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ABSTRACT

High-level Synthesis (HLS) has been widely adopted as it signif-
icantly improves the hardware design productivity and enables
efficient design space exploration (DSE). HLS tools can be used
to deliver solutions for many different kinds of design problems,
which are often better solved with different levels of abstraction.
While existing HLS tools are built using compiler infrastructures
largely based on a single-level abstraction (e.g., LLVM), we propose
ScaleHLS', a next-generation HLS compilation flow, on top of a
multi-level compiler infrastructure called MLIR, for the first time.
By using an intermediate representation (IR) that can be better
tuned to particular algorithms at different representation levels,
we are able to build this new HLS tool that is more scalable and
customizable towards various applications coming with intrinsic
structural or functional hierarchies. ScaleHLS is able to represent
and optimize HLS designs at multiple levels of abstraction and pro-
vides an HLS-dedicated transform and analysis library to solve the
optimization problems at the suitable representation levels. On top
of the library, we also build an automated DSE engine to explore the
multi-dimensional design space efficiently. In addition, we develop
an HLS C front-end and a C/C++ emission back-end to translate
HLS designs into/from MLIR for enabling the end-to-end ScaleHLS
flow. Experimental results show that, comparing to the baseline
designs only optimized by Xilinx Vivado HLS, ScaleHLS improves
the performances with amazing quality-of-results — up to 768.1X
better on computation kernel level programs and up to 3825.0x
better on neural network models.

1 INTRODUCTION

High-level synthesis (HLS) automatically translates high-level lan-
guages into dedicated hardware accelerators, thereby removing
the reliance of the cumbersome and potentially error-prone hard-
ware design practices that use dedicated hardware description lan-
guages [21, 41]. In recent years, HLS has been widely used in many
application developments, such as neural networks [4, 51], IoT ap-
plications [3, 52], and video processing [29]. Existing algorithmic
HLS tools typically focus on extracting parallelism from algorithmic
descriptions and compiling the result into a parallel hardware exe-
cution model [36, 37]. Thus, HLS tools would enable a designer to
implement different algorithmic choices quickly, identify high-level
area-performance tradeoffs, avoid premature optimizations [6], and
achieve working designs faster. While some of these alternatives
can be explored automatically, it is also true that large-scale de-
signs often make it very challenging to comprehensively explore
the resulting large design space and produce high-quality design

1ScaleHLS is open-sourced at https://github.com/hanchenye/scalehls.

solutions [43]. As a result, existing HLS tools often provide user-
specified directives to control or guide the HLS process to generate
different micro-architectures, which means the tools would rely
on designers for writing ’good’ code and setting "good’ compiler
directives in order to achieve good design quality [46].

In recent years, we have witnessed many studies for investigat-
ing different design space exploration (DSE) methods of setting HLS
directives [43]. These efforts can be classified into two main types of
methods: synthesis-based and model-based. Synthesis-based meth-
ods [5, 14, 42, 46] invoke downstream HLS tools to evaluate the
quality of result (QoR) of discovered design points. Model-based
methods [48, 54-57] instead extract necessary design information
from static dataflow graphs or dynamic execution traces and pass
such information to predefined analytical models for estimating
the QoR without invoking HLS tools. Recently, machine learning
methods are also investigated [12, 30, 35, 49] to extract unique
features that cannot be easily characterized by analytical models
and deduce estimations for more complicated designs. Once per-
formance and resource utilization estimates can be determined,
the DSE process can be regularized and solved through simulated
annealing [42], integer linear programming [57], or other dedi-
cated heuristics [14, 46], etc. Apart from different DSE methods,
some other studies [27, 36, 44] leverage parallel-programming lan-
guages, such as CUDA [34], as inputs to expose the parallelism of
the accelerator designs and generate synthesizable C code with
HLS directives inserted.

However, we find that existing efforts and solutions face signifi-
cant difficulty to handle large-scale HLS designs containing a large
number of sub-modules and sophisticated inter-dependencies. The
challenges mainly come from three aspects:

Representation. Existing works exploit C/C++ abstract syntax
tree (AST) [23], traditional software compiler intermediate represen-
tation (IR) [24], or C/C++ source-level IR [13, 28], to represent and
analyze HLS designs. These representations are originally designed
for software compilation and only contain a single operation-level
abstraction. However, HLS optimizations can often be carried out
at or across different levels of abstraction for better results. For
example, task/module level parallelization should be applied on
high-level operators, such as convolution operators, rather than
nested loops to avoid conservative assumption and sophisticated
memory dependency analysis. Directly combining different levels
of representation from different frameworks could cause significant
fragmentation and cumbersome and inconsistent cross-level opti-
mizations. We argue that we should have a systematic approach
to represent HLS designs at multiple abstraction levels in order to
honor the intrinsic hierarchies of HLS designs. This representation
should act as the foundation of HLS optimization and address the
various fragmentation and inconsistency issues that we are facing.
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Optimization. Existing works leave many important HLS op-
timizations, such as task/module level resource-sharing and par-
allelization, hardware IP integration, and loop level analysis and
transformation, to human designers done by manual code rewriting.
Such an approach is not productive and scalable enough to deal
with large HLS designs and may obstruct the comprehensive explo-
ration of the HLS design space. We argue that HLS optimizations
should be fully automated and parameterized rather than relying
on manual code rewriting. These optimizations should be carried
out at multiple different abstraction levels automatically to reduce
the complexity of program analysis and make the compilation flow
more scalable to large HLS designs.

Exploration. In the domain of compiler development, the pa-
rameters of each optimization technique are typically determined
by a cost model indicating the ’benefit’ of the combination of such
parameters. However, in HLS designs, because the effects of differ-
ent HLS optimizations correlate (and sometimes in conflict) with
one another, we cannot calculate the *benefit’ of one optimization in
isolation of the other optimizations. In order to solve this problem,
a global DSE engine is desired to take all HLS optimizations across
different levels of abstraction into consideration and explore the
large design space effectively.

In this paper, we propose a new tool, named as ScaleHLS, to
tackle the challenges present in the representation, optimization,
and exploration of HLS designs. ScaleHLS represents HLS designs
with a multi-level IR for the first time, solves HLS optimization
problems at the right levels of abstraction, and automates such
optimizations through a new end-to-end flow without relying on
manual code rewriting. ScaleHLS can optimize large HLS designs
and still deliver high QoR for FPGA hardware implementation. We
summarize the main contributions of our work as follows.

e To the best of our knowledge, ScaleHLS is the first end-to-
end automated HLS compilation flow built on top of multi-
ple levels of design abstraction naturally honoring intrinsic
structural or functional hierarchies of large-scale designs.

e ScaleHLS proposes a hierarchical and scalable HLS represen-
tation and optimization methodology, which optimizes HLS
designs at graph, loop, and directive levels holistically, to
handle the complexity of the increasing HLS design space.

o ScaleHLS provides a transform and analysis library dedicated
for HLS designs. This library turns a set of HLS optimiza-
tion techniques from manual code rewriting to callable and
tunable interfaces, saves significant amount of human effort
and establishes the foundation of automated DSE.

o ScaleHLS contains a novel automated DSE engine to search
for the Pareto frontier of the latency-area tradeoff space. A
QoR estimator is also developed to evaluate design points
discovered by the DSE engine rapidly.

o ScaleHLS expands the MLIR framework by adding an HLS
C front-end and a synthesizable HLS C/C++ emission back-
end for bridging the gap between the MLIR compilation
framework and C-based HLS designs, thus enabling an end-
to-end HLS compilation flow.

