Sculptor: Flexible
Approximation with
Selective Dynamic
Loop Perforation

Paper Authors: Shikai Li, Sunghyun Park, Scott Mahlke

Presenters: Rushil Kasetty, Dachuan Yan, Edward Zhong

Traditional Loop Perforation

e Problem: Loops use a lot of resources to execute every iteration

e Solution: Don’t execute every iteration!
o Many algorithms are already approximations (e.g. ML algorithms)
o Some computational patterns tolerate loop perforation well (e.g. argmin)
o Maintain accuracy despite perforation

e Primary Goal: Skip as much work as possible within an accuracy bound

for (int 1 = 0; i < N; i++) {
// do things
i =1 + skip_factor;

for (int i = 0; 1 < N; i++) {
// do things -

¥

Traditional Loop Perforation Algorithm

Let P be a set containing pairs of <L, r>, where lis a loop and r is a perforation rate

a. Pisasetof possible loop perforations

For each <L, r>, remove it from P if the program behaves unacceptably (crashes,

infinite loop, out of bounds read/write, etc.)

Find S € P, such that S maximizes performance relative to an accuracy bound
a. Sisthe set of loop perforations that will actually be applied
b. Pareto-optimality - increasing accuracy would decrease performance or vice versa

c. Can be done exhaustively, or heuristically

Traditional Loop Perforation is Inflexible

e Tradition loop perforation is often too inflexible and coarse-grained
o In skipped iterations, all instructions must be skipped
o lterations must be skipped at a consistent rate
e T[heme: Traditional Loop perforation does not account for what is important in a loop!

1.0 0.25

0.9

0.8 0.20 ‘

0.7

6 -
£06 S o.151 p |1
- w

a0.5 ‘:;,
504 b=
o 80'1

0.3 il I

I I | |

0.2 0.05 il ‘,'

0.1 ‘ | " e
0.0 0.00 : ‘

0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700 800 900
Instructions Iterations

(a) Skipping Different Instructions in Hotspot (b) Skipping Different Iterations in Bodytrack

Selective Dynamic Loop Perforation

Iterations R

Executed
. Dynamic
Instruction

Iterations -

Selective Loop Perforation: intelligently
select a subset of instructions to skip

Instructions

Dynamic Loop Perforation: intelligently
choose which iterations to skip

Instructions

Skipped
' Dynamic
Iterations > Instruction

Selective Dynamic Loop Perforation:
combine both methods

Instructions

Selective Perforation

e Instruction Level
o Selection Stage
o Expansion Stage
o Transformation Stage

Selection Stage

Filters

Choose
Candidate
Instructions

Memory
Error
filtering

Profiling
Filtering

Expansion Stage load r2, r1

\ -

oY U1 d W DN

0/ .

(load r4, r3
load r2, rl load r5, r4

for.body: '

load r4, r3 : r///}
load r5, r4 mul r6, r2, r5 ‘
mul r6, r2, rb5 .
add r/7, ro6, rb5

'\ add r7, r6, r5

¢ L *
L] - - L] L] L] —

Expansion Stage load r2, r1

L.

-
(load r4, r3

o U1 x W N

load r2, rl
for.body:
load r4, r3 :
load rb5, r4 mul r6, r2, r5
mul r6, r2, rb5

add r7, ro6, rb5
add r7, r6, r5

. *
— [[" [- —

ExpanS|0n Stage load r2, r1

ke

Pr

(

o Ul W N

load r2, ril
for.body:

load r4, r3

load ra, r4

mul r6, rzl 25

add r7, r6, r5

add r7, r6, r5

\ /

\ a - s - L] - —

Expansion Stage

load r2, r1

L.

P

(

o U1 x W N

load r2, rl
for.body:

load r4, r3

load rb5, ri4

mul r6, r2, rb5

add r/, ro6, rb5

Transformation Stage

e |Intuitive - Insert branches around every instruction
that can be skipped

e Unswitching - Create two version of loop, perforated
and non-perforated

e Unrolling - Combine unswitching with some loop
unrolling for the perforated loop

Dynamic Perforation

e Dynamic Rate - Change perforation rate depending on

circumstances
o Active Function Call Based
o Active Loop lteration Based

Dynamic Rate

O J o Ul WK

R e
W N R O W

int kernel (DataType data) {
iterative_updates (data.primary) ;
iterative_updates (data.secondary) ;
return combine (data) ;
}
void iterative_updates (intx k) {
for(int 1tr=0; 1tr<100; itr++)
single_update (k) ;
}
void single_update (int*x k) {
for (int 1dx=0; 1idx<100; 1idx++)
k[idx] = compute(k[idx]);

Results

Both selective and dynamic perforation provide more speedup than traditional
A combination of selective and dynamic perforation provides the best speedup
Results evaluated on performance speedup and not the usability of the end result
Expensive calculations are skipped while update code is kept to maintain cache

locality and prevent memory errors

Traditional vs. Selective Dynamic

Q94

H
Traditional Perforation Traditional Perforation
8 1mmm Selective Dynamic Perforation 8 1mmm Selective Dynamic Perforation
71 71
6 61
2 =1
397 S99
g 5
Q41 341
n n
1 3
24
J J ol
N . 0
» Q} (\‘7 o & B O
‘b & ’b & IS P Q @(‘ & ,.1_‘0 &2
S & N ™ © & *Q (\(\ g & o o + 3
&8 2 o x & Q o C ~\ > o - > S *
G & (¥ Ve - & > &t G S ® R S > &
RO & o ¢ & & S g
&* Q g

(a) 5% Error Budget (b) 10% Error Budget

Individual Techniques vs. Combined

. —— 9 9 — ——
Selective Perforation Dynamic Perforation
8{mmm Selective Dynamic Perforation 8{mmm Sclective Dynamic Perforation
71 71
6 6
o g
33 ‘ 85
L]]
a4 24
n ‘ wn
3 “ 3
2‘ 21
1 f‘ l 1
o > 0 < ™
& N N © & & & & N © >
2 c, X 2" e 5 PG & -0 v e
\\ & (\ & & N » + & o < (\ N & W ° Yy &
& @ Q\O .{_\" & Q & & @ QSJ ,{_\" & Q &
& L) Y & L) ¥ ‘9
&° « & «
3 2
Figure 7: Selective Perforation Performance Speedup with Figure 8: Dynamic Perforation Performance Speedup with

10% Error Budget 10% Error Budget

Pros

Captures differences between instructions and iterations
Provides speedups of 2.89x and 4.07x on average with 5% and 10% error budget
New techniques are compatible with most prior approximation systems

Applicable in many domains including financial analysis, and media processing

Cons

e Naive implementation of selective perforation can increase performance overhead
o Addressed with unswitching and unrolling optimizations
e Non-uniform distribution of executed iterations may increase output errors

o Addressed with dynamic start iteration

Takeaways

e The effectiveness of selective dynamic loop perforation is application dependent
e Selective and dynamic loop perforation offer more fine-grain tuning than traditional loop
perforation
o Selective Dynamic Speedup: 2.89x and 4.07x speedup with 5% and 10% error

o Traditional Speedup: 1.47x and 1.93x speedup with 5% and 10% error

Questions?

