“Evolutionary Optimization of
Compiler Flag Selection by Learning
and Exploiting Flags Interactions”

Paper by: Unai Garciarena, Roberto Santana
Presentation by: Amanda Yao, Batuhan Akcay, Kevin Rodriguez-Siu

Agenda

e |ntro/Motivation
o Why the paper is relevant to the class
o Optimization flags
e GA, UMDA, EDA
o Assumptions on the modeling of the problem
o Basic workflow
o How to use them for optimization flags

e Experiments
o Benchmark dataset being used
o Hardware setup
o Comparison of 3 methods on different programs
o Comparison of 3 types of operations in one program for EDA

e Conclusions and Future Works
o Comments
o Questions

Introduction: lterative Compilation

e [Executable code can be significantly optimized at the time of compilation, to
make significant gains in terms of time, energy, memory, etc. needed to solve a
problem.

e Is it possible to use the information of this optimization to our advantage?

o Modify the search space of our operations
o Consider the statistical regularities present in the best solutions!

e Iterative compilation: Explore the space of possible optimization sequences
until an acceptable solution is found.

e In this paper, the selection of a proper combination of compilation flags is
analyzed in this way.

Why Compilation Flags?

e Compilers provide a high flexibility for code quality by having a large set of
flags to balance different criteria. But searching all over these compilation
options manually is prohibitive due to the big quantity of terms = Genetic
Algorithms

e We also need to consider the relationship and interactions between different
flags! The presence of one flag might make another flag irrelevant, etc.

e Not only we need to search through a large space, but also this space is
subject to relationships between variables.

e What if we try to capture them using probabilistic models?

e Proposal: Estimation of Distribution Algorithms (EDA)

A Basic Workflow for an Evolutionary Algorithm: Classical

Algorithm 1: Evolutionary Algorithm

Set t € 0. Generate an initial population De
of N) @ random solutions.

2 do{
Select from population Dt a set Dst of k
3 : . : :
< N points using truncation selection.
Generate a new population Dt+1 from Dst
4 : : :
applying the variator operator of choice.
5 t & t+1

6 } until Termination Criteria are met.

We also need to consider:

Nature of the
variables in the
population = Binary
(a flag is either used
or not).

How we measure if a
good solution has
been found? =
Fitness function and
performance gain.

Estimation of Distribution Algorithms - EDA

Evolutionary Algorithms that learn a probabilistic model of the promising
solutions in order to capture a description of relevant patterns shared by these
solutions.

Probabilistic Graphical Model (PGM) can store interactions between variables
as dependency relationships and marginal probabilistic distributions.

Will this model be able to capture information about the interactions between
compiler flags?

Dependency
Based Tree-EDA

Estimation of Distribution Algorithms (EDA)

s —

What do these EDA models represent?

Discrete random variables: X = (X1,...,X,)
Assigment to variables: x = (z1,...,Z,)
Marginal probability for X; = x; : p(xr)
Conditional probability for X; = x; given X; = z; : p(x;|z;)
Probability distribution conformal with a

tree. l
pr(x) =]:[p(wilpa(wi))

Assume there are no parents?

l
pu(x) = [[p(=:)
i=1

Assumptions about the type of interaction
between variables:

e UMDA assumes independency.
e Tree-EDA learns pair-wise
dependency between variables.

If the problem has no interactions or they
are weak enough, UMDA does good.
If pairwise dependencies are essential for
the problem, Tree-EDA can outperform
other methods.

How important are the relationships
between compiler flags?

Benchmark Dataset

Mibench:
e 5 domains: automotive, consumer, network, office, security, telecomm
e Small and large datasets
e Used automotive domain Auto./Industrial
basicmath
Experiment Setup gsort
bitcount
e GCC 58 flags susan (smoothing)
e Truncation Selection T=0.5 susan (edges) ‘
e Population N=100, max # generation n_gen=50 susan (corners)
e Programmed in C++
e Hardware: i/ Pentium processor

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

| Auto./Industrial |

basicmath
gsort
bitcount

susan (smoothing)
susan (edges)
susan (corners)

Table 1: Mibench instances used for the experimental frame-

work.

double rad2deg(double rad)

{
}

return (180.0 x rad / (PI));

double deg2rad(double deg)
{

}

return (PI x deg / 180.0);

basicmath: cubic, isqrt,
round, rad2deg

int CDECL bitcount(long i)

{
((i & OxAAAAAAAAL)
((i & @xcCcccceccr)
((i & OxFOFOFOFOL)
((i & OxFFOOFFoOL)
((i & OxFFFFO000OL)

urn (int)i;

i
i
i
i
i
r

Con 0 L 1 [[|

e

bitcount

(i & @x55555555L);
(i & 0x33333333L);
(i & 0xOFQFOFOFL);
(i & 0x00FFOOFFL);
(i & 0x000QOFFFFL);

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

Process: run 30 executions of each algorithm and compared their performance in
terms of the average best fithess reached by the algorithms in all the runs

Evaluation Metric: efficiency gain

 Je—3
eg——fo

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

8

el
o

35

<
L

3.0

L
L
®
°
!