The remaining of this paper is organized as follows. Section 2
introduces the background. In Section 3, we provide an overview
of the ScaleHLS framework. In Section 4 and 5, we introduce the
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Figure 1: An IR example, where affine and scf dialect can
represent structured control flow. affine dialect can be low-
ered to scf and then lowered to unstructured IR. All types
are omitted for simplicity.

details of the multi-level representation and optimization for HLS
designs, respectively. In Section 6, we present the front-end and
back-end integration of ScaleHLS. In Section 7 and 8, we provide
the evaluation results and conclude this paper.

2 BACKGROUND

2.1 MLIR Framework

ScaleHLS is built on top of MLIR [8, 25], a compilation framework
supporting multiple levels of functional and representational hi-
erarchy. In the remainder of this paper, we use MLIR to refer to
the MLIR compilation framework and IR for the intermediate rep-
resentation of programs in MLIR. MLIR includes a single static
assignment (SSA) style IR [11] where an Operation is the minimal
unit of code. Each operation accepts a set of typed Operands and
produces a set of typed Results. Connections between the result
of one operation and the operands of another operation describe
the SSA-style flow of data where every operand is connected to
exactly one result. Each operation can also be parameterized by
a set of Attributes indicating important characteristics of the op-
eration. Unlike operands, which typically model values produced
by other operations when a program is executed, attributes have
values that are known and fixed at compile time. A sequential list
of operations without control flow is defined as a Block (or Basic
Block) and a control flow graph (CFG) of blocks is organized into
a Region in MLIR. Regions are, in turn, contained by operations,
enabling the description of arbitrary design hierarchy. For instance,
a Function is defined as a built-in callable operation containing one
region. Figure 1(i) shows an IR example, where the top function
contains a region with two operations. The affine. for operation
contains another region as the loop body.

A Dialect in MLIR defines a namespace for a group of related
operations, attributes, and types. MLIR not only provides multiple
built-in dialects to represent common functionalities, but also fea-
tures an open infrastructure allowing users to define new dialects.
Pass is a key component of compiler which traverses the IR for
the purpose of optimization or analysis and is typically invoked
through command line tools. Similar to LLVM, users can design



Transform and Analysis passes in MLIR to perform the IR trans-
formation and analysis, respectively. However, in the context of
MLIR, Transform typically refers to the transformation within a
dialect. The transformation between different dialects is typically
referred as Conversion, while the transformation between MLIR
and external representation is referred as Translation. Lowering is
a terminology referring to the process of lowering the abstraction
level of the IR. Notably, MLIR provides powerful utilities for con-
ducting common IR optimizations (e.g., loop transformation) and
analyses (e.g., dependency analysis).

2.2 Relevant MLIR Dialects

Many dialects in MLIR are immediately applicable for representing
nested loop programs commonly used in HLS. The affine dialect
provides a powerful abstraction for affine operations and structures
in order to use techniques from polyhedral compilation to make
dependence analysis and loop transformations efficient and reliable.
The affine dialect defines two kinds of affine SSA values, Sym-
bol and Dimension, and Affine Map is defined as a mathematical
function that transforms a list of affine values into a list of re-
sults with affine expressions. Affine operations (e.g., affine. for,
if, and apply) must take affine values as input operands, there-
fore the loop bounds of affine. for operation and conditions of
affine.if operation must be the expression of affine values. The
scf (structured control flow) dialect defines control flow operations
(e.g., scf.for and if) whose loop bounds or conditions can be
any SSA values. Therefore, scf operations are not constrained by
the affine requirements and can represent a wider range of pro-
grams. MLIR also provides several fundamental built-in dialects to
represent unstructured control flow operations (e.g., br, cond_br,
call, and return), basic arithmetic operations (e.g., math.log
and math.exp), and non-affine memory access operations (e.g.,
memref.load and memref.store). Taking Figure 1 as example,
the structured control flows in Figure 1(i) and (ii) represented with
affine and scf operations are flattened to the unstructured br
and cond_br operations in Figure 1(iii).

2.3 Relevant MLIR Front-ends

ScaleHLS takes advantage of third-party front-ends, NPComp [9]
and ONNX-MLIR [26], to parse PyTorch [38] and ONNX [10] mod-
els, respectively. NPComp aims to compile numerical python pro-
grams into MLIR. NPComp first translates PyTorch models into
aten dialect, then lowers the IR to tcf (tensor compute front-end)
dialect and generates affine dialect as the end of compilation.
ONNX-MLIR defines a subset of ONNX operations in an onnx di-
alect for translating ONNX models into MLIR. The onnx operations
are then lowered to krnl (kernel) dialect and finally lowered to
affine dialect by the ONNX-MLIR compilation flow.

ScaleHLS also includes its own C front-end for MLIR. The ex-
isting C front-end Polygeist [33] requires the users to manually
identify the affine region in C using scop pragmas, while our ap-
proach can take arbitrary C code and automatically identifies the
affine region in MLIR. Also, most HLS applications contain partially
affine loops. Their approach is an all-or-nothing process, which
means that a non-affine statement in a given region can cause fail-
ure in translating the whole region to the af fine dialect, while our
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Figure 2: ScaleHLS framework.

approach supports more precise granularity and translates other
affine statements in this region into affine operations.

3 SCALEHLS FRAMEWORK OVERVIEW

ScaleHLS compiles programs described in HLS C code or high-
level programming frameworks, such as PyTorch, to optimized and
synthesizable HLS C/C++ designs. Figure 2 shows the architecture
of ScaleHLS. In this section, we organize the main components of
ScaleHLS into four categories according to the challenge they are
tackling (representation, optimization, exploration, and integration)
and introduce them one by one.

3.1 Representation

Graph-level IR. We adopt existing third-party aten [9] dialect
and onnx [26] dialect as the graph-level IR. The programs in high-
level programming frameworks are parsed into computation graphs
constructed with tensor operations of these dialects, on which graph
optimizations can be conveniently applied. Details are discussed in
Section 4.1.

Loop-level IR. We adopt MLIR built-in affine and scf di-
alects as the loop-level IR, which enables ScaleHLS to leverage the
powerful transformation and analysis libraries provided by MLIR to
conduct loop-level optimizations. The affine and scf operations
can be lowered from the graph level IR or generated from the HLS
C front-end. Details are discussed in Section 4.2.

Directive-level IR. We have designed an hlscpp dialect for
representing the HLS-specific structures and program directives
(e.g., loop pipelining). The customized dialect not only provides the
capability of conducting directive optimizations, but also supports
synthesizable C/C++ code emission. HLS directives are organized
into three categories, function, loop, and array directives, of which
the details are discussed in Section 4.3.

3.2 Optimization

Optimization passes. On each level of IR, including graph, loop,
and directive level, we have implemented optimization passes to
improve the HLS design quality. The unique hierarchical IR of
ScaleHLS allows the optimization passes to be implemented at the
most suitable abstraction level, thereby minimizing the processing
complexity and improving the scalability. Details of the transform
passes are discussed in Section 5.1 to 5.4.



HLS QoR estimator. In order to efficiently explore the large
design spaces brought by large HLS designs, we have developed
a fast QoR estimator based on analytical models, which estimate
the latency and resource utilization of programs in the structured
directive-level IR. Details are discussed in Section 5.5.1.

3.3 Exploration

Transform and analysis library. The interfaces of the QoR esti-
mator and transform passes of all abstraction levels are packaged
into an HLS transform and analysis library. All the interfaces in the
library are highly parameterized and can be tuned by developers or
DSE engines. This library turns the HLS optimization techniques
from manual code rewriting to callable and tunable interfaces at
different abstraction levels, ranging from task-level dataflow, to
loop transformation and directives insertion. Details are discussed
in Section 5.

