
“Evolutionary Optimization of
Compiler Flag Selection by Learning
and Exploiting Flags Interactions“

Paper by: Unai Garciarena, Roberto Santana
Presentation by: Amanda Yao, Batuhan Akcay, Kevin Rodriguez-Siu

Agenda

● Intro/Motivation
○ Why the paper is relevant to the class
○ Optimization flags

● GA, UMDA, EDA
○ Assumptions on the modeling of the problem
○ Basic workflow
○ How to use them for optimization flags

● Experiments
○ Benchmark dataset being used
○ Hardware setup
○ Comparison of 3 methods on different programs
○ Comparison of 3 types of operations in one program for EDA

● Conclusions and Future Works
○ Comments
○ Questions

Introduction: Iterative Compilation

● Executable code can be significantly optimized at the time of compilation, to
make significant gains in terms of time, energy, memory, etc. needed to solve a
problem.

● Is it possible to use the information of this optimization to our advantage?
○ Modify the search space of our operations
○ Consider the statistical regularities present in the best solutions!

● Iterative compilation: Explore the space of possible optimization sequences
until an acceptable solution is found.

● In this paper, the selection of a proper combination of compilation flags is
analyzed in this way.

Why Compilation Flags?

● Compilers provide a high flexibility for code quality by having a large set of
flags to balance different criteria. But searching all over these compilation
options manually is prohibitive due to the big quantity of terms ⇒ Genetic
Algorithms

● We also need to consider the relationship and interactions between different
flags! The presence of one flag might make another flag irrelevant, etc.

● Not only we need to search through a large space, but also this space is
subject to relationships between variables.

● What if we try to capture them using probabilistic models?
● Proposal: Estimation of Distribution Algorithms (EDA)

A Basic Workflow for an Evolutionary Algorithm: Classical

We also need to consider:

● Nature of the
variables in the
population ⇒ Binary
(a flag is either used
or not).

● How we measure if a
good solution has
been found? ⇒
Fitness function and
performance gain.

Algorithm 1: Evolutionary Algorithm

1 Set t ⇐ 0. Generate an initial population D0
of N 》0 random solutions.

2 do{

3 Select from population Dt a set DSt of k
≤ N points using truncation selection.

4 Generate a new population Dt+1 from DSt
applying the variator operator of choice.

5 t ⇐ t+1

6 } until Termination Criteria are met.

Traditional EA

Estimation of Distribution Algorithms - EDA

● Evolutionary Algorithms that learn a probabilistic model of the promising
solutions in order to capture a description of relevant patterns shared by these
solutions.

● Probabilistic Graphical Model (PGM) can store interactions between variables
as dependency relationships and marginal probabilistic distributions.

● Will this model be able to capture information about the interactions between
compiler flags?

Genetic Algorithm
(GA)

Univariate Marginal
Distribution Algorithm

 (UMDA)

Dependency
Based Tree-EDA

Estimation of Distribution Algorithms (EDA)

What do these EDA models represent?

Probability distribution conformal with a
tree.

Assume there are no parents?

Assumptions about the type of interaction
between variables:

● UMDA assumes independency.
● Tree-EDA learns pair-wise

dependency between variables.

If the problem has no interactions or they
are weak enough, UMDA does good.
If pairwise dependencies are essential for
the problem, Tree-EDA can outperform
other methods.

How important are the relationships
between compiler flags?

Benchmark Dataset

Mibench:

● 5 domains: automotive, consumer, network, office, security, telecomm
● Small and large datasets
● Used automotive domain

Experiment Setup

● GCC 58 flags
● Truncation Selection T=0.5
● Population N=100, max # generation n_gen=50
● Programmed in C++
● Hardware: i7 Pentium processor

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

basicmath: cubic, isqrt,
round, rad2deg

bitcount

Process: run 30 executions of each algorithm and compared their performance in
terms of the average best fitness reached by the algorithms in all the runs

Evaluation Metric: efficiency gain

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

Statistical Significance: (p=0.01) Frequency:

Experiment I:
Determine the difference between the performance of GA, UMDA, and Tree-EDA.

Most frequent flags were fschedule-insns2, -ftree-salias, and -fkeep-static-consts,
least frequent flags were -frerun-loop-opt, -ftree-ter, and -ftree-ch.

Experiment II:
Are optimization flag interactions common to all programs or program-dependent?

Process: Run 30 executions of Tree-EDA on 3 different programs both with small
and large input then compare the optimization flag interactions

Evaluation Metric: Frequency of optimization flag pairs in the Tree-EDA

Experiment II:
Are optimization flag interactions common to all programs or program-dependent?

Small Input Large Input

Experiment II:
Are optimization flag interactions common to all programs or program-dependent?

There exist pairs of flags that have a strong contribution to the optimization problem,
but the number of such pairs are few.

Experiment II:
Are optimization flag interactions common to all programs or program-dependent?

Given optimization flag outputs of Tree-EDA can we identify which type of program the Tree-EDA was run on?
(Types are smoothing, edges, and corners)

NO!

Flags of
Program 1

Flags of
Program 2

Flags of
Program 3

Random
Forest

Classifier

Type of
program 1

Type of
program 2

Type of
program 3

Experiment II:
Are optimization flag interactions common to all programs or program-dependent?

Conclusion:

● From other parts of presentation:
○ Searching best optimization flag combinations is a complex task due to:

■ Large search space
■ Relationship between each optimization flags

● From Experiment I:
○ Tree-EDA and GA perform better than UMDA for the choosing the flags for the optimization problem.
○ Most frequent flags were fschedule-insns2, -ftree-salias, and -fkeep-static-consts, least frequent flags were

-frerun-loop-opt, -ftree-ter, and -ftree-ch.
● From Experiment II:

○ There exist pairs of flags that have a strong contribution to the optimization problem, but the number of such
pairs are few.

○ Given optimization flag outputs of Tree-EDA we can not identify which type of program the Tree-EDA was run on
● Future works / ideas from the group:

○ Test current algorithms on additional datasets
○ Test other algorithms similar to the EDA on the same dataset to measure performance improvement

