
Sculptor: Flexible
Approximation with
Selective Dynamic
Loop Perforation

Paper Authors: Shikai Li, Sunghyun Park, Scott Mahlke

Presenters: Rushil Kasetty, Dachuan Yan, Edward Zhong

Traditional Loop Perforation

● Problem: Loops use a lot of resources to execute every iteration

● Solution: Don’t execute every iteration!
○ Many algorithms are already approximations (e.g. ML algorithms)
○ Some computational patterns tolerate loop perforation well (e.g. argmin)
○ Maintain accuracy despite perforation

● Primary Goal: Skip as much work as possible within an accuracy bound

Traditional Loop Perforation Algorithm

1. Let P be a set containing pairs of <l, r>, where l is a loop and r is a perforation rate
a. P is a set of possible loop perforations

2. For each <l, r>, remove it from P if the program behaves unacceptably (crashes,
infinite loop, out of bounds read/write, etc.)

3. Find S ⊆ P, such that S maximizes performance relative to an accuracy bound
a. S is the set of loop perforations that will actually be applied
b. Pareto-optimality - increasing accuracy would decrease performance or vice versa
c. Can be done exhaustively, or heuristically

Traditional Loop Perforation is Inflexible

● Tradition loop perforation is often too inflexible and coarse-grained
○ In skipped iterations, all instructions must be skipped
○ Iterations must be skipped at a consistent rate

● Theme: Traditional Loop perforation does not account for what is important in a loop!

Selective Dynamic Loop Perforation

● Selective Loop Perforation: intelligently
select a subset of instructions to skip

● Dynamic Loop Perforation: intelligently
choose which iterations to skip

● Selective Dynamic Loop Perforation:
combine both methods

Selective Perforation

● Instruction Level
○ Selection Stage
○ Expansion Stage
○ Transformation Stage

Selection Stage

Choose
Candidate
Instructions

Filters

Memory
Error
filtering

Profiling
Filtering

Expansion Stage

Expansion Stage

Expansion Stage

Expansion Stage

Transformation Stage

● Intuitive - Insert branches around every instruction
that can be skipped

● Unswitching - Create two version of loop, perforated
and non-perforated

● Unrolling - Combine unswitching with some loop
unrolling for the perforated loop

Dynamic Perforation

● Dynamic Rate - Change perforation rate depending on
circumstances
○ Active Function Call Based
○ Active Loop Iteration Based

Dynamic Rate

Results

● Both selective and dynamic perforation provide more speedup than traditional

● A combination of selective and dynamic perforation provides the best speedup

● Results evaluated on performance speedup and not the usability of the end result

● Expensive calculations are skipped while update code is kept to maintain cache

locality and prevent memory errors

Traditional vs. Selective Dynamic

Individual Techniques vs. Combined

Pros

● Captures differences between instructions and iterations

● Provides speedups of 2.89x and 4.07x on average with 5% and 10% error budget

● New techniques are compatible with most prior approximation systems

● Applicable in many domains including financial analysis, and media processing

Cons

● Naive implementation of selective perforation can increase performance overhead

○ Addressed with unswitching and unrolling optimizations

● Non-uniform distribution of executed iterations may increase output errors

○ Addressed with dynamic start iteration

Takeaways

● The effectiveness of selective dynamic loop perforation is application dependent

● Selective and dynamic loop perforation offer more fine-grain tuning than traditional loop

perforation

○ Selective Dynamic Speedup: 2.89x and 4.07x speedup with 5% and 10% error

○ Traditional Speedup: 1.47x and 1.93x speedup with 5% and 10% error

Questions?