Automated DSE engine. Leveraging the HLS transform and
analysis library, we designed an automated DSE engine to search
for the Pareto frontier of the multi-dimensional design space, where
each dimension corresponds to a tunable parameter of a transform
pass. Details of the DSE algorithm are discussed in Section 5.5.2.
The DSE engine can be extended to support other optimization
algorithms in the future.

3.4 Integration

HLS C front-end. We have implemented an HLS C front-end based
on Clang that directly translates input C programs into the scf
dialect by traversing the Clang AST (Abstract syntax tree). An scf
to affine raising pass automatically identifies affine regions and
converts scT operations to their corresponding affine operations,
enabling subsequent polyhedral transformations and analyses. De-
tails are discussed in Section 6.1.

HLS C/C++ emitter. After the completion of all conversions
and optimizations, we translate the structured directive-level IR into
synthesizable C++ code which is passed to external HLS tools to
generate RTL code. Details are discussed in Section 6.2. Meanwhile,
LLVM IR [24] can also be generated, enabling software simulation
and direct interfacing with other existing LLVM-compatible tools,
such as Xilinx Vitis HLS [20].

4 SCALEHLS REPRESENTATION

ScaleHLS features a unique multi-level representation which allows
the transform and analysis passes to be applied on multiple abstrac-
tion levels, thereby exploring more comprehensive design spaces
and improving scalability. In this section, we first introduce the
graph and loop-level IRs of ScaleHLS in detail. Then, we introduce
the representation of function, loop, and array directives of HLS.

4.1 Graph-level IR

ScaleHLS exploits existing third-party dialects in MLIR, including

the ONNX dialect from ONNX-MLIR [26] and the ATen dialect from

NPComp [9], to represent and transform graph-level IR. An example

of the assembly form of an onnx. Conv operation is (attributes and

non-tensor operands are omitted for simplicity):

soutput = "onnx.Conv"(%input, %weight, ...) {...} :
(tensor<lx3x34x34xf32>, tensor<64x3x3x3xf32>, ...)
-> tensor<1x64x32x32xf32>

Table 1: Supported HLS directives.

Function Loop Array
dataflow -
dataflow L partition
. . - pipeline
Directives  pipeline resource
S unroll .
inline interface
merge

where the matrix operands and result are typed as tensors. Op-
erations of these dialects consume and produce tensor-type val-
ues, which allows optimizing the IR at this level through simple
define-use analysis. If these operations are lowered to loop-level and
tensors are bufferized to memories, tensor data must be accessed
through memory read and write operations, making optimization
and transformation more cumbersome due to the need for sophisti-
cated memory dependency analysis. In contrast, many high level
transformations and optimizations, such as graph node merging,
can be easily supported in a graph-level IR by manipulating tensor
operations. The transformations and optimizations implemented
in ScaleHLS are discussed further in Section 5.1.

4.2 Loop-level IR

Once the graph-level optimizations are completed, the IR will be
lowered to loop-level for further optimization. ScaleHLS exploits
the MLIR built-in dialects, particularly affine and scf, to repre-
sent loop-level IR for reusing the powerful analysis and transform
libraries provided by MLIR. The code block (ii) of Figure 5 shows
the loop-level IR of an SYRK (symmetric rank-k update of a ma-
trix) computation kernel [2] in MLIR where types and attributes
of all operations are omitted for simplicity. Memory access and
math operations are nested in affine. for operations, which ex-
plicitly represent the loop structure of the program. Similarly, the
code block (iii) of Figure 5 shows the structured representation of
a conditionally executed MLIR block contained by an affine.if
operation. Compared to the unstructured IR, the structured loop-
level IR enables more flexible and efficient loop optimizations (e.g.,
loop tiling). Furthermore, the fast affine expression composition
and the use of affine transformation theory allow ScaleHLS to per-
form efficient and comprehensive analysis and transformation on
affine operations. The loop-level optimizations are discussed in
detail in Section 5.2.

4.3 HLS Directives

HLS tools typically use program directives to guide the hardware
generation and fine-tune the performance-area tradeoff. In this sec-
tion, we introduce how ScaleHLS represents the common function,
loop, and array HLS directives shown in Table 1. The directive rep-
resentation enables ScaleHLS to systematically conduct directive
optimizations for improving the design quality.

4.3.1 Function Directives. ScaleHLS supports coarse-grained and
fine-grained parallelism through applying directives. The dataflow
directive enables task parallelism by pipelining all sub-functions
that appear in the target function. In the generated hardware, the
top-module will be ready to accept a new frame of data once the
first sub-module is done, which effectively improves the through-
put of the top-module. The pipeline directive enables operation
parallelism by scheduling all operations in the target function into



d1: none d1: none

d0: none
dO0: cyclic-2

(a) affine_map<(do, d1) ->
(de, di)>

(b) affine_map<(de, d1) ->
(de mod 2, @, do floordiv 2, di)>

d1: block-4

do: cyclic-2

(c) affine_map<(de, d1) ->
(de mod 2, d1 floordiv 2, d@ floordiv 2, dl1 mod 2)>
Figure 3: Affine-based array partition. d{n} indicates the
n-th dimension of the array. Partition fashions and fac-
tors: (a) without partition; (b) cyclic partitioned along the
dimension-0 with a factor of 2; (c) block partitioned along
dimension-1 with a factor of 4.

multiple pipelined stages that can be executed in parallel. For the
pipeline directive, ScaleHLS allows specifying the targeted initi-
ation interval (II), which indicates that the pipeline accepts and
processes a new input every II clock cycles, impacting the resource
usage and performance of the generated pipeline. To represent
and parse these directives in ScaleHLS, we customize a structure
MLIR attribute named FuncDirective in hlscpp dialect. The cus-
tomized attribute contains two Boolean parameters, dataflow and
pipeline, and one integer parameter, targetII, which triggers
generation of appropriate directives compatible with downstream
tools, such as Xilinx Vivado HLS [19]. In ScaleHLS, the function
inline directive is not explicitly represented with attributes, but
instead directly inlines the target function in the IR to ease the
transformation and analysis.

4.3.2  Loop Directives. The throughput and latency of loop regions
can also be optimized by applying the dataflow and pipeline direc-
tives, which largely share the same characteristics with the corre-
sponding function directives. Note that ScaleHLS can automatically
identify perfectly nested loops and flatten them into a single loop hi-
erarchy, which helps to further improve the throughput and latency.
Similar to function directives, ScaleHLS also exploits customized
MLIR attributes to represent the loop dataflow and pipeline direc-
tives and the targeted II. A LoopDirective attribute is defined in
hlscpp dialect and attached to the corresponding affine.for or
scf.for operations when directives are applied.

The computation parallelism of loops can be improved by ap-
plying the loop unroll directive with the cost of consuming more
resources. The merge directive is used to fuse adjacent loop nests
to improve data locality and decrease the loop control overhead.
ScaleHLS does not explicitly represent these two directives through
MLIR attributes, but instead directly performs loop transformation
on the target loops in the IR, which is semantically equivalent to
applying the directives.

4.3.3  Array Partition. Array partition is one of the most important
HLS directives because the HLS design requires enough on-chip
memory bandwidth to comply with the computation parallelism.
However, single on-chip memory block has limited read/write ports

and therefore needs to be partitioned into multiple physical blocks
to enable massive simultaneous read and write. As MLIR attaches an
affine map to each memory type for encoding the memory layout,
ScaleHLS reuses the affine-based memory typing system of MLIR
to flexibly represent the partition factor (the number of memory
blocks after partition) and various partition fashions (e.g., cyclic
and block). Figure 3 shows three running examples including: (a)
array without partition, (b) partitioned along the first dimension,
and (c) partitioned along both two dimensions. The partition fash-
ions and factors and the corresponding affine map are annotated
to each example as well. As we introduced in Section 2.2, affine
map is a transform function mapping a list of affine inputs to a list
of results. To represent array partition in ScaleHLS, assuming an
N-dimensional target array, the attached affine map always have
N inputs and 2N results. While the inputs are the logical indices of
the array, the first and last N results are used to encode the expres-
sions of partition indices and physical indices after array partition,
respectively. Taking the affine map of Figure 3(b) as an example,
the partition index and physical index of d0 can be calculated as
d0 % 2 and | d0 / 2] when dimension-0 is partitioned cyclically with
a factor of two.

