
Managing performance vs.
accuracy trade-offs with loop
perforation
Authors: Stelios Sidiroglou Sasa Misailovic Henry Hoffmann

Group 7: Max Froehlich, Murali Mohan, Austin Ye

● Processing large quantities of data is often done in loops
● Improvements to these loops can have a huge impact for these applications
● Depending on the context, large loops such as these also don’t have strict

accuracy requirements
● This is the perfect scenario for some accuracy/performance tradeoff

optimizations

Motivation

Applications

● Image/video processing and lossy encoding
● Optimization/simulated annealing
● Numerical methods

Loop perforation transforms loops to execute a subset of their iterations

Goal: reduce the amount of computational work (and therefore the amount of time
and/or other resources such as power)

Perforation rate, r: The percentage of iterations that we want to skip

In essence, we perform every nth iteration:

Loop perforation basics

Accuracy metric of loop perforation

 = weighted mean scaled difference between the output abstraction components
from the original program and the perforated program

 = output abstraction components from the original program

 = output abstraction components from the perforated program

 = weight that captures the relative importance of each component

 → 0 means our perforation is better

Algorithm overview

Criticality Testing

Filter out critical loops whose
perforation causes the
computation to produce
unacceptable results, crash, etc.

Perforation Space Exploration

Exploration of the space of variants
generated

Criticality testing

Input:

Set of
candidate
loops, L

Set of
perforation

rates, R

Perforate
each L on

each R,
then run on

training
inputs Output:

Tunable loops

No
performance

increase,
errors, etc.

Perforation space exploration

Input:
Tunable

loops

Exhaustive
Exploration
Algorithm

Greedy
Exploration
Algorithm

Algorithm
maintains
set S of

loop,
perforation
rate pairs

When to use loop perforation?
Applications that have some flexibility to change the result that they produce

Performance enhancement

Energy savings

New platforms or contexts

Dynamic adaptation

Developer insight

Reasons to use loop
perforation

Results

● Generally, most of the loops in a program are not perforable
○ Fail one or more of the criticality tests (memory issues, unacceptable accuracy, etc.)

Results

● Performance gains are highly dependent on use case - some use cases didn’t
get much improvements while others got a 5x improvement in performance.

● Accuracy bounds didn’t actually affect performance for a lot of use cases, but a
few had great speedups by relaxing accuracy requirements

● Speedups generalize well across inputs not seen before

Commentary

● Very good introduction to loop perforation
● Training time and other practical limitations are not in the focus of the paper
● Accuracy in general case isn’t thoroughly explored, especially as downsides

relate to different contexts
● This especially leaves room for us to explore how loop perforation would

extend to image operations

Questions?

