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Introduction: Iterative Compilation

● Executable code can be significantly optimized at the time of compilation, to 
make significant gains in terms of time, energy, memory, etc. needed to solve a 
problem.

● Is it possible to use the information of this optimization to our advantage?  
○ Modify the search space of our operations 
○ Consider the statistical regularities present in the best solutions! 

● Iterative compilation: Explore the space of possible optimization sequences 
until an acceptable solution is found. 

● In this paper, the selection of a proper combination of compilation flags is 
analyzed in this way. 



Why Compilation Flags?

● Compilers provide a high flexibility for code quality by having a large set of 
flags to balance different criteria. But searching all over these compilation 
options manually is prohibitive due to the big quantity of terms ⇒ Genetic 
Algorithms

● We also need to consider the relationship and interactions between different 
flags! The presence of one flag might make another flag irrelevant, etc.

● Not only we need to search through a large space, but also this space is 
subject to relationships between variables. 

● What if we try to capture them using probabilistic models?
● Proposal: Estimation of Distribution Algorithms (EDA) 



A Basic Workflow for an Evolutionary Algorithm: Classical

We also need to consider: 

● Nature of the 
variables in the 
population ⇒ Binary 
(a flag is either used 
or not). 

● How we measure if a 
good solution has 
been found? ⇒ 
Fitness function and 
performance gain.  

Algorithm 1: Evolutionary Algorithm

1 Set t ⇐ 0. Generate an initial population D0 
of N 》0 random solutions. 

2 do{

3 Select from population Dt a set DSt of k 
≤ N points using truncation selection.

4 Generate a new population Dt+1 from DSt 
applying the variator operator of choice.

5 t ⇐ t+1

6 } until Termination Criteria are met.



Traditional EA

Estimation of Distribution Algorithms - EDA

● Evolutionary Algorithms that learn a probabilistic model of the promising 
solutions in order to capture a description of relevant patterns shared by these 
solutions.

● Probabilistic Graphical Model (PGM) can store interactions between variables 
as dependency relationships and marginal probabilistic distributions.

● Will this model be able to capture information about the interactions between 
compiler flags? 

Genetic Algorithm 
(GA)

Univariate Marginal 
Distribution Algorithm

 (UMDA)

Dependency 
Based Tree-EDA

Estimation of Distribution Algorithms (EDA)



What do these EDA models represent?

Probability distribution conformal with a 
tree.

Assume there are no parents?

Assumptions about the type of interaction 
between variables:

● UMDA assumes independency.
● Tree-EDA learns pair-wise 

dependency between variables. 

If the problem has no interactions or they 
are weak enough, UMDA does good. 
If pairwise dependencies are essential for 
the problem, Tree-EDA can outperform 
other methods. 

How important are the relationships 
between compiler flags?



Benchmark Dataset

Mibench:

● 5 domains: automotive, consumer, network, office, security, telecomm
● Small and large datasets
● Used automotive domain

Experiment Setup

● GCC 58 flags
● Truncation Selection T=0.5
● Population N=100, max # generation n_gen=50
● Programmed in C++
● Hardware: i7 Pentium processor



Experiment I: 
Determine the difference between the performance of GA, UMDA, and Tree-EDA. 

basicmath: cubic, isqrt, 
round, rad2deg

bitcount



Process: run 30 executions of each algorithm and compared their performance in 
terms of the average best fitness reached by the algorithms in all the runs

Evaluation Metric: efficiency gain

Experiment I: 
Determine the difference between the performance of GA, UMDA, and Tree-EDA. 



Experiment I: 
Determine the difference between the performance of GA, UMDA, and Tree-EDA. 



Statistical Significance: (p=0.01)                Frequency:

Experiment I: 
Determine the difference between the performance of GA, UMDA, and Tree-EDA. 

Most frequent flags were fschedule-insns2, -ftree-salias, and -fkeep-static-consts, 
least frequent flags were -frerun-loop-opt, -ftree-ter, and -ftree-ch.



Experiment II: 
Are optimization flag interactions common to all programs or program-dependent?

Process: Run 30 executions of Tree-EDA on 3 different programs both with small 
and large input then compare the optimization flag interactions

Evaluation Metric: Frequency of optimization flag pairs in the Tree-EDA 



Experiment II: 
Are optimization flag interactions common to all programs or program-dependent?

Small Input Large Input



Experiment II: 
Are optimization flag interactions common to all programs or program-dependent?

There exist pairs of flags that have a strong contribution to the optimization problem,
but the number of such pairs are few.



Experiment II: 
Are optimization flag interactions common to all programs or program-dependent?

Given optimization flag outputs of Tree-EDA can we identify which type of program the Tree-EDA was run on?
(Types are smoothing, edges, and corners) 

NO!

Flags of
Program 1

Flags of
Program 2

Flags of
Program 3

Random 
Forest 

Classifier

Type of 
program 1

Type of 
program 2

Type of 
program 3



Experiment II: 
Are optimization flag interactions common to all programs or program-dependent?



Conclusion: 

● From other parts of presentation:
○ Searching best optimization flag combinations is a complex task due to:

■ Large search space
■ Relationship between each optimization flags

● From Experiment I:
○ Tree-EDA and GA perform better than UMDA for the choosing the flags for the optimization problem.
○ Most frequent flags were fschedule-insns2, -ftree-salias, and -fkeep-static-consts, least frequent flags were 

-frerun-loop-opt, -ftree-ter, and -ftree-ch.
● From Experiment II:

○ There exist pairs of flags that have a strong contribution to the optimization problem, but the number of such 
pairs are few.

○ Given optimization flag outputs of Tree-EDA we can not identify which type of program the Tree-EDA was run on
● Future works / ideas from the group:

○ Test current algorithms on additional datasets
○ Test other algorithms similar to the EDA on the same dataset to measure performance improvement




