UNIVERSITY OF

MICHIGAN

Removing Impediments to Loop Fusion
Through Code Transformations

Bob Blainey, Christopher Barton, José Nelson Amaral

Presented by Mabel Chan, Kevin Wang, James Wu (Group 26)




What is loop fusion?

e Optimization technique that takes several loops and
combines them into a single large loop
® Decreases the number of loop branches executed
Creates opportunities for data reuse
® Generally we:
o Scan the code to find pairs of normalized loops that can
be fused
o Greedily fuse them

IV UNIVERSITY OF MICHIGAN



Requirements for loop fusion

Are control equivalent

Have no dependencies

Have conforming bounds *

No intervening code between the loops *

*: these conditions are loosened in the proposed algorithm

IV UNIVERSITY OF MICHIGAN



Negative Effects of loop fusion

Increased code size

Increased register pressure within a loop

Potential over-committing of hardware resources
Formation of loops with more complex control flow

IV UNIVERSITY OF MICHIGAN



Loop Fusion Basic Example

for (int 1i for (int 1i
} ﬁ

for (int i

Problem: Loop fusion takes place under very specific conditions

IV UNIVERSITY OF MICHIGAN



Overview

e Code often has only small sets of loops that meet general
code fusion requirements
® Lays out new algorithms to make code more fuseable
o Eliminating conditions that prevent loop fusion
o Generating maximal fusion -> increases scope of later
transformations
® Focuses on IBM XL compiler suite
e Significant improvements to number of fused loops as a
result of new algorithms

IV UNIVERSITY OF MICHIGAN



Conventional Loop Optimizations

Node
Splitting

Aggressive Copy Dead Store
Propagation Elimination

Loop Unroll
and Jam

—=1 Loop Fusion |3

I

> Scalar > ‘ Lfmp' > Loop. > Loop Unroll >
Expansion Distribution Permutation and Jam

e Optimization transformations in conventional XL compilers
e Paper’s innovations focuses on loop fusion
o Increases scope for optimization in the loop distributor

JMI UNIVERSITY OF MICHIGAN



LoorFusioN
1. foreach NestLevel N; from outermost to innermost
2. Gather identically control dependent loops in N;
into LoopSets
3. foreach LoopSet S;
4. Remove loops non-eligible for fusion from
Si
5. FusedLoops < True
6 Direction « Forward
7 while FusedLoops = True
8. if |S:i] < 2
9. break
10. endif
11. Build Control Flow Graph
12. Compute Dominance Relation
13. FusedLoops =
LoopFusionPass(.S; ,Direction)
14. if Direction = Forward
15. Direction = Reverse
16. else
17. Direction = Forward
18. endif
19. endfor
20. end while
21. endfor

Loop Fusion Algorithm

® New loop fusion algorithm is the
main innovation of the paper
® Creates opportunities for loop

fusion:
o Can fuse loops that don’t
conform

o Can fuse loops with
intervening code
® Note: loops are normalized

JMI UNIVERSITY OF MICHIGAN



Loop Fusion Pass Example

doil =1, n
a(il) = a(il) * ki
end do
do i2 = 1, n-1
d(i2) = a(i2) - b(i2+1) * k2
end do

ds = 0.0
do 13 =1,
=ds + d(13)

end do
if (n<m)

c(n-2) =n
else

c(n-2) =m

do i4 = 1, n-2
b(id) = a(id) + b(i4) / c(id)
end do

do ib = 1= n
if (i5 < n-1)

a(ib) = a(ib) * k1

d(ib) = a(ib) - b(ib+1) * k2
else
a(ib) = a(ib) * ki
end do
L ds =0 ]

0
1
ds = ds + d(i3)

if (n<m)
c(n-2) = n
else
c(n-2) =m

do i4 = 1, n-2
b(i4) = a(i4) + b(id) / c(id)
end do

ds = 0.0

if (n<m)
c(n-2)

else
c(n-2) = m

]
-]

do iS5 =1, n
if (i5 < n-1)
a(ib) = a(ib) * ki
d(ib) a(ib) - b(ib+1) * k2
else
a(is)
end do
doi3 =1, m
ds = ds + d(i3)
end do
do i4 =
b(id)
end do

a(is) * ki1

i, n-2
= a(i4) + b(i4) / c(4d)

(b) Fortran 77 Code

JMI UNIVERSITY OF MICHIGAN

(a) After Fusing i1 and i2 into i5

(b) After moving intervening code up

Fig. 6. Completing first forward pass in running example




11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.

