Code Specialization
based on Value Profiles

Paper Authors: Robert Muth, Scott Watterson, Saumya Debray
University of Arizona

Presenters: Joe Ginsburg, Jeremy Mervak, and Tao Zhou

Motivation

e Constant folding < expr. guaranteed to be constant
o “all-or-nothing” transformation
© How to extend this?
® Idea: invariant — “quasi-invariant”
o just like LICM — FPLICM
e Transformation: specialization (for common cases)
® Basis: value profiling

100

Value Profiling *
g
g 0
Observation
Control flow profiling Branches may be biased
Value profiling Distribution of values may be skewed
Expression profiling ~ exprs ~

* For simplicity, only consider register values for now.

Value Distribution of r1

1 2 3 4. 5 B 7 8 9 10+
Value

Optimization method

Code motion, etc.

Specialization

Observation in Practice

Sources of skewed values (high-level):

® Function argument memmove (to, from, numBytes)
o e.g.default argument

e \Variable
© number of iterations for (i = n; 1 > 0;

. N_ hY
[—=— 1 3 3
7 C

O] ' J
switch expression switch (type) {...}

Specialization

e Original segment C, value v of a register r
® Step 1: Insert a test

- Clr=v)

‘" Possible optimizations:

-
-
-

if (r==v) then C else C

constant folding,
constant propagation,
loop unrolling,
load avoidance,

® Step 2: specialize true-branch

if (r==v) then C’/else C

Code Specialization Process

1. ldentify points/registers where specialization may be profitable
2. Obtain value profiles for those program points

3. Use these profiles to carry out specialization (if profitable)

Code Specialization Example

Original BB1:

rl = A

r2 = xrl * 2

r3 =rl + 2

r4 = load OxBEEF
r5 = r3 + r4

o b w N

Percentage of Values

100
80
60
40
20

o

Value Distribution of r1

1 2 3 4 5 6
Value

7

8

9 10+

Code Specialization Example

Original BB1:

rl
r2
r3
r4
r5

o b w N

A

rl * 2

rl + r2
load OxBEEF
r3 + r4

Probable BB1 (BR1')

o b w N

rl
r2
r3
r4
r5

1

=+ 1 * 2 =
+=+ 1 + =2 2
load OxBEEF
+= 3 + r4

2

3

BB1

rl = A

r4 = load OxBEEF

pl = cmpp (rl !'= 1)

br pl, BBRZ2

20% 1 I= 1/\71% rl ==

BB2: BB3
2 r2 =rl * 2 2 P p—— 2
3. r3 =rl + r2 3 =37
5 r5 = r3 + r4 5 rb5 = 3 + r4

Results - The Improvement

Execution Time (secs)
Program unspecialized specialized Tipec/ Thospec
(Tnospec) (];']?CC)
compress| 260.7540.02% 254.25+0.30% 0.975
gce 220.45+0.16% 221.58+0.08% 1.005
go 309.4340.81% 301.5740.26% 0.975
ijpeg 327.24+0.02% 320.95+0.41% 0.981
li 249.5940.03% 237.974£0.04% 0.953
m88ksim| 220.2140.08% 189.19+0.06% 0.859
perl 178.96£1.91% 169.54+0.51% 0.947
vortex 301.224+1.09% 297.3540.05% 0.987

Impact of Value-Profile-based Specialization on Execution Time

e Usual speedup between 3%
and 14%

® Notice that gcc experienced a
slowdown, the reason is
unclear

Results - The Tradeoff

Code Size (Instructions)
Program unspecialized specialized Lspec / Tnospec
(]nospec) (lspec)
compress 17381 17529 1.009
gcc 279429 281584 1.007
g0 71046 71169 1.002
ijpeg 51045 52385 1.026
li 29106 29131 1.001
m88ksim 40865 41237 1.009
perl 82167 82304 1.002
vortex 103660 103743 1.001

Impact of Value-Profile-based Specialization on Code Size

We are adding instructions,
so code size should increase
Code doesn’t drastically bloat
relative to performance gain

Strengths

Program No. of Program Points ® Great speedups

Total Profiled |Optimized

otal | Profiled |Optimize o Asmuchas 14.1%

compress| 16749 74 0+1 .))
oz 271899 7931 | 196+0 e Analyzing potential profit before
go 65328 1352 i) doing profiling saves overhead
ijpeg 49650 243 5+1 _
Ji 32221 171 740 o Fewer than 1% of potential
m88ksim | 40867 253 16+0 candidates are actually profiled
perl 82462 501 14+0 . .
corter | 113236 127 | 1540 e Code size does not increase much

o Lessthan 1% on average
Extent of Profiling and Specialization

Weaknesses

e Value profiling can slow the code down, as in gcc benchmark
e \alue profiling relies on an accurate suite of test inputs

® The specialized programs have other deficiencies
o Increased in mispredicted branches
© Increase in i-cache misses

=

Questions?

