
ScaleHLS: Scalable High-Level
Synthesis through MLIR

Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang,
Stephen Neuendorffer, Deming Chen

Presenters: [Team 2] Insu Jang, Jae-Won Chung

Paper accepted to HPCA 2022
No final paper released yet

Agenda ● Background
○ High-level synthesis (HLS)
○ Multi-level IR (MLIR)

● ScaleHLS
○ Goal and architecture
○ Dataflow optimization
○ Loop optimization

● Evaluation
● Conclusion

2

Background: High-level Synthesis
● Programming FPGA is hard, requiring circuit knowledge

3

Hardware Description Language (HDL)

FPGA Logic Circuit

Synthesis Requires circuit
knowledge &
Hard to program

FPGA Logic Circuit

HDL

Synthesis

High Level Language (e.g. C/C++)

HLS Compile

● HLS: A way of implementing HW design with high level language

Background: Multi-level IR (MLIR)
● ScaleHLS built on top of MLIR

4

Before MLIR

● Each language implements its own
high-level IR for its own optimization

MLIR is

● easily customizable to add MLIR dialect
or use common MLIR dialects

C++

Java

Rust

LLVM IR

LLVM IR

C++ Graph-level IR

Loop-level IR

Directive-level IR

MLIR

Clang
AST

Java
Bytecode

Rust
AST MIR IR

Front-end

https://arxiv.org/pdf/2002.11054.pdf

● End-to-end automation

● Capture different levels of optimization
○ Graph-level

Goal of ScaleHLS

○ Loop-level

○ Directive-level

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; j++) {
 C[i][j] += alpha * A[i][j] * B[i][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 for (int k = 0; k < 32; j++) {
 if (k == 0) C[i][j] *= beta;
 C[i][j] += alpha * A[i][j] * B[i][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 for (int k = 0; k < 32; j++) {
#pragma HLS pipeline II=1
 if (k == 0) C[i][j] *= beta;
 C[i][j] += alpha * A[i][j] * B[i][j];
} } }

5

ScaleHLS Architecture
C/C++ PyTorchONNX

ONNX ATenGraph-level IR

Affine SCFLoop-level IR

Affine HLSCppSCFDirective-level IR

HLS C/C++ RTL

Loop opt passes

Directive opt passes

Graph opt passes

6

Optimizations
Level Pass

Graph
Legalize dataflow

Split function

Loop

Loop perfectization

Loop order optimization

Variable bound removal

Loop tiling

Loop unrolling

Level Pass

Directive

Loop pipelining

Function pipelining

Array partitioning

7

Graph-level Dataflow Optimization
Module 1

Module 2

Module 3

Module 4

Module 5

8

stage 1

stage 2

stage 3

A bypassing dataflow edge
precludes finer-grained pipelining

Graph-level Dataflow Optimization
Module 1

Module 2

Module 4

Module 5

8

Copy

Module 3 Copy

stage 1

stage 5

stage 3

stage 2

stage 4

Module 1

Module 2

Module 4

Module 5

Copy

Module 3

stage 1

stage 4

stage 2

stage 3

● Problem: Imperfect loops cannot be flattened
○ Automatically perfectize loops in loop-level IR

Loop Flattening and Perfectization
● Loop flattening: flatten multi-dimension nested loops into one loop

for (int i=0; i<16; i++) {
 a[i][0] *= n;
 for (int j=0; j<8; j++) {
 a[i][j] += m * b[i][j];
}}

Statements outside innermost loop
→ loops are imperfect

for (int i=0; i<16; i++) {
 for (int j=0; j<i; j++) {
 if (j==0) a[i][j] *= n;
 a[i][j] += m * b[i][j];
}}

for (int n=0; n<16*8; n+=8) {
 int i = n / 8;
 int j = n % 8;
 // ...
}

9

for (int i=0; i<16; i++) {
 for (int j=0; j<8; j++) {
 // ...
}}

for (int n=0; n<16*8; n+=8) {
 int i=n/8, j=n%8;
 if (j==0) a[i][j] *= n;
 a[i][j] += m * b[i][j];
}

Perfectization Flattening

Loop Unrolling and Pipelining
● Add a pipeline directives in directive-level IR

○ Transformation is applied by Vivado HLS tool during RTL generation

for (int i=0; i<16; i++) {
 for (int j=0; j<i; j++) {
 for (int k=0; k<8; k++) {
 a[i][j] += b[i][k] * b[j][k];
}}}

#pragma HLS pipeline

for (int i=0; i<16; i++) {
 for (int j=0; j<i; j++) {
 #pragma HLS pipeline II=3
 a[i][j] += b[i][0] * b[j][0];
 ...
 a[i][j] += b[i][7] * b[j][7];
}}

10

● Requirements: all sub-loops unrolled / sub-functions pipelined

○ Legalize the loop by unrolling sub-loop to be fully pipelined

● k-loop is fully unrolled
● Pipelining is applied to j-loop

* i-j nested loops can be automatically
flattened since this is perfect loop

Array Partitioning
● Loop unroll may not be effective due to limited FPGA memory ports

a[5][6]

for (int i=0; i<5; i++) {
 a[i][0] = ...;
 ...
 a[i][5] = ...;
}

Cannot be executed
simultaneously6 cycles

11

● Automatically detect memory access pattern and apply suitable array
partition directives: #pragma HLS array_partition variable=a ...

○ BRAM in right can perform 1 read / 1 write in 1 cycle

Evaluation: ResNet-18
● Translate PyTorch model definitions to Graph-level IR

● Results

○ 3.9x more resource efficient versus TVM-VTA1

○ 3825.0x speedup versus itself without any optimizations

○ automatic optimization versus nothing (This is the first work.)

12

[1] “A Hardware-Software Blueprint for Flexible Deep Learning Specialization,” Moreau et al., arXiv:1807.04188

Evaluation: ResNet-18

12

More graph optimizations
(Gn: finer dataflow granularity)

More loop optimizations
(Ln: larger loop unroll factor)

Conclusion and Commentary

13

● ScaleHLS: Optimizations for high performance HLS

○ Well-architected system with extensible design

○ Hardware-aware optimization passes and modelling

○ A lot of engineering effort invested

● Some limitations, though.

○ Weak evaluation baseline

○ Not many new things

○ Not sure why this is scalable

ScaleHLS: Scalable High-Level
Synthesis through MLIR

Questions? Comments?

Presenters: [Team 2] Insu Jang, Jae-Won Chung

Paper accepted to HPCA 2022
No final paper released yet