JMI UNIVERSITY OF MICHIGAN

=}

Loop Fusion Algorithm

Loop through each nest level:
Partitions all loops into sets of
loops that are control equivalent
Loop through each loop set:
Remove loops non-eligible for
fusion from the set

PFUSION
foreach NestLevel N; from outermost to innermost
Gather identically control dependent loops in N;
into LoopSets
foreach LoopSet S;
Remove loops non-eligible for fusion fron
Si
FusedLoops < True
Direction « Forward
while FusedLoops = True
if |S;| < 2
break
endif
Build Control Flow Graph
Compute Dominance Relation
Fusedl 00ps —
LoopFusionPass(.S; ,Direction)
if Direction = Forward
Direction = Reverse
else
Direction = Forward
endif
endfor
end while
endfor

Alternate forward and reverse
passes over the set to fuse loops
until no more loops can be fused
CFG and dominance relations
recomputed in each iteration




Lo

T

—~ e
o C

=1

10.

YPFUSIONPASS(S;. Direction)

FusedLoops = False
foreach pair of loops L; and Ly in S;, such that L;

dominates Ly, in Direction

if INTERVENINGCODE(L;, L) = True and

ISINTERVENINGCODEMOVABLE(L;, Li) = False

continue

endif

o — [K(Ly) — K(Lg)|

if L; and L, are non-conforming and
o cannot be determined at compile time
continue

endif

if DependenceDistance(L;, L) <0
continue

endif

Loop Fusion Algorithm

Iterate through loop pairs in
dominance order if forward, etc

MOVEINTERVENINGCODE(L;, Ly, Direction)

if INTERVENINGCODE(L;, Li) = False
if L; and L; are non-conforming
Ly, «— FuseWithGuard(L;, L)
else
L,, < Fuse(L;, L)
endif
Si — SiULny — {L;j, Ly}
FusedLoops = True

If the loops aren’t adjacent and
intervening code can’t be moved;
or the loops don’t conform and
the difference btwn. their upper
bounds can’t be determined; or
there’s neg. dependence distance
between the loops; can’t fuse

Move intervening code

5. endfor
). return FusedLoops

else
continue
endif

Fuse contorming loops, fuse
non-conforming loops with guard




Results

80 - 8 1 =
70 6
@ Original Loop
60 Fuson 4 —
| + MIC
2 W_ |
O + guard -
5 I
0 +MIC +guard g 0 —%WTDA:L-.;TM}ITI”|"Lu| vn‘ﬂv L | vu-u_nn.n‘ w I—
m 4 MPIC +guard g S 8 © % o o B o H - r
+iteration [ 2 12— = T 3 © 8 b P =% 5= =y
& | ¥ ° 5§ E8& > ¢ % F s 835 9 E >
§_4 = e
0
°\'6 1 [a+mc
B +guard
-8 Tlosme + guard
o 0 + MPIC +
2 % € 8 3§9¥N95n~z-ﬂ 8 10-_|Erd+hla(nn
® @ T 8 2 8 B8 3 > 9
Be g3 ggles =
e @ B LA - - -12 -
Benchmark s Benchmark

Number of loops fused with each version

Execution times for selected benchmarks
of the compiler

JMI UNIVERSITY OF MICHIGAN



Conclusion

® Strengths
o Increased number of loops fused
o Enables technology for optimization to take place later in this compiler
framework, ie, loop distribution
o Increase granularity of parallelism and minimize loop synchronization
® Weaknesses
o Inhibit software pipelining
® Future Works
o  Removing restrictions that all loops that are fused must be control
equivalent
o  Variation of index set splitting to remove control flow splits
o Loop Dependence Graph to solve data cache performance

IV UNIVERSITY OF MICHIGAN



IV UNIVERSITY OF MICHIGAN




