To measure the effect of loop perforation, SpeedPress requires a user-provided
acceptability model for the program output with 2 components:

Output Abstraction Distortion Metric
Mapping from program’s specific Assume that abstraction model
output to numeric V3|U€(S) produces outputs in form 01'"Om

® e.g. bitrate for a video encoder
® Requires a basic understanding
of application

Step 1: Identify Candidate Loops

Captures:
e # of loop iterations
e # of loop invocations
e # of basic block accesses within
loop

for i in inputs
candidateLoops[i] = performProfiling(program, i)
for each 1 in candidateLoops[i]
scores[i][1] = assignInitialLoopScore(l) — | Based on profile data
filterProfiledLoops(candidateLoops[i])

\ Prioritize loops that execute the most

instructions

for 1 in candidateLoops
spdup, dist = perforateLoopSet(program, {1}, i)
scores[i][1] = updateScore(spdup, dist, scores[i][1])
filterSingleExampleLoops(candidateLoops[i], scores[i], maxDist)

Step 2: Individual Loop Performance and Distortion

perforateLoopSet (program, loopSet, input)
program’ = instrumentLoops(loopSets)

time, output = execute(program, input)
time’, output’ = execute(program’, input)

abstrOut
abstrOut

abstractOutput (output)
abstractOutput (output’)

speedup = calcluateSpeedup(time, time’)
distortion = calculateDistortion(abstrOut, abstrOut’)

return speedup, distortion

Filter out loops that cause program to:
e Terminate unexpectedly after perforation
e Become unresponsive

Prioritize loops that maximize performance or
maximize accuracy

Step 3: Discover Loop Sets

candidateLoopSets = {}
for i in inputs
candidateLoopSets[i] =
selectLoopSet (program, candidateLoops, scores, i, maxDist)

selectLoopSet(program, candidateLoops, scores, input, maxDist)
loopQueue = sortLoopsByScore(candidateLoops, scores)

LoopSet = {}

cummulativeSpeedup = 1

while loopQueue is not empty
tryLoop = loopQueue.remove()

Observe joint perforation effects trySet = LoopSet U {tryLoop}
on program accuracy and speedup, distortion = runPerforation(trySet, input)
performance for each input if speedup > cummulativeSpeedup and distortion < maxDist

loopSet = trySet
cummulativeSpeedup = speedup

return LoopSet

loopsToPerforate =

return loopsToPerforate

Score for each loop set is derived
as a statistic of the scores for all
inputs (i.e. mean or minimum)

Step 4: Select Best Performing Loop Set

findBestLoopSet(program, candidateLoopSets, inputs)

*

findBestLoopSet (program, loopSets, inputs)

for each 1ls in loopSets
for each i in inputs
speedup, distortion =
perforateLoopSet(program, ls, i)
score[ls][i] = assignScore(speedup, distortion)

score[loopSet] = scoreFinal(score[ls][*])

return argmax(score)

Evaluation

Benchmarks

X264 streamcluster swaptions
H.264 Encoding on Video Data Mining Application Pricing a Portfolio of
Stream for Online Clustering Swaptions
canneal blackscholes bodytrack

Simulated Annealing of
Routing Cost of Microchip
Design

Pricing a Portfolio of
European Options

CV Application to Track
Human Movement

Results

X264

Distortion Bound

3.5
8 Performance =
c Baseline
© 3t Distortion =——e— .
&
| -
S 25! S——
- /'_!
Q
(o
© 2 i
(]
N
© 15 4
E i
| -
®) 1
2 : : . .

0 5 10 15 20 25

25

20

15

10

Recorded Distortion

@ 35
o
C
©

3
e
S
o
= 25
()
[a
No] 2
Q
N
© 15
e
| -
(@]
2

bodytrack

Perfor —_—
Bdseline

Digtortion; =t .. . e e

! L L I

5 10 15 20

Distortion Bound

25

20

15

10

Recorded Distortion

Results - General Trends

e Both performance and distortion increase as the acceptable
distortion bound increases

e For all benchmarks, SpeedPress provided at least 2x speedup
for a maximum distortion bound of 15%

Several benchmarks can achieve 3x speedup or more

Strengths vs Weaknesses

Strengths Weaknesses

e Works well on a wide range of e Not appropriate for
application types applications that require
accuracy
® Achieves high speedup
benefits for a relatively low ® Speedup sometimes does not
distortion scale linearly - which requires
various bounds to be tried to
e SpeedPress allow applications find optimal balance between
to automatically scale distortion and speedup
speedup while keeping
distortion within acceptable e Algorithm doesn’t explore
bounds optimizing perforation rates

Summary

® SpeedPress is a LLVM compiler that exploits code perforation to
trade accuracy for performance

e Not applicable for applications that have hard logical correctness
requirements

e Performs extremely well across a wide variety of applications
that have challenging performance, failure, and accuracy
requirements