By encoding the partition information into the memory types,
ScaleHLS can flexibly support different partition fashions, and can
quickly infer the partition index and real accessing address of a
memory read/write operation through affine expression composi-
tion. This technique is used in the QoR estimator (Section 5.5.1)
and the -array-partition pass (Section 5.3.2). Note that unsup-
ported memory partition fashions by the downstream HLS tools
are disallowed in the directive-level IR of ScaleHLS.

4.3.4  Array Resource and Interface. The HLS-based accelerators
can use different kinds of memories, including on-chip memories
(e.g., BRAM and URAM) and off-chip memories (e.g., DRAM). The
resource directive is introduced for indicating what kind of memo-
ries should an array be allocated to. This is similar to the concept of
memory space in the software, where BRAM, URAM, and DRAM
respond to L1 cache, L2 cache, and main memory of a common
computer system. As MLIR also encodes the memory space into
the memory type system, ScaleHLS reuses this for representing
resource directive by mapping different kinds of memories into
different memory spaces. Notably, ScaleHLS distinguishes single
port, simple dual-port, and true dual-port on-chip memories to
precisely control the resource utilization. Additionally, if an array is
identified as a function argument or returned value, ScaleHLS will
automatically determine the interface category (e.g., AXI [18] or
naive BRAM interface) of the array according to its memory space.

5 SCALEHLS OPTIMIZATION

On top of the hierarchical representation of ScaleHLS, we pro-
pose a multi-level HLS optimization methodology to address the
challenges of optimizing large HLS designs. This methodology is
implemented using a set of MLIR transformation passes, each oper-
ating on MLIR dialects at an appropriate abstraction level, either
the graph, loop, or directive levels described above. All ScaleHLS
transform passes, their transform targets (e.g., function), and the
tunable parameters are listed in Table 2, where a Loop Band in MLIR
refers to a continuous set of loops. These passes traverse the whole



Table 2: ScaleHLS passes. Boldface ones are new passes pro-
vided by ScaleHLS, while others are MLIR built-in passes.

‘ Passes ‘ Target ‘Parameters

-legalize-dataflow function insert-copy
Graph . . . .
-split-function function min-gran
-affine-loop-perfectization | loop band | -
-affine-loop-order-opt loop band | perm-map
-remove-variable-bound loop band | -

Loop . g
-affine-loop-tile loop tile-size
-affine-loop-unroll loop unroll-factor
-affine-loop-fusion loop -
-loop-pipelining loop target-ii

Direct. | -func-pipelining function target-ii
-array-partition function | part-factors
-simplify-affine-if function -

. -affine-store-forward function -

Misc. . . ;
-simplify-memref-access function -
-canonicalize -cse function -

IR and operate on all suitable targets in the IR, making it difficult to
apply different combinations of passes on different targets through
the command line tool. To solve this problem, we also expose the
functionality of each transform pass as a callable method, allowing
precise control on where transforms are applied. These methods
together with the QoR estimator are packaged into an HLS trans-
form and analysis library, which opens the opportunity to perform
comprehensive DSEs by applying different combinations of trans-
forms on different targets in the IR and tuning their parameters. In
this section, we first introduce the graph, loop, and directive passes
accordingly. Then, we introduce other transform passes provided
by ScaleHLS for eliminating redundancies. Finally, we introduce
details of the QoR estimator and the automated DSE algorithm.

5.1 Graph Transform Passes

5.1.1 Legalize Dataflow. Downstream HLS tools often support
dataflow pipelining with specific restrictions in coding style. In
particular, for Vivado HLS each intermediate result must have only
one producer and one consumer, bypass and feedback paths are
not allowed, and conditional execution of sub-functions are not
allowed [19]. Previously, users were required to manually legalize
the target function by splitting the function body into multiple
sub-functions and rewriting the code structure to eliminate the
bypass, multi-producer, or multi-consumer data paths. This proce-
dure is (1) error-prone since careless rewriting can easily result in
incorrect functionality and (2) less effective since large HLS designs
containing tens of sub-functions can take up to hours for human
designers to reorganize and split. The drawbacks of such manual ef-
forts obstruct the existing HLS tools to effectively explore different
configurations of the dataflow pipelining.

To address this problem, we introduce a - legalize-dataflow
pass in ScaleHLS to analyze the dependencies between dataflow
nodes and automatically legalize the targeted function. Figure 4(a)
shows an example dataflow containing five procedures, where each
edge corresponds to a tensor delivering. We can observe that Figure
4(a) is illegal as there is a path between Proc 0 and Proc 3 bypassing
Proc 1-2. This dataflow can be conservatively legalized to Figure
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Figure 4: Graph-level dataflow optimization. (a) original
dataflow; (b) legalized dataflow without copy nodes; (c) legal-
ized dataflow with inserting copy nodes; (d) dataflow with a
minimum granularity of 2.

4(b) through the -legalize-dataflow pass. To eliminate the
bypass path, Proc 1-3 are organized into the same dataflow stage,
thereby Proc 0 -> Proc 1-3 -> Proc 4 can construct a 3-stages dataflow.
Note that in Figure 4(b), the output buffers of Proc 0 and Proc 3
are automatically ping-pong buffered after the dataflow pipelining
directive is successfully applied, with the cost of utilizing more
memory resources than the original dataflow in Figure 4(a).
Alternatively, the dataflow can be aggressively legalized to Fig-
ure 4(c) through inserting Copy nodes. The original bypass path is
broken by the two inserted Copy nodes, which enable a more fine-
grained 5-stage dataflow. Assuming each procedure in the dataflow
has a latency of 1¢, the conservative and aggressive legalization
improves the dataflow interval from 5¢ to 3¢ and 1t, respectively.
However, the downside of the aggressive legalization is more com-
putation and memory resources are consumed. The strategy of
inserting copy nodes can be tuned through a insert-copy pass
option. If the insert-copy option is enabled, copy nodes are in-
serted until the main path and the bypass path have the same
number of nodes on them. Note that if the target function cannot
be legalized, the dataflow pipelining directive will not be applied.

5.1.2  Split Function. Once the dataflow is legalized, the original
function can be splitted into a top function and multiple sub-functions
by the -split-function pass. Procedures or inserted copy nodes
organized into the same dataflow stage can be safely clustered into
a new sub-function and converted to a function call. At this stage,
we find that a throughput-area tradeoff space can be explored by
merging adjacent dataflow stages into one. For example, in Figure
4(d), every two adjacent stages are merged together, constructing
a new 3-stages dataflow with less resource utilization compared
to Figure 4(c) and an interval of 2¢. To enable this design space,
we define granularity as the number of adjacent dataflow stages
to be merged. The -split-function pass supports amin-gran
parameter to specify the minimum granularity during the splitting.
Therefore, at least min-gran adjacent dataflow stages are splitted
into the one sub-function and converted to one function call.