2.5

[
El

o
L

IS
!
0
°
!

@
L

1.0 A

o
N
=
°
L

0.5

-
14
o

0.0 ¥

Efficiency gain (percent)
Efficiency gain (percent)

Efficiency gain (percent)

e
°

- ‘ - ‘ : - - - 05 ‘ - - ‘
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40

Generation Generation Generation
(a) basicmath (b) gsort (c) bitcount

Figure 1: Mean efficiency gain (percent) at each generation for the three EAs investigated (Small input).

= B

{|——

4.0 - - - 4.0
354 [=% uUMDA ’M +
30|~ Tree-EDA L

—— A

35 | = UMDA

®

3.0 =% Tree.EDA

—

2.5

®

2.0

IS
L

1.5

1.0

E

0.5 4

Efficiency gain (percent)
Efficiency gain (percent)
Efficiency gain (percent)

0.0

°
.

05 - - : - 05+ - - . - - - - -
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation Generation Generation

(a) basicmath (b) gsort (c) bitcount

Figure 2: Mean efficiency gain (percent) at each generation for the three EAs investigated (Large inputs).

Experiment I:

Determine the difference between the performance of GA, UMDA, and Tree-EDA.

Statistical Significance: (p=0.01) Frequency:
18— — —
[EA
[Tree-EDA
small | UMDA vs Tree | UMDA vs GA | Tree vs GA B -
basicmath 1.555e-4 6.400e-12 1.818e-15 c:f
gsort - - = o 12
bitcount 4.610e-09 7.797e-11 1.620e-3 g
large | UMDA vs Tree | UMDA vs GA | Tree vs GA é 09
basicmath 2.435e-5 2.300e-3 8.295e-8 2
gsort 3.300e-14 1.743e-13 4.316e-1 "g -
bitcount 3.375e-16 1.355e-16 8.945e-08 5
> 0.3
Table 2: Results of the statistical tests. '

0.0
4623 2 42551424190 1 4 8 181149445329255648174310 6 3513544136372050 7 31343047 9 5221391233 5 5740283238 3 51162227452615
Variables

Figure 3: Frequency of the flags found by the three EAs in all the executions.

Most frequent flags were fschedule-insnsZ2, -ftree-salias, and -fkeep-static-consts
least frequent flags were -frerun-loop-opt, -ftree-ter, and -ftree-ch.

Experiment Il:
Are optimization flag interactions common to all programs or program-dependent?

Process: Run 30 executions of Tree-EDA on 3 different programs both with small
and large input then compare the optimization flag interactions

Evaluation Metric: Frequency of optimization flag pairs in the Tree-EDA

[Auto./Industrial |

: basicmath
/ \ qsort
bitcount
2 3 susan (smoothing)
susan (edges)
/ / \ susan (corners)
g 5 6 5

Table 1: Mibench instances used for the experimental frame-
work.

Experiment Il:

Are optimization flag interactions common to all programs or program-dependent?

Large Input

10

—— Smoothing
2 —>— Edges

—4— Corners

Efficiency gain (percent)
Efficiency gain (percent)

T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Generation Generation

Experiment Il:
Are optimization flag interactions common to all programs or program-dependent?

There exist pairs of flags that have a strong contribution to the optimization problem,
but the number of such pairs are few.

45

40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0

a) b) c)

Figure 5: Most frequent interactions captured by Tree-EDA for the three different functionalities of program Susan when

large images are considered. a) Smoothing, b) Edges, ¢) Corners

Experiment Il:
Are optimization flag interactions common to all programs or program-dependent?

Given optimization flag outputs of Tree-EDA can we identify which type of program the Tree-EDA was run on?
(Types are smoothing, edges, and corners)

NO!

Random
Forest
Classifier

Experiment Il:
Are optimization flag interactions common to all programs or program-dependent?

0.09 —

B Susan-Small
0.08} [Susan-Large [

0.07H]

0.06 |

0.05 H

0.04

0.01

Variable importance

0.00
1236423534 8 24 4 11432318 9 5639494557 3 1 5 1614 6 1017215427194115204744315129533832524013 7 33283046 2 372625 0 22505548

Variables

Figure 6: Feature importance found by the random forest classifier when classifying programs from the optimal flag sets.

Conclusion:

° From other parts of presentation:
o Searching best optimization flag combinations is a complex task due to:
m Large search space
m Relationship between each optimization flags
e From Experiment I:
o Tree-EDA and GA perform better than UMDA for the choosing the flags for the optimization problem.
o Most frequent flags were fschedule-insns2, -ftree-salias, and -fkeep-static-consts, least frequent flags were
-frerun-loop-opt, -ftree-ter, and -ftree-ch.
e From Experiment Il

o There exist pairs of flags that have a strong contribution to the optimization problem, but the number of such
pairs are few.
o Given optimization flag outputs of Tree-EDA we can not identify which type of program the Tree-EDA was run on
e Future works / ideas from the group:
o Test current algorithms on additional datasets
o Test other algorithms similar to the EDA on the same dataset to measure performance improvement

