
Title Slide 2
Removing Impediments to Loop Fusion

Through Code Transformations

Bob Blainey, Christopher Barton, José Nelson Amaral
Presented by Mabel Chan, Kevin Wang, James Wu (Group 26)

What is loop fusion?

● Optimization technique that takes several loops and
combines them into a single large loop

● Decreases the number of loop branches executed
● Creates opportunities for data reuse
● Generally we:

○ Scan the code to find pairs of normalized loops that can
be fused

○ Greedily fuse them

Requirements for loop fusion

● Are control equivalent
● Have no dependencies
● Have conforming bounds *
● No intervening code between the loops *

*: these conditions are loosened in the proposed algorithm

Negative Effects of loop fusion

● Increased code size
● Increased register pressure within a loop
● Potential over-committing of hardware resources
● Formation of loops with more complex control flow

Loop Fusion Basic Example

for (int i = 0; i < 300; i++) {

 a[i] = a[i] + 3;

}

for (int i = 0; i < 300; i++) {

 b[i] = b[i] + 4;

}

for (int i = 0; i < 300; i++) {

 a[i] = a[i] + 3;

 b[i] = b[i] + 4;

}

Problem: Loop fusion takes place under very specific conditions

Overview

● Code often has only small sets of loops that meet general
code fusion requirements

● Lays out new algorithms to make code more fuseable
○ Eliminating conditions that prevent loop fusion
○ Generating maximal fusion -> increases scope of later

transformations
● Focuses on IBM XL compiler suite
● Significant improvements to number of fused loops as a

result of new algorithms

Conventional Loop Optimizations

● Optimization transformations in conventional XL compilers
● Paper’s innovations focuses on loop fusion

○ Increases scope for optimization in the loop distributor

● New loop fusion algorithm is the
main innovation of the paper

● Creates opportunities for loop
fusion:
○ Can fuse loops that don’t

conform
○ Can fuse loops with

intervening code
● Note: loops are normalized

Loop Fusion Algorithm

Loop Fusion Pass Example

● Loop through each nest level:
● Partitions all loops into sets of

loops that are control equivalent
● Loop through each loop set:
● Remove loops non-eligible for

fusion from the set

● Alternate forward and reverse
passes over the set to fuse loops
until no more loops can be fused

● CFG and dominance relations
recomputed in each iteration

Loop Fusion Algorithm

● Iterate through loop pairs in
dominance order if forward, etc

● If the loops aren’t adjacent and
intervening code can’t be moved;
or the loops don’t conform and
the difference btwn. their upper
bounds can’t be determined; or
there’s neg. dependence distance
between the loops; can’t fuse

● Move intervening code
● Fuse conforming loops, fuse

non-conforming loops with guard

Loop Fusion Algorithm

Results

Number of loops fused with each version
of the compiler

Execution times for selected benchmarks

Conclusion
● Strengths

○ Increased number of loops fused
○ Enables technology for optimization to take place later in this compiler

framework, ie, loop distribution
○ Increase granularity of parallelism and minimize loop synchronization

● Weaknesses
○ Inhibit software pipelining

● Future Works
○ Removing restrictions that all loops that are fused must be control

equivalent
○ Variation of index set splitting to remove control flow splits
○ Loop Dependence Graph to solve data cache performance

Q&A