5.2 Loop Transform Passes

We use the SYRK computation kernel shown in Figure 5 as the
example in the following discussion. In this section, we introduce



void syrk(float alpha, float beta,
float C[16][8], float A[16][16]) {
for (int i = 0; i < 16; i++) {
for (int j = 0; j <= 1i; j++) {
C[i][j] *= beta;
for (int k = 0; k < 8; k++) {
C[i]1[3] += alpha * A[i][k] * A[j]1[k];
(i) input C

#map = affine_map<(de, di1)
-> (de mod 2, @, do floordiv 2, d1)>
func @syrk(%alpha, %beta,
%A: memref<16x8xf32, #map, 1>,
%C: memref<16x16xf32, #map, 1>)
attributes {top_function = true} {
affine.for %k = © to 8 {
affine.for %i = © to 16 step 2 {
affine.for %j = 0 to 16 {
affine.if (%i - %j >= 0) {
%0 = affine.load %C[%i, %j]@
%1 mulf %beta, %0
%2 = affine.load %A[%i, %k]
%3 = affine.load %A[%j, %k]
%4 = affine.if (%k == @) {
affine.yield %1

} else { (H)

affine.yield %0

void syrk(float ve@, float vi,
float v2[16][8], float v3[16][16]) {

#pragma HLS resource variable=v2 \
core=ram_s2p_bram

#pragma HLS array_partition variable=v2 \
cyclic factor=2 dim=1

#pragma HLS resource variable=v3 \
core=ram_s2p_bram

#pragma HLS array_partition variable=v3 \
cyclic factor=2 dim=1

l Pj-ij: parse C into MLIR

func @syrk(%alpha, %beta, %A, %C) {
affine.for %i = 0 to 16 {
affine.for %j = 0 to (%i + 1) {o
%0 = affine.load %C[%i, %j]:}_

for (int v4 = 0; v4 < 8; v4 += 1) {
for (int v5 = @; v5 < 16; v5 += 2) {
for (int v6 = 0; v6 < 16; v6 += 1) {
#pragma HLS pipeline

%1 = mulf %beta, %0
affine.store %1, %C[%i, %j]

affine.for %k = 0 to 8 { if ((v5 - v6) >= 0) {

%2 = affine.load %A%%i, ok% } float v7 = v3[v5][v6];
%3 = affine.load %A[%], %k oc - 9 9 - *
%a affine. load %C[%i, %] %5 mulf %alpha, %2 float v8 vl v7;

%6 = mulf %5, %3
%7 = addf %6, %4

float v9 = v2[v5][v4];

%5 float vie = v2[v6][v4];

%6

mulf %alpha, %2
mulf %5, %3

func @syrk(%alpha, %beta, %A, %C) {{)
affine.for % = @ to 8 {@)
affine.for %i = 0 to 16 step 2 { (@)
affine.for %j = 0 to 16 {
affine.for %ii = (%i) to (%i +2) {@
affine.if (%ii - %j >= 0) {
%@ = affine.load %C[%ii, %j]@
%1 = mulf %beta, %0
affine.if (%k == @) {
affine.store %1, %C[%ii, %j]@

l Pjii»jv: directive transforms and IR simplifications

o o affine.store %7, %C[%i, %j] float v11l = (v4 == 0) ? v8 : V7;
#7 . addf %6’044 o c o } float v12 = v@ * v9;
affine.store %7, %C[%1, %]] affine.if (%1 - %j + 1 >= 0) { float v13 = v12 * vi1e;
1333 (i) baseline MLIR %0 = affine.load %C[%i + 1, %j]@ float v14 = v13 + v1i1;
P | transh %1 = mulf %beta, %0 v3[v5][v6] = v14;
l ii->iii: |00p transiroms %2 = affine.load %A[%i + 1, %k] }
%3 = affine.load %A[%], %k] G if ((v5 - v6 + 1) >=0) {
float v15 = v3[(v5 + 1)][v6];
float vi6 = vl * vi15;
float v17 = v2[(v5 + 1)][v4];
%C[%1 + 1, %j] float v18 = v2[v6][v4];

affine.store %7,

}
} {flatten = false, pipeline = true}
} {flatten = true, pipeline = false}
} {flatten = true, pipeline = false}

l Pjv-v: synthesizable C++ emission

v3[(v5 + 1)][v6] = v22;
13333

(iv) directive-opted MLIR (v) synthesizable C++

}

%2 = affine.load %A[%ii, %k]

%3 = affine.load %A[%], %k]

%4 = affine.load %C[%ii, %j]@
%5 = mulf %alpha, %2

%6 = mulf %5, %3

%7 = addf %6, %4

affine.store %7, %C[%ii, %3]

I (iiii) loop-opted MLIR

Pjiji: scalehls-clang | scalehls-opt -raise-scf-to-affine

Pji=iii: scalehls-opt -affine-loop-perfection -remove-variable-bound -affine-loop-order-opt
-partial-affine-loop-tile

Pjii>jv: scalehls-opt -legalize-to-hlscpp -loop-pipelining -canonicalize -simplify-affine-if
-affine-store-forward -simplify-memref-access -array-partition -cse

Pjy>v: scalehls-translate -emit-hlscpp

Figure 5: An SYRK computation kernel example. scalehls-clang compiles C program into the MLIR framework.
scalehls-opt is the command line tool for conducting all conversion, transform, and analysis passes of ScaleHLS, while
scalehls-translate is for the MLIR to C/C++ translation. Some operation attributes or types are omitted for simplicity.

the loop transform passes provided by ScaleHLS, which is corre-
sponding to the P;;,;;; transformation of Figure 5.

5.2.1 Loop Perfectization. Operations between loop statements,
such as Figure 5@) (hereinafter referred to as 5@), 50, etc.), result
in imperfect loops that may interfere with some important optimiza-
tions (e.g., loop tiling) and prevent the outer loops from being flat-
tened for reducing latency. The -affine-loop-perfectization
pass relocates the three in-between operations (5@) into the in-
nermost loop and transforms them to 5@), where all in-between
operations are moved into a newly created affine.if. Then, op-
erations except the state-modifying operations, such as stores, are
hoisted out of the conditional.

5.22  Loop Order Optimization. Loop permutation can change the
distance of loop-carried memory dependencies, thereby reducing
the achievable II of loop pipelining and reducing latency. The
-affine-loop-order-opt pass can automatically perform affine-
based memory dependency analysis and apply the best legal loop
order to the targeted loop band. In the SYRK example, the original
innermost %k-loop (5() is permuted to the outermost location

(5®) by the loop order optimization pass. This pass also accepts an
optional integers list, perm-map, allowing the loop order to be ex-
plicitly specified. The i-th element of perm-map indicates the new
position of the i-th loop in the original loop band, where positions
are from outermost loop to inner.

5.2.3 Remove Variable Loop Bound. Because MLIR focuses on rect-
angular iteration spaces, there are limitations on analyzing and
transforming non-rectangular nested loops in MLIR. As a result,
variable loop bounds may obstruct some loop optimizations and
disrupt QoR estimation. The remove-variable-bound pass can
calculate the minimum or maximum value of the expression of a
variable loop bound as long as each item is a loop induction variable
and has known lower and upper bounds. In the SYRK example, the
variable loop bound of the %j-loop (5(©) is substituted with the
constant value and an affine.if operation (5Q) is generated
in the innermost loop for the conditional execution of the whole
loop body. Although this pass may increase the overall iteration
number of the loop band, it opens opportunities for subsequent
optimizations which may offset the negative side effect.



5.24 Loop Tiling. Loop tiling is a common loop transform to im-
prove data locality and accommodate the limited capacity of on-
chip buffers. In the SYRK example, the %i-loop (5@) is tiled with a
factor of 2 and transformed into 50), and the generated intra-tile
%11i-loop is relocated into the innermost loop. The legality of loop
tiling is validated before the transform is applied to maintain the
correct functionality. The tiling size is determined by a tile-size
parameter which can be tuned by the DSE engine.

