NeuroVectorizer: End-to-End
Vectorization with Deep
Reinforcement Learning

Paper by Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke,
Yakun Sophia Shao, Krste Asanovic, lon Stoica

Presentation by Reuben Gutmann, K. Faryab Haye, Ben
Manley, Atreya Tata

Background

e \ector instructions: multiple basic operations simultaneously

rl = 1d(MEM[O0]) — vrl = 1dV(MEM[O0,4,8..])

r2 = add(rl, 1) —> vr2 = addv(vrl, 1)

e Loops: a common target for “vectorization”
o Vectorization Factor (VF): How many instructions to pack together from
different iterations
o Interleaving Factor (IF): Stride of the memory accesses in the packed
instructions

int32 t al[l;

VF and IF for (int i
a[i*3]++; <

= 0; i < 100; ++i)

Interleaving

Unvectorized

Factor (IF) =3
Vectorized

temp0 = 1d(a[0])
temp0 = add(tempO, 1)
stur (a[0], tempO)

temp99 = 1d(a[99])
temp99 = add(temp99, 1)
stur (a[99], temp99)

temp0 4 = 1dv(a[0,3,6,9])
temp0 4 = addv(tempO 4, 1)
sturv(a[0,3,6,9], tempO 4)

temp96 99 = 1dv(a[96*3...99*3])
temp96 99 = addv(temp96 99, 1)

sturv(a[96*3...99*3], temp96 99)

100 iterations

Vectorization

25 iterations Factor (VF) = 4

3

Motivation

e T[raditionally these hyperparameters are tuned using heuristics or expert hand

tuning

e This leaves a ton of room for improvement

Normalized Performance
COO0O0O0—~A—~=
ONPR~AOOOODON D

Figure 2. Performance of brute-force search of LLVM’s vec-
torizer test suite, normalized to the baseline cost model im-
plemented in LLVM.

10

PN TN AN AN AN TN AN TN SN AN AN AN SN AN N AN o~ o~

Percentage of Programs (%)

(VF,IF)

Figure 5. The distribution of optimal VF and IF with brute-
force search for different programs in the dataset.

ML Refresher

Supervised Learning:

Labeled Data
O Prediction Square
OO |:| s'o_r—* [] ~d
AN T,
A A Triangle
Model Training

Lables

O [:] Test Data

Hexagon Square
Triangle

https://lwww.javatpoint.com/supervised-machine-learning

Reinforcement Learning:

internal state “Nreward

X

environment

action §'I
—p

learning rate o
inverse temperature
discount rate y

observation

https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071?gi=5c84c0ee5db

Training Dataset

e NNs require a lot of training data!

e Synthetic dataset of more than 10,000 programs
o Loops only!

e Used generators from LLVM Vectorization test suite

e Reduced noise in the code embeddings
o Faster convergence

Source
Code Loops
(Text)

Code Embedding

code2vec

>

340

Input to Model

>

code2vec is a pre-trained neural network

Deep Neural
Network

State: Loop embedding (vector)

Method Action: (VF, IF) pair
Code
code2vec - Embedding
Embedding (Stato)
parameter 0 _
‘ Gradient
Runtime Leaming
(Reward) Agent

Source Code

New Vectorization Factors

Figure 3 from the paper.
8

Method

int vec[512] __attribute__ ((aligned(16))); int vec[512] __attribute__((aligned(16)));
__attribute__ ((noinline)) __attribute__ ((noinline))
int examplel () { int examplel () {
int sum = 0; int sum = 0;
for(int i = 0; i<512; i++){ #pragma clang loop vectorize_width(64)\\
sum += vec[i]xvec[i]; interleave_count (8)
for(int i = 0; i<512; i++){
sum += vec[i]*vec[i];

}

return sum;

} }

return sum;

Results

N N N
N N (@)]

Normalized Average Performance
N
o

v
©

—— supervisefll FCNN
= RL

0

10000 20000 30000 40000 50000 60000 70800 80000
Number of Cofhpilations (Samples)

RL outperformed the
baseline by 2.67x on
average

Only 3% worse than
that of the brute-force
search.

Half the training time
vs FCNN

Figure 9 from the paper.
10

Results

algorithm
Q 1.6- mm baseline

Method works well on
never-before-seen
benchmarks

jpeg fit stringsearch lame gsm Geom
Benchmark

Figure 11 from the paper.

Commentary

Strengths

e The evaluation was quite thorough.
o They highlighted well where their RL model did not do better than other models.

e Good code reproducibility. They have a step by step checklist on their paper
and a well documented repo.

12

Commentary

Weaknesses

Doesn't address
getting same
accuracies in
different models
Code2vec
embedding may not
capture all important
features about the
loop

algorithm
== random
wm polly
= free
== NNS
mm supervised FCNN
== RL
w= brute-force

S

Normalized Performance

Benchmark

Figure 8. The performance of the proposed vectorizer that can be configured to use NNS, random search, decision trees, and
RL compared to brute-force search, Polly and the baseline cost model. The performance is normalized to the baseline.

13

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica. 2020.
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Optimization (CGO '20), February 22§26, 2020,
San Diego, CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/ 3368826.3377928 b

