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Background

e \ector instructions: multiple basic operations simultaneously

rl = 1d(MEM[O0]) — vrl = 1dV(MEM[O0,4,8..])

r2 = add(rl, 1) —> vr2 = addv(vrl, 1)

e Loops: a common target for “vectorization”
o Vectorization Factor (VF): How many instructions to pack together from
different iterations
o Interleaving Factor (IF): Stride of the memory accesses in the packed
instructions



int32 t al[l;

VF and IF for (int i
a[i*3]++; <

= 0; i < 100; ++i)

Interleaving

Unvectorized

Factor (IF) =3
Vectorized

temp0 = 1d(a[0])
temp0 = add(tempO, 1)
stur (a[0], tempO)

temp99 = 1d(a[99])
temp99 = add(temp99, 1)
stur (a[99], temp99)

temp0 4 = 1dv(a[0,3,6,9])
temp0 4 = addv(tempO 4, 1)
sturv(a[0,3,6,9], tempO 4)

temp96 99 = 1dv(a[96*3...99*3])
temp96 99 = addv(temp96 99, 1)

sturv(a[96*3...99*3], temp96 99)

100 iterations

Vectorization

25 iterations Factor (VF) = 4

3




Motivation

e T[raditionally these hyperparameters are tuned using heuristics or expert hand

tuning

e This leaves a ton of room for improvement
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Figure 2. Performance of brute-force search of LLVM’s vec-
torizer test suite, normalized to the baseline cost model im-
plemented in LLVM.
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Figure 5. The distribution of optimal VF and IF with brute-
force search for different programs in the dataset.
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https://lwww.javatpoint.com/supervised-machine-learning
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https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071?gi=5c84c0ee5db



Training Dataset

e NNs require a lot of training data!

e Synthetic dataset of more than 10,000 programs
o Loops only!

e Used generators from LLVM Vectorization test suite

e Reduced noise in the code embeddings
o Faster convergence



Source
Code Loops
(Text)

Code Embedding

code2vec

>

340

Input to Model

>

code2vec is a pre-trained neural network

Deep Neural
Network




State: Loop embedding (vector)

Method Action: (VF, IF) pair
Code
code2vec - Embedding
Embedding (Stato)
parameter 0 _
‘ Gradient
Runtime Leaming
(Reward) Agent

Source Code

New Vectorization Factors

Figure 3 from the paper.
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Method

int vec[512] __attribute__ ((aligned(16))); int vec[512] __attribute__((aligned(16)));
__attribute__ ((noinline)) __attribute__ ((noinline))
int examplel () { int examplel () {
int sum = 0; int sum = 0;
for(int i = 0; i<512; i++){ #pragma clang loop vectorize_width(64)\\
sum += vec[i]xvec[i]; interleave_count (8)
for(int i = 0; i<512; i++){
sum += vec[i]*vec[i];

}

return sum;

} }

return sum;




Results
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RL outperformed the
baseline by 2.67x on
average

Only 3% worse than
that of the brute-force
search.

Half the training time
vs FCNN

Figure 9 from the paper.
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Results
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Figure 11 from the paper.



Commentary

Strengths

e The evaluation was quite thorough.
o They highlighted well where their RL model did not do better than other models.

e Good code reproducibility. They have a step by step checklist on their paper
and a well documented repo.
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Commentary

Weaknesses

Doesn't address
getting same
accuracies in
different models
Code2vec
embedding may not
capture all important
features about the
loop

algorithm
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Figure 8. The performance of the proposed vectorizer that can be configured to use NNS, random search, decision trees, and
RL compared to brute-force search, Polly and the baseline cost model. The performance is normalized to the baseline.
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