5.3 Directive Transform Passes

In this section, we introduce the directive transform passes of
ScaleHLS, which manipulate HLS-specific directives for improving
the design quality. The effect of the discussed passes are showcased
in the Pjjj—j, transformation of Figure 5.

5.3.1  Function and Loop Pipelining. A legal pipeline directive al-
lows no hierarchy in the target function or loop, thus all the sub-
loops must be fully unrolled and all the sub-functions should be
also pipelined [19]. The - loop-pipelining pass first attempts
to legalize the targeted loop by fully unrolling all contained loops
and pipelining all sub-functions. If the legalization successes, loop
pipeline directive is applied to the target loop. In the SYRK example,
loop pipelining is applied to the %j-loop and thus the contained
%ii-loop (5@) is fully unrolled and the duplicated loop body af-
ter loop unrolling is shown in 5®). The %j-loop is annotated as
pipeline and all outer perfectly nested loops, %k and %1i-loop, are
annotated as flatten.

The - function-pipelining pass uses the same mechanism
to legalize the targeted function before setting the function pipeline
directive. Both the loop and function pipelining allow specifying
the targeted II for exploring the tradeoff design space between
throughput and on-chip resource utilization.

5.3.2  Array Partition. ScaleHLS enhances the method proposed
in [54] to automatically detect the memory access pattern of a
program and apply the suitable array partition directive to each
dimension of each on-chip memory. The array partition metric P
of the d-th dimension of the i-th array can be represented with:

Accesses;

1

Pia= n%?,f(index;fi - indexzd +1)
where Accesses; is the number of unique memory accesses in the
targeted MLIR blocks, indexi’fz. and index;" , are the indices of the
m-th and n-th memory access operations. Note that m and n can be
any two different memory accesses. The -array-partition pass
applies cyclic and block partitions to the d-th dimension of the i-th
array when P; 5 >=1and P; 4 < 1, respectively, with the partition
factor set to Accesses;. Taking the first dimension of the %C-array
(5@®) as example, the index distance between the only two memory
accesses (5@) is (%i + 1) — %i + 1 = 2. Therefore, we have P = 1
and the applied partition fashion is cyclic, which is encoded into
the affine map of %C-array.

As instantiated arrays can be accesses by sub-functions through
reference or pointer passing, inter-procedure analysis is conducted
to ensure: (1) the array partition directives are applied in the cor-
rect function scopes; (2) the globally optimal partition strategies
are selected. The array partitioning process can also be guided by

specifying the partition factors of each array which appears in the
function through the part-factors parameter.

5.4 IR Redundancy Elimination

In addition to the graph, loop, and directive transform passes,
ScaleHLS adopts the methodology in [1] and implements multi-
ple other passes to remove the redundant operations in HLS de-
signs. The -simplify-affine-if pass eliminates dead branches
of affine.if operations by detecting always-true or always-false
conditions using affine analysis. The -affine-store-forward
pass eliminates redundant memory read or write operations and
unused memory instances through store-to-load forwarding. The
-simplify-memref-access pass folds identical memory read or
write operations if no memory dependency conflict is found. In
the SYRK example, the memory access operations (5({D) are elimi-
nated and the IR is transformed to 5@). ScaleHLS also exploits MLIR
built-in passes, such as - canonicalize and - cse (common subex-
pression elimination) [8], to further simplify the IR and optimize
the quality of the HLS design.

5.5 Automatic Design Space Exploration

In the previous sections, we first introduced the ScaleHLS represen-
tation which provides a comprehensive capability to represent HLS
designs from multiple abstraction levels. Then, we introduced the
transform passes which provide convenient and tunable interfaces
to optimize the design. On top of the representation and optimiza-
tion of ScaleHLS, we can construct a multi-dimensional design
space, where each dimension is corresponding to the on/off or a
tunable parameter of a transform pass. In this section, we propose
an automated DSE engine assisted with an analytical model-based
QoR estimator for exploring the design space.

5.5.1 QoR Estimation. The RTL generation downstream tools, such
as Vivado HLS, can take minutes to hours to complete the com-
pilation and to report the synthesis results, which (1) limits the
total number of design points that can be evaluated during DSE,
thus results in sub-optimal solutions and (2) significantly increases
the DSE time to up to tens of hours. To solve these problems and
rapidly evaluate the design points found by the DSE engine, we
develop a QoR estimator based on the structured IR to estimate the
latency and resource utilization of the HLS designs. We adopt an
ALAP (as late as possible) algorithm to schedule each MLIR block
in the design. The memory ports are considered as non-shareable
resources and constrained in the scheduling except between two or
more memory read operations with identical address indices. The
dependencies between operations are extracted through define-use
and memory dependency analysis, where function calls and loops
in the MLIR block are viewed as nodes in the dependency graph.
As discussed in Section 4.3.2, ScaleHLS directly unrolls the loops
in the IR when loop unrolling directives are applied, thus loop un-
rolling does not need to be separately handled in the estimation.
Since loop pipelining directives are represented with customized
MLIR attributes, the estimator will parse the attribute and esti-
mate the minimal IT if a loop is pipelined. We adopt the algorithm
proposed in [40] for calculating the minimal II. We have:
Iin = max(II"%S, 11%P), @)

min’~“min



where IT7°5 and Hieifl are the minimal resource-constrained IT and
dependency-constrained II, which can be calculated as:

Accessesip
1% = max || ———— (3)
i,p Portsip
dep Delayy
I = —]. 4
min = "% ({Distancedw) @)

Accesses;p and Ports; p are the number of memory access op-
erations and memory ports of the p-th partition of the i-th array.
Delay, and Distancey are the scheduling delay and distance (cal-
culated from the dependency vector) of each pair of loop-carried
dependencies.

5.5.2  DSE Algorithm. The target of the DSE engine is to search
for the Pareto frontier of the latency-area tradeoff space. By tuning
the parameters of the transform passes shown in Table 2, we can
construct a multi-dimensional design space for each input HLS
design. Although the proposed QoR estimator can rapidly map a
design point discovered in the multi-dimensional design space to
the latency-area space, the powerful ScaleHLS transform passes can
easily generate millions of design points, making exhaustive search
impossible. Through sampled profiling of the design spaces, we find
that the Pareto points in the latency-area space are clustered in the
multi-dimensional design space, which is also observed in previous
works [14, 46]. For example, if pipeline IT = 2 is a Pareto point for
a nested loop, there is a high possibility that its neighbors (e.g.,
pipeline II = 3) are also Pareto points with different latency-area
tradeoffs. Based on this observation, we design a 4-step neighbor-
traversing algorithm for solving the optimization problem:

In step (1), we sample the whole design space and evaluate each
sampled design point using the QoR estimator. In step (2), the Pareto
frontier is extracted from all evaluated design points. In step (3),
we evaluate the closest neighbor of a random selected design point
in the current Pareto frontier. Finally, in step (4), we repeat step (2)
and (3) to update the discovered Pareto frontier until no eligible
neighbor can be found or meeting the early-termination criteria
(e.g., maximum iteration number). This DSE algorithm is imple-
mented as an MLIR transform pass called -multiple-level-dse
which can be applied on the input HLS designs without any manual
efforts. Note that given the HLS transform and analysis library of
ScaleHLS, the DSE engine is extensible to support different opti-
mization algorithms.

