
Code Specialization
based on Value Profiles
Paper Authors: Robert Muth, Scott Watterson, Saumya Debray

University of Arizona

Presenters: Joe Ginsburg, Jeremy Mervak, and Tao Zhou

Motivation

● Constant folding ← expr. guaranteed to be constant
○ “all-or-nothing” transformation
○ How to extend this?

● Idea: invariant → “quasi-invariant”
○ just like LICM → FPLICM

● Transformation: specialization (for common cases)
● Basis: value profiling

Value Profiling *

Observation Optimization method

Control flow profiling Branches may be biased Code motion, etc.

Value profiling Distribution of values may be skewed
Specialization

Expression profiling ~ exprs ~

* For simplicity, only consider register values for now.

Observation in Practice

Sources of skewed values (high-level):

● Function argument
○ e.g. default argument

● Variable
○ number of iterations

○ switch expression

memmove(to, from, numBytes)

for (i = n; i > 0;
i--){...}
switch(type){...}

● Original segment C, value v of a register r
● Step 1: Insert a test

● Step 2: specialize true-branch

Specialization

if (r==v) then C else C

if (r==v) then C’ else C

Possible optimizations:

constant folding,
constant propagation,

loop unrolling,
load avoidance,

…

Code Specialization Process

1. Identify points/registers where specialization may be profitable

2. Obtain value profiles for those program points

3. Use these profiles to carry out specialization (if profitable)

Code Specialization Example

Original BB1:

1. r1 = A
2. r2 = r1 * 2
3. r3 = r1 + r2
4. r4 = load 0xBEEF
5. r5 = r3 + r4

Code Specialization Example

Original BB1:

1. r1 = A
2. r2 = r1 * 2
3. r3 = r1 + r2
4. r4 = load 0xBEEF
5. r5 = r3 + r4

Probable BB1 (BB1’):

1. r1 = 1
2. r2 = r1 1 * 2 = 2
3. r3 = r1 1 + r2 2 = 3
4. r4 = load 0xBEEF
5. r5 = r3 3 + r4

BB1:
r1 = A
r4 = load 0xBEEF
p1 = cmpp(r1 != 1)
br p1, BB2

BB2:
1. r1 = A
2. r2 = r1 * 2
3. r3 = r1 + r2
4. r4 = load 0xBEEF
5. r5 = r3 + r4

BB3:
1. r1 = A
2. r2 = r1 * 2
3. r3 = r1 + r2
4. r4 = load 0xBEEF
5. r5 = 3 + r4

29% r1 != 1 71% r1 == 1

Results - The Improvement

● Usual speedup between 3%

and 14%

● Notice that gcc experienced a

slowdown, the reason is

unclear

Results - The Tradeoff

● We are adding instructions,

so code size should increase

● Code doesn’t drastically bloat

relative to performance gain

Strengths

● Great speedups
○ As much as 14.1%

● Analyzing potential profit before

doing profiling saves overhead
○ Fewer than 1% of potential

candidates are actually profiled

● Code size does not increase much
○ Less than 1% on average

Weaknesses

● Value profiling can slow the code down, as in gcc benchmark

● Value profiling relies on an accurate suite of test inputs

● The specialized programs have other deficiencies
○ Increased in mispredicted branches

○ Increase in i-cache misses

Questions?