6 END-TO-END INTEGRATION

6.1 HLS C Front-end

The C front-end takes synthesizable HLS C code and emits the
corresponding MLIR in the scf dialect. The scf dialect provides
an abstraction for static control flow and has a similar set of op-
erations to statements in C, which reduces the analysis process
in the front-end. For instance, a for loop can be directly trans-
lated to a scf.for operation. The output in the scf dialect is
then raised into the affine dialect using an ScaleHLS pass called
-raise-scf-to-affine. This pass checks whether an scf. for
operation is an affine loop and translates it into an affine.for
operation if it is. Otherwise, the loop remains as an scf. for op-
eration. Also, the MLIR pass raises each memory statement to an

affine operation if its address indices have affine formats. The
P;_,i; transformation of Figure 5 shows the procedure of parsing
HLS C codes into the MLIR framework.

MLIR has its unique memory and indexing types. First, the mem-
ory type memref, also known as memory reference, is a set of
exclusive pointers to the memory and size parameters of the mem-
ory [25]. The memref type solves delinearization problem of para-
metrically sized arrays, which was not well-supported in LLVM [15].
The translation to memref is simplified in our front-end because
common HLS tools, such as Vivado HLS, only accepts a subset of
C [19]. For instance, all the arrays have to have fixed sizes, and
pointers have to point to scalars. These types are directly translated
to fixed-size memref types. A pointer that points to a scalar has a 1
x 1 memref type in MLIR. If an unsupported struct such as pointer
to pointer is found, the input code is rejected by the C front-end.

Second, the index type in MLIR is an integer type with a platform-
specific bit width. The index types are typically used for a set of
constructs such as loop iterators and memory indices. During the
translation, our C front-end automatically checks whether an inte-
ger variable can be used as one of these constructs. For instance, the
iterator in index type of a for loop should not overflow, otherwise
the loop is translated into a scf.while loop.

6.2 HLS C/C++ Code Emission

After the completion of all conversions and optimizations, the struc-
tured IR can be emitted as synthesizable C/C++ code for generating
the RTL code. The P;j,—,, transformation of Figure 5 shows the MLIR
to C++ emission of the SYRK example. The HLS C/C++ emitter of
ScaleHLS requires the control flow to be represented by affine or
scf operations. Then, it can directly translate affine/scf.for
and if operations to the for and if statements in C/C++. The
array partition, resource, and interface information is decoded from
the type of memories (5@) and emitted as pragma directives (5@).
Meanwhile, the applied HLS-specific optimizations represented as
attributes (5@)) are also parsed by the emitter accordingly and in-
serted into the corresponding code region. Notably, to ensure the
synthesizability of the generated C/C++ code, the emitter always
converts returned scalars and memories to input pointers and mem-
ory references, respectively. The memref types and index types
are directly translated into fixed-size array types and integer types.

7 EXPERIMENTAL RESULTS

To evaluate the ScaleHLS compilation framework, we conduct com-
prehensive experiments and ablation studies in this section. Xilinx
Vivado HLS 2019.1 is adopted for generating RTL code. All reported
performances and resources utilization are collected from the syn-
thesis results of Vivado HLS.

7.1 Large-Scale Computation Kernels

7.1.1  Automatic DSE results. We evaluate the DSE engine on six
different computation kernels (BICG, GEMM, GESUMMY, SYR2K,
SYRK, and TRMM) picked from PolyBench-C [39] with a problem
size of 4096. The target platform is Xilinx XC7Z020 FPGA, which is
an edge FPGA with 4.9 Mb memories, 220 DSPs, and 53,200 LUTs.
The resource constraints and non-optimized computation kernels
written in C are passed into the DSE engine, which is then launched
to search for the optimal solutions. Finally, the generated designs



Table 3: DSE results of large-scale computation kernels. The data types of all kernels are single-precision floating-points.
Speedup is with respect to the baseline designs from PolyBench-C without the optimization of DSE. LP and RVB denote Loop
Perfectization and Remove Variable Bound, respectively. In the Loop Order Optimization, the i-th loop in the loop nest is per-
muted to location PermMap|i], where locations are from the outermost loop to inner.

Kernel ‘ Prob. Size ‘ Speedup ‘ LP ‘ RVB ‘ Perm. Map ‘ Tiling Sizes ‘ Pipeline II ‘ Array Partition Factors
BICG 4096 417x | No | No [1, 0] [16, 8] 43 A:[8, 16, s:[16], q:[8], p:[16], r:[8]
GEMM 4096 768.1% | Yes | No [1,2,0] [8, 1, 16] 3 C:[1, 16], A[1, 8], B:[8, 16]
GESUMMV 4096 199.1x Yes | No [1,0] [8, 16] 9 A:[16, 8], B:[16, 8], tmp:[16], x:[8], y:[16]
SYR2K 4096 384.0x | Yes | Yes [1,2,0] (8, 4,4] 8 C:[4, 4], A:[4, 8], B:[4, 8]
SYRK 4096 384.1x | Yes | Yes [1,2,0] [64, 1, 1] 3 Ci[1, 1], A:[1, 64]
TRMM 4096 590.9% | Yes | Yes [1,2,0] (4, 4, 32] 13 A:[4, 4], B[4, 32]
32
1000 608.2x 768.1x 590.9x 64
§ 500 359.4x 384.0x  407.1x 384.1x 128
3 199.1x
@ 256
5 87.0x
§. 100 41.7x 527x oz
32 50 31.7x 1024
3 W 2048
2]
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Figure 6: Scalability study of computation kernels. The problem sizes of computation kernels are scaled from 32 to 4096 and
the DSE engine is launched to search for the optimal solutions under each problem size.

are evaluated and the results are shown in Table 3. Among all six
benchmarks, a speedup ranging from 41.7x to 768.1X is obtained
compared to the baseline design, which is the original computation
kernel from PolyBench-C without the optimization of DSE. Table 3
also lists the optimal parameters selected for each transform pass.
Notably, in the procedure of loop tiling, all generated intra-loops
are absorbed into the innermost loop region and fully unrolled for
increasing the computation parallelism.

After studying the optimal solutions discovered by the DSE en-
gine, we find the performance gains come from multiple sources:
(1) loop perfectization and variable loop bound elimination regu-
larize the target loop bands and enable the subsequent optimiza-
tions; (2) loop permutation alleviates (or eliminates) the impact
of memory dependencies and improves the achievable pipeline IT
by reducing the Distance; in Equation 4 of loop-carried depen-
dencies; (3) the computation parallelism and resource utilization
are increased through loop tiling and intra-tile loop unrolling; (4)
loop pipelining is applied and the target II is fine-tuned to tradeoff
between resource-sharing and throughput while accommodating
the resource constraints; (5) array partitioning strategies are au-
tomatically selected to match the memory access patterns after
loop transformations. The BICG benchmark cannot benefit from
loop permutation because every loop in the loop nests is associated
with critical loop-carried dependency which prevents the DSE en-
gine to effectively reduce the pipeline II. However, the DSE engine
still discovers a reasonable solution for the BICG benchmark and
achieves a 41.7Xx speedup through increasing the computation par-
allelism. Benchmarks except BICG benefit from all speedup sources
above, and achieve significant performance improvement under the
constrained on-chip resources available on the edge FPGA platform.

7.1.2  Comparison with Previous Works. Previous efforts [54-56]
have also investigated automatic DSE methods to optimize compu-
tation kernel level algorithms. However, they only support directive

optimizations, thus are difficult to comprehensively explore the de-
sign space and find reasonable design points when the problem sizes
are large. For example, on the six scaled-up benchmarks shown in
Table 3, the open-sourced framework [54] either generates solutions
that cannot be synthesized by Vivado HLS or takes an unreasonable
long time on exploring the large design spaces. Meanwhile, as pre-
vious DSE efforts do not support HLS-dedicated representation and
the transform and analysis library featured by ScaleHLS, they still
rely on human to provide optimization hints or rewrite the code
before launching the DSE, leading to low-efficient and partially-
automated compilation flows. Our multi-level representation and
automated optimization enable ScaleHLS to find previously un-
achievable design points, explore a more comprehensive design
space, and directly generate synthesizable HLS designs.

7.1.3  Scalability Study. To understand the performance of our
framework on different problem sizes, we scale the problem sizes of
the six benchmarks from 32 to 4096 and launch the DSE engine to
search for the optimized solution under each setting. Figure 6 shows
the experimental results. We can observe that for BICG, GEMM,
SYR2K, and SYRK benchmarks, the DSE engine can achieve stable
speedup under all problem sizes. For GESUMMYV and TRMM, the
speedups for small problem sizes are lower because the small design
space prevents the DSE engine from fully utilizing the available on-
chip resources. Overall, our framework shows a strong scalability
and can effectively optimize computation kernel level algorithms
under a wide range of problem sizes.

7.2 Large and Complicated Algorithms

7.2.1 Optimization Results. We experiment the ability of handling
large and complicated HLS designs of ScaleHLS by evaluating three
representative DNN (deep neural networks) models for the CIFAR-
10 [22] image classification task, ResNet-18 [16], VGG-16[45], and
MobileNet [17]. These DNN models are constructed with a large



Table 4: Optimization results of representative DNN models. Speedup is with respect to the baseline designs compiled from
PyTorch by ScaleHLS but without the multi-level optimization.

Model Speed Runtime Memory DSP LUT FF Our DSP Effi. DSP Effi. of
u
PEECUP | (seconds) | (SLRUtL %) | (SLR Util. %) | (SLR Util. %) | (SLR Util. %) | (OP/Cycle/DSP) | TVM-VTA [32]
ResNet-18 3825.0% 60.8 91.7Mb (79.5%) 1326 (58.2%) 157902 (40.1%) 54766 (6.9%) 1.343 0.344
VGG-16 1505.3% 373 46.7Mb (40.5%) | 878 (38.5%) | 88108 (22.4%) | 31358 (4.0%) 0.744 0.296
MobileNet 1509.0x 38.1 79.4Mb (68.9%) 1774 (77.8%) 138060 (35.0%) 56680 (7.2%) 0.791 0.468
Mem (%) DSP (%) W LUT(%) @ Speedup overBaseline Mem (%) DSP (%) W LUT(%) @ Speedup overBaseline Mem (%) DSP (%) M LUT (%) @ Speedup overBaseline
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Figure 7: Ablation study of DNN models. D, L{n}, and G{n} denote directive, loop, and graph optimizations, respectively. Larger
n indicates larger loop unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

number of different hidden layers and have sophisticated inter-
layer dependencies. The target platform is one SLR (super logic
region) of Xilinx VU9P FPGA which is a large FPGA containing
115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR. The
PyTorch [38] implementations are parsed into ScaleHLS and opti-
mized using the proposed multi-level optimization methodology.
Graph, loop, and directive optimization passes are applied sequen-
tially to improve the design quality at the corresponding IR level.
The experimental results are shown in Table 4. We can observe
that by combining all three levels of optimization, the generated
HLS designs achieve significant speedups ranging from 1505.3%
to 3825.0x on the metric of throughput compared to the baseline
designs, which are compiled from PyTorch to HLS C/C++ through
ScaleHLS but without the multi-level optimization applied. Notably,
as shown in Table 4, ScaleHLS only consumes 37.3 to 60.8 seconds
to optimize the large and complicated HLS designs with a single
line of command, which demonstrates the efficiency and scalability
of our optimization methodology. The runtime is collected by using
-pass-timing, a built-in statistic pass provided by MLIR.

7.2.2  Comparison with Previous Works. To the best of our knowl-
edge, ScaleHLS is the first general-purpose HLS flow which can
optimize and generate ResNet-18 level DNN accelerators with-
out human-designed IPs or templates. Previous HLS optimization
flows [54-56] focus on small-scale algorithms, while compilation
flows dedicated for DNNSs rely on pre-defined IP libraries [32, 47, 53]
or parameterized templates [31, 50] to generate the accelerator,
which can not be generalized to applications other than DNNs. To

better understand optimization results of DNN models, we compare
the DSP efficiency with TVM-VTA [32], a widely accepted DNN
accelerator written in HLS. DSP efficiency is a common metric
for comparing the efficiency of DNN accelerators across different
platforms, which can be calculated as:

OP/s

Effi =
fFfipse Numpgp X Freq

®)

As shown in Table 4, ScaleHLS reaches a better DSP efficiency,
while saves hundreds of human hours for designing the dedicated
hardware IPs. These experimental results demonstrate that ScaleHLS
can achieve fruitful productivity improvement on accelerating large
and complicated algorithms.

7.2.3  Ablation Study. To quantify the speedup contributed by each
of the three optimizations (directive, loop, and graph) and evaluate
the proposed multi-level optimization methodology, we perform
a set of ablation studies and the results are shown in Figure 7. We
can observe that the directive (D), loop (L7), and graph (G7) op-
timizations contribute 1.8, 130.9X, and 10.3X average speedups
on the three DNN benchmarks, respectively, demonstrating the
effectiveness of our multi-level optimization methodology. Note
that because the effect of array partitioning will become larger as
the loop unrolling factors increase, the actual speedup of direc-
tive optimizations are larger than 1.8X when combining with loop
optimizations. ScaleHLS allows to tune the optimization level n
between 1 to 7 for loop and graph optimizations, which enables
to explore the tradeoff space between area and speedup. Larger n



indicates larger loop unrolling factor and finer dataflow granularity
for loop and graph optimizations, respectively, leading to higher
throughput and more on-chip resources utilization. By comparing
the speedup achieved by G1 + L7 + D and G7 + L7 + D, we can
observe that the speedup margin between G1 and G7 is 2.1X on
average. Similarly, the speedup margin between L1 and L7 is 64.0X
on average.

8 CONCLUSION AND FUTURE WORKS

This paper presents ScaleHLS, an MLIR-based HLS compilation flow,
which features multi-level representation and optimization of HLS
designs and supports a transform and analysis library dedicated
for HLS. ScaleHLS enables an end-to-end compilation pipeline by
providing an HLS C front-end and a C/C++ emission back-end. An
automated and extensible DSE engine is developed to search for
optimal solutions in the multi-dimensional design spaces. Experi-
mental results demonstrate that ScaleHLS has strong scalability to
optimize large-scale and sophisticated HLS designs and achieves
significant performance and productivity improvements on a set of
benchmarks. In addition, ScaleHLS is an open-source project and
we hope ScaleHLS could become an advanced open infrastructure
of new HLS research in the future and boost the innovation in this
area to face new challenges.

ScaleHLS leaves several directions for future works: (1) IP inte-
gration. The graph-level IR of ScaleHLS opens the opportunity to
integrate existing HLS IPs into the compilation flow, making the
integration and optimization of HLS IPs an interesting research
direction. (2) DSE algorithms. The transform and analysis library
provided by ScaleHLS enables a large opportunity to investigate the
optimization algorithms for the multi-dimensional DSE problem of
HLS. (3) Machine-learning based QoR estimation. Machine-learning
methods can potentially capture more features from the hierarchi-
cal IR of ScaleHLS, thereby generating better estimation results
than the analytical model-based methods. (4) Generate RTL code
within MLIR. Currently ScaleHLS leverages external HLS tools for
generating the RTL code. However, a direct RTL code generation
can keep more information from the higher level IR and exploit the
RTL-level representation and optimization (CIRCT [7]) to further
improve the quality of the accelerator designs.
